
BioMed Central

Page 1 of 9

(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware

TreeDyn: towards dynamic graphics and annotations for analyses of
trees
François Chevenet*1, Christine Brun2, Anne-Laure Bañuls1, Bernard Jacq2 and
Richard Christen3

Address: 1Laboratoire de Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, IRD, 911 avenue Agropolis, BP 64501, 34394
Montpellier Cedex 5, France, 2Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR 6216, Parc Scientifique et Technologique
de Luminy, Case 907, 13288 Marseille Cedex 9, France and 3Laboratoire de Biologie Virtuelle, CNRS UMR 6543, Université de Nice Sophia
Antipolis, Centre de Biochimie, Campus Valrose, 06108 Nice, France

Email: François Chevenet* - chevenet@ird.fr; Christine Brun - brun@ibdm.univ-mrs.fr; Anne-Laure Bañuls - banuls@mpl.ird.fr;
Bernard Jacq - jacq@ibdm.univ-mrs.fr; Richard Christen - christen@unice.fr

* Corresponding author

Abstract

Background: Analyses of biomolecules for biodiversity, phylogeny or structure/function studies

often use graphical tree representations. Many powerful tree editors are now available, but existing

tree visualization tools make little use of meta-information related to the entities under study such

as taxonomic descriptions or gene functions that can hardly be encoded within the tree itself (if

using popular tree formats). Consequently, a tedious manual analysis and post-processing of the

tree graphics are required if one needs to use external information for displaying or investigating

trees.

Results: We have developed TreeDyn, a tool using annotations and dynamic graphical methods

for editing and analyzing multiple trees. The main features of TreeDyn are 1) the management of

multiple windows and multiple trees per window, 2) the export of graphics to several standard file

formats with or without HTML encapsulation and a new format called TGF, which enables saving

and restoring graphical analysis, 3) the projection of texts or symbols facing leaf labels or linked to

nodes, through manual pasting or by using annotation files, 4) the highlight of graphical elements

after querying leaf labels (or annotations) or by selection of graphical elements and information

extraction, 5) the highlight of targeted trees according to a source tree browsed by the user, 6)

powerful scripts for automating repetitive graphical tasks, 7) a command line interpreter enabling

the use of TreeDyn through CGI scripts for online building of trees, 8) the inclusion of a library of

packages dedicated to specific research fields involving trees.

Conclusion: TreeDyn is a tree visualization and annotation tool which includes tools for tree

manipulation and annotation and uses meta-information through dynamic graphical operators or

scripting to help analyses and annotations of single trees or tree collections.

Background
Graphical management of trees requires processing and

information visualization methods allowing the user to
deal with single large trees or multiple connected trees.

Published: 10 October 2006

BMC Bioinformatics 2006, 7:439 doi:10.1186/1471-2105-7-439

Received: 02 June 2006
Accepted: 10 October 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/439

© 2006 Chevenet et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17032440
http://www.biomedcentral.com/1471-2105/7/439
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 2 of 9

(page number not for citation purposes)

Although solutions have been proposed for the manage-
ment of single and large trees [1-5], comparisons among
trees [6,7], and annotations of trees [8-10], an integrated
tool for the graphical management of annotations and
comparisons of multiple trees is not yet available (see Dis-
cussion). Presently, there are real needs to explore, com-
pare, display and interpret trees using information not
directly contained in these trees, such as taxonomy, geog-
raphy, life history traits or even ontologies [11-14].
TreeDyn aims at filling these needs. TreeDyn presently
manages multiple windows, multiple trees per window, as
well as related information. Meta-information may be
useful for investigating a single large tree or a collection of
trees. Instead of using only information located in the tree
file itself (in an extended newick format, see for example
[9]), TreeDyn also uses associated annotation files.
TreeDyn uses a 2D Euclidean space representation to effi-
ciently organize tree items without superposition (see Dis-
cussion).

Implementation
TreeDyn is implemented in Tcl/Tk [15,16]. It is based on
the ActiveTcl distribution which contains several Tcl/Tk
extensions such as Itcl/Itk, Iwidgets, TkTable and Img.
TreeDyn is a stand-alone application distributed for OSX,
Linux and Windows platforms without previous installa-
tion of Tcl/Tk. Since TreeDyn is under active develop-
ment, new tools will become available. Automatic
TreeDyn updates ensure users to work with the latest
TreeDyn version without having to visit treedyn.org,
check for updates, download and install again.

Results
Importing exporting

Single or multiple trees can be imported from nexus and
newick formats. TreeDyn allows trees to be printed or
exported to several standard file formats (8 classical
graphic formats, Postscript, SVG and HTML) or to a spe-
cific format called the "TreeDyn Graphic File" (TGF),
which enables saving and restoring graphics. The HTML
export function creates a bitmap screenshot within HTML
encapsulation that may include annotations and active
links associated with leaves (for example EMBL/GenBank
entries). This format should facilitate the electronic publi-
cation of trees, with colors and contextual information.

Editing

Dynamic graphics methods include two important prop-
erties: the direct manipulations of graphical elements on
screen and the virtually instantaneous change of these ele-
ments [17]. In TreeDyn, tools for tree editing are available
as "tool to graphical items" and "graphical items to tool"
interaction modes. Using the" tool to graphical items"
mode, dynamic tools can be selected and applied "on the
fly" to trees, nodes, leaves, annotations, etc. For instance,

the user first activates the "swap" tool and then brushes a
tree for swapping. Conversely, in the "graphical items to
tool" interaction mode, a graphical item is first selected
within a tree and several tools can then be applied
through contextual menus. For instance, a sub-tree is
selected and various operations are applied onto it via its
contextual menu.

Tools are represented by icons and organized into tool-
boxes. Two types of toolboxes are available: a default one
integrating basic tools only and a toolbox dedicated to
experts containing every available TreeDyn tool. Finally, a
toolbox editor enables the user to build dedicated tool-
boxes by the selection, coloring and ordering of tools.
Tools dedicated to tree manipulations allow operations
such as translating trees on the canvas, zooming and nav-
igating using global/local views, re-rooting and swapping.
Leaf or subtree colors, fonts and lines are adjustable.
Shrinking, collapsing, extraction of sub-trees and dele-
tion/copy/insertion of leaves or sub-trees are also possi-
ble. Finally, one can switch among rectangular, internal or
external circular tree configurations with or without pro-
portional branch lengths.

TreeDyn enables the management of collections of trees.
Multiple newick strings can be loaded as a single file and
the corresponding trees displayed as a single document. It
is then possible at once to resize all of the trees, organize
them into rows and columns, switch the collection to a
new configuration (rectangular, circular, etc.), display or
hide leaf labels as well as graphical variables for the entire
collection (font, foreground or background colors). It is
still possible to manage each tree individually.

Projection

Projection is the process of posting texts, images or sym-
bols facing a tree's elements (trees, sub-trees, nodes or
leaves). Projection is implemented in three different man-
ners. The simplest one is a manual pasting of annotations
to a tree's elements. For instance, the user selects a symbol,
or enters a text, and pastes it facing leaves, or as an anno-
tation associated to a selected tree's elements (figure
1a,b). The second method is the posting of standard self-
contained annotations such as branch lengths or boot-
strap values (figure 1c). The third and more powerful
method uses annotation files to post values facing leaf
labels, possibly as a symbol-matrix for pattern visualiza-
tion (figure 1d).

Annotations files use leaf labels as keys to address lists of
key/values pairs. An annotation file is a simple text file
containing one record per line. Each record begins with
the name (label) of a leaf in a tree followed by a list of key/
value(s) pairs. Annotation files can be generated by
TreeDyn from tabulated ASCII files (such as generated by

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 3 of 9

(page number not for citation purposes)

spreadsheets) or by using specific online tools such as
GOToolbox [18].

Since TreeDyn permits the linkage of annotations to a
tree's elements, the posted annotations are moved accord-
ingly during a tree manipulation.

Identification

Identification allows querying between tree elements and
contents of leaf labels or annotation files. Highlighting
clusters of leaves according to a specific string or pattern

found in the leaf labels is possible (figure 2a). But identi-
fication is more powerful when annotation files are used.
A first process called "labelization" consists in posting
associated information to selected tree elements. For
instance, one may select a sub-tree and the relevant anno-
tations associated to its leaves and post these annotations
as multiple and moveable new graphical text items linked
to the sub-tree by connectors (figure 2b). A second process
called "localization" results in highlighting every tree ele-
ment associated to a certain annotation based on a SQL-
like search of the annotation file. For instance, knowing a

Screen shot of a TreeDyn session using Projection functionalitiesFigure 1
Screen shot of a TreeDyn session using Projection functionalities. TreeDyn enables "on the fly" annotation of nodes
or leaf labels using the ToolBox (a). The user selects a tool, for instance "Annotate Subtree, symbol", selects a symbol and a
color and then annotates tree elements (see corresponding arrows). Bitmaps may be also imported and linked to trees (in this
example a pattern visualization of the tree using the TreePAT package of TreeDyn) (b). The "Newick annotation panel" (c)
uses the information stored within the newick string such as branch lengths, bootstrap values or taxonomic levels (before or
after the ":" character). The Annotation panel (d) enables loading and posting of annotations as graphical elements, facing tree
leaves. In this example, a list of binary variables (Sp1, Sp2, etc.) is displayed as a symbol matrix where black and white dots rep-
resent the values 1 and 0 respectively in this example.

(a)

(b)

(c)

(d)

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 4 of 9

(page number not for citation purposes)

tree on the one hand and, on the other hand an annota-
tion file containing for some leaf labels a list of variables/
values pairs, the query "select Leaves from Annotations
where VariableX == ValueX1" returns a list of leaf labels
found in the tree and matching the "ValueX1" value for
the variable "VariableX". This list is then used by a high-
lighting operation which updates the tree aspect (e.g.
"sub-tree background color to red"): figure 2c, see also
[19,20]. The SQL like interpreter integrated into TreeDyn
enables queries on leaf label annotations using operators
working on multi-valued variables ("##": contains, "!#":

does not contain) with or without patterns on values (fol-
lowing standard rules for string pattern matching) and
AND/OR connectors.

TreeDyn enables simultaneous localizations on multiple
trees, either by querying leaf labels using patterns or by
querying annotation files as described above. For
instance, the view of a tree collection may be simplified by
shrinking any sub-trees containing a particular string pat-
tern within the leaf labels. Similarly, modifying the fore-
ground (background) color of sub-trees carrying leaves

The Identification operator, localization and labelizationFigure 2
The Identification operator, localization and labelization. The "Find panel" (a) first allows selection of a highlighting
operation: symbol or text annotation but also foreground or background colors, shrinking sub-tree and so on. Then the user
either selects a leaf label from a list or enters a string pattern. In this example the pattern "STE*" highlights leaf labels starting
with "STE" (red symbol facing leaf labels). Labelization consists in browsing a tree, selecting sub-trees and posting annotations
associated to its leaves (b). Localization operates in the opposite direction; it consists in querying annotations associated to
leaves and highlighting tree's elements. The Identification panel (c) enables localization and multi-localization (localization on
tree collections), it includes a SQL like interpreter. For instance, a "protein tree" is automatically colored according to 'Cellular
role' annotations from Yeast Proteome Database [19].

(b) (c)(a)

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 5 of 9

(page number not for citation purposes)

having identical values for a given variable (e.g. in a phyl-
ogenetic study of host-parasite co-speciation, a host tree is
colored according to parasites) is possible. Each of these
operations helps interpreting sets of trees, facilitating the
detection of similarities or differences between trees.

Reflection

The reflection operator allows the comparison of trees car-
rying identical or different but related leaf labels. This
operator allows the highlighting of targeted trees accord-
ing to a source tree browsed by the user. Two methods are
proposed for this operation. The first method relies on a

strict identity of leaf labels between trees (figure 3a).
Selection of a sub-tree from a tree allows highlighting
every identical leaf in others trees (and potentially sub-
trees, depending of their topologies and the highlighting
operation chosen). The second method deals with trees
bearing different leaf labels (for example different genes
families, see figure 3b). In this case, the reflection operator
requires an annotation file in which the connections
between leaf labels in the different trees are described by
value(s) of variable(s). For instance, if one wants the selec-
tion of leaf "a1" from the source tree "a" to highlight
leaves "b1 b2 b3" of the tree "b", the corresponding anno-

The Reflection operator for tree collection analysesFigure 3
The Reflection operator for tree collection analyses. Screenshot illustrating reflection used in the study of 27 gene
trees from 19 virus species of the Baculoviridae family [38]. Reflection enables the browsing of a source tree and results in high-
lighting targeted trees. In example (a) the Reflection tool using a strict identity of leaf labels between trees is activated. It ena-
bles the selection of the sub-tree {Ld, Bm, Rou, AcM, OpM, Eppo, Se, Maco-A and Maco-B} and allows its highlighting (grey
sub-tree background) and every potentially sub-trees of others tree of the collection. Any tree of the collection may be used as
a source tree and different highlighting operations are available. Here a symbol insertion facing "HaS" and "HzS" leaf labels and
the update of the background for the outgroup"Cuni". In example (b), The Reflection tool using different leaf label sets is acti-
vated. The reflection operates from a consensus tree (tree with a grey background) using species names as leaf labels towards
a set of trees using genes names as leaf labels. The corresponding annotations file integrates records putting in regards species
labels from the consensus tree to genes labels from the others trees (e.g. "ADO reflection {Ado001 Ado002 Ado003 ...}").
With such an annotations file, the reflection operates from the consensus tree (the source tree) to the other trees, and results
in highlighting sub-trees background, shrinking and line aspect modifications. For a reflection between genes trees, the annota-
tion file may integrate records linking leaf labels from different trees, as described in the text (for example "Ado001 reflection
ADO", "Ado002 reflection ADO"...).

(a) (b)

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 6 of 9

(page number not for citation purposes)

tation file must include records linking the leaf labels
from tree "a" to that of tree "b", for example in the form
"a1 string {b1 b2 b3}" where "string" is any variable's
name. Reflection works with any kind of variable. For
instance, the user selects a source sub-tree, and then
chooses a variable from an annotations file (e.g. Country)
and a particular value for this variable (e.g. Country X).
TreeDyn then highlights every targeted tree for corre-
sponding leaf labels (and possibly potential sub-trees)
matching the value "X" for the "Country" variable, allow-
ing powerful comparisons between trees.

Scripting

A TreeDyn script file (ASCII format) containing a list of
instructions is a way of saving graphical analyses and
avoids repetitive tasks. A scripting package includes a lan-
guage dedicated to the treatment of trees and annotations.
This language is based on the description of aliases
between a master interpreter which is running TreeDyn
and a slave interpreter waiting for user instructions. Every
operation available from the TreeDyn interface is scripta-
ble.

Scripts are loadable either through the TreeDyn interface
or can be run from the command-line. For example, the
command "treedyn -tree treeFile -label labelFile -script
scriptFile -out outFile" applies a graphical treatment as
described in scriptFile on a tree (treeFile) using annotations
stored in labelFile returning Postscript and TGF outputs
(outFile.ps and outFile.tgf). Such functionality enables
TreeDyn to be linked to HTTP servers through CGI scripts
as illustrated by the Prodistin Web Site [21], which uses
TreeDyn for tree representations.

TreeDyn Packages

TreeDyn Package is an open library of modules dedicated
to specific tree graphical management tasks. We present
four examples of such packages: TreeBASEinterf, TreeIG,
TreePAT and TreeXY.

TreeBASEinterf (figure 4a). TreeBASE is a relational data-
base designed to manage and explore information on
phylogenetic relationships [22-25]. The database is
designed to allow the retrieval of trees and data from dif-
ferent studies and can be explored interactively. Knowing
keywords (taxa, author names, etc.), TreeBASE web inter-
face allows retrieval of studies (published research papers)
and their related information (methodology, datasets,
trees). Trees can be displayed or downloaded and viewed
with TreeDyn. Knowing ID studies from TreeBASE, Tree-
BASEinterf allows fetching selected trees and their treat-
ment with the TreeDyn tools, without any constraint due
to security policies such as encountered when using applet
technology (saving, printing). Downloaded trees can be
displayed as a collection in new TreeDyn documents or

inserted in already existing documents for comparison
with trees built by the user.

TreeIG (figure 4b) allows the drawing of arcs between
leaves of a tree. It may be used to display additional rela-
tionships existing between leaves which are not repre-
sented by the tree itself, such as interactions between
proteins. TreeIG uses annotation files storing these rela-
tionships as variables. Knowing a user selection of leaves,
through the selection of a subtree or through the selection
from a list (an extended selection is available, with or
without pattern matching), arcs are drawn according to
four graphical variables: curvature, line-width, color and
tabulation (a user specification).

TreePAT (figure 4c) allows the representation of a tree as a
pattern visualization matrix. A pair-wise distance matrix is
computed according to the distances of the leaves in the
tree (sums of branch lengths). Some classes are then
defined as ranges of distances from 0 (a leaf to itself) to
the diameter of the tree. Finally, a color is associated to
each class resulting in the distance matrix being colored
accordingly. Leaves within a given distance class appear
with their associated color as squares more or less well
structured along the diagonal of the matrix.

TreeXY (figure 4d) enables a dynamic linkage between
trees and scatterplot matrices. For instance, the module
may help in the co-analysis of a given set of species repre-
sented on the one hand as a phylogenetic tree based on
molecular data, and on the other hand, as a scatterplot
matrix of factorial maps from a multivariate analysis using
geographic data. A toolbox allows mouse-driven selec-
tions of sub-sets of species, from the tree or from the scat-
terplot representation, and their highlighting, respectively
on the scatterplot and on the tree. Different modes of
interaction allow different highlighting operations and to
keep/undo results following several selections.

Discussion
Layout

Many tools for visualising phylogenetic trees already exist;
they first differ in their layout, i.e. 2D or 3D and using
Euclidean or hyperbolic representation. Most popular
tools such as Treeview [1] and ATV [9] lay out trees in a
two dimensional Euclidean space and are useful for visu-
alising trees of up to a few hundred nodes; PoInTree
makes uses of polar coordinates [26]. Tools, such as
Hypertree [3], have increased the number of visualisable
nodes using 2D hyperbolic space providing a "focus+con-
text" view, where a subset of the data can be viewed at a
higher resolution with the remaining contextual data still
being in view. In hyperbolic space (as opposed to Eucli-
dean space), circumference and area increase exponen-
tially instead of geometrically. It enables allocation of

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 7 of 9

(page number not for citation purposes)

space for every node independent of the total number of
nodes in the tree, which can be projected into a finite vol-
ume of Euclidean space for a "focus+context" view. By
bringing different parts of a tree to the magnified central
region, the user can examine every part of the tree in detail
while retaining a sense of the context. Hypertree allows
visualization of up to a thousand nodes [3]. In order to
handle an order of magnitude more nodes, one strategy is
to not visualise the whole tree but instead to display a rep-
resentative part of it as implemented in SpaceTree and
TreeWiz [4,27]. Visualization using virtual reality has also
been reported as a potential approach to the problem, but
this requires a special virtual reality chamber [28,29].
More recently, hyperbolic representation made use of 3D
coordinates [5,30] making possible to interactively visual-
ize the entirety of trees with several hundred thousand
nodes on a desktop computer. Hyperbolic representations
are fine for global visualizations of large datasets, but suf-
fer from unresolved problems of leaf label and annotation
management to avoid superposition; besides the main

aim of TreeDyn is to produce figures for publication
(printed or browsing); it was therefore designed to use a
standard 2D Euclidean space, with every alternate layout
being feasible (phylogram, rectangular or slanted cladog-
ram, radial view, circular inside and outside, with or with-
out proportional branch lengths). Using the combination
of global and local navigators, trees of up to 15 000 leaves
have been successfully viewed with TreeDyn.

Aspect

Once a tree represented in a 2D Euclidean space, easy
changes of aspect of edges as well as leaf labels are
required (line width and aspect, font, size of labels...).
Most popular tree editors allow such operation either for
the entire tree or for a selection of items. Both can be done
with TreeDyn, which includes many more alternate
options than any other tree editor. Also, apart from man-
ual selections and changes, TreeDyn allows extensive
scripting to be used. TreeGraph [31] assists in producing
complex ready-to-publish figures of phylogenetic trees

Screen shots of TreeDyn packagesFigure 4
Screen shots of TreeDyn packages. Knowing an ID Study (e.g. S725) from TreeBASE, the TreeBASEinterf module (a)
allows the fetching of selected tree(s) and their insertion in a TreeDyn document. The TreeIG package (b) allows the drawing
of arcs facing the selected leaf labels. Graphical variables of arcs (color, curvation, tabulation) follow a user's definition possibly
based on the distances between the leaves. The TreePAT package (c) enables the computation and the coloring of the distance
matrix between leaves based on branch lengths. The TreeXY (d) package allows a dynamic linkage between trees and scatter-
plot matrices.

(a) (b)

(c) (d)

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 8 of 9

(page number not for citation purposes)

through scripting, but with much less possibilities. PAL
(Phylogenetic Analysis Library, [32]) would be an alter-
nate possibility, but for the moment it is not implemented
through a visual interface and has also less functionalities.

Export trees

Saving can be done toward almost any image format,
post-script, SVG and as "live" encapsulated html file. To
our knowledge, no other editor is capable to do so, except-
ing TreeGraph [31] which also exports to SVG. In addi-
tion, TreeDyn provides the user with the specific TGF
format enabling the saving and restoring of analyses.

Comparing trees

Since there are many methods for building trees, and also
many sources of information for building a tree from the
same objects (genes for a species tree for example), it is
often desirable to summarize or compare a set of phyloge-
netic trees [33]. Several approaches are now available
from the "simple" consensus tree [34] to the visualization
of a "tree space" using multi-dimensional scaling based
on a tree-to-tree distance matrix (Tree Set, [13,35]) or to
systems allowing detailed structural comparisons between
trees of up to 100,000 nodes (TreeJuxtaposer, [6]). One
may however wish not to compare a set of trees in their
entirety, but only for a subset of leaves (e.g. a clade) of
interest. TreeDyn offers a solution to manage multiple
trees, using leaf labels as unique key to record lists of var-
iables/values pairs, independently of the tree topologies.
This information is used by graphical operators that allow
highlighting, annotating or shrinking nodes or leaves
among the set of trees, therefore providing an instant rep-
resentation of congruence or divergence. In this respect,
TreeDyn is more powerful than the above mentioned
tools since it allows linking and highlighting leaves that
have a different content through the use of an annotation
file.

Annotations

Usual tree description formats (newick [36] or nexus[37])
used by most phylogenetic software or tree-drawing tools
do not allow the easy inclusion of additional information
(except support value and/or branch length). As a conse-
quence, additional information needs to be manually
added to the tree with the help of a graphic editor. This
operation can often be inferred from subtle inhomogene-
ous arrangements in the final figures. An attempt to
arrange and format these elements is very time consuming
and may involve human errors. TreeGraph [31] extends
the usual parenthetical tree notation (Newick and similar
formats) to include much more information for each
branch or node, such as different support value types, text
and graphical labels. Using its command line editor, it is
then possible to add annotations, change label's fonts and
modify the tree structure to produce a publication ready

figure. TreeDyn offers an improved solution to manage
such meta-information, by using external annotation files
in the form of key-values couples. The annotation proce-
dure of TreeDyn is easier (a command can be tested
within the tree editor and its effect can be instantaneously
visualized), more powerful as it may use large, easy to
build annotation files. Also, these procedures can be
applied to a series of trees. Finally, by keeping annotations
external to the tree description itself, a single tree can be
annotated with different annotation files for different
contexts.

Conclusion
Tree analyses often need an alternate focusing between
complex tree graphical structures and information related
to the entities under study. TreeDyn offers a solution to
manage, on the one hand, multiple trees, and on the other
hand, meta-information. TreeDyn offers to link unique
leaf labels to lists of key/values pairs, independently of the
tree topologies, remaining fully compatible with the basic
newick format. These relationships are used by graphical
operators allowing a Human-Computer interaction rang-
ing from manual (user driven) to "all automatic" (compu-
ter driven) processes: from annotations to trees, from trees
to annotations, from trees to trees through annotations.
The scripting capability is an improvement towards the
automation of graphical "error free" treatments and its use
with the Treedyn command line enables TreeDyn to be
linked to HTTP servers through CGI scripts. TreeDyn is
under active development, and suggestions for improve-
ments are welcome (as for example import of specific for-
mats). As TreeDyn is under the GPL licence, any
development by a third party is also welcome. Full docu-
mentation as well as tutorials are available on the TreeDyn
web site [39].

Availability and requirements
• Project name: TreeDyn

• Project home page: http://www.treedyn.org

• Operating systems: MacOSX, Linux, Windows

• Programming language: Tcl/Tk, ActiveTcl 8.4.3

• Other requirements: none

• License: GPL

• Any restrictions to use by non-academics: none

Authors' contributions
FC designed and led the project, developed the algo-
rithms, prototypes, coded and integrated the complete
package. CB, ALB, BJ and RC provided biological insights,

http://www.treedyn.org

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2006, 7:439 http://www.biomedcentral.com/1471-2105/7/439

Page 9 of 9

(page number not for citation purposes)

data and tested the software. FC and RC essentially wrote
the paper with contributions of CB. RC and FC had regu-
lar stimulating discussions regarding the evolution of the
software. All authors read and approved the final manu-
script.

Acknowledgements
This project is supported by grants from "Action Bio-informatique inter-

EPST", "ACI IMPbio" and the European Community (STR "HealthyWater",

contract number: 36306). Thanks are due to Sylvain Godreuil, Camille

Szmaragd, Amélie Véron, David Zolli, Alain Guénoche, Miguel Lopez Fer-

ber for data and testing the software and to Philip Agnew for carefully read-

ing the manuscript.

References
1. Page RD: TreeView: an application to display phylogenetic

trees on personal computers. Comput Appl Biosci 1996,
12:357-358.

2. Perrière G, Gouy M: WWW-Query: An on-line retrieval sys-
tem for biological sequence banks. Biochimie 1996, 78:364-369.

3. Bingham J, Sudarsanam S: Visualizing large hierarchical clusters
in hyperbolic space. Bioinformatics 2000, 16:660-661.

4. Rost U, Bornberg-Bauer E: TreeWiz: interactive exploration of
huge trees. Bioinformatics 2002, 18:109-114.

5. Hughes T, Hyun Y, Liberles DA: Visualising very large phyloge-
netic trees in three dimensional hyperbolic space. BMC Bioin-
formatics 2004, 5:48.

6. Munzner T, Guimbretiere F, Tasiran S, Zhang L, Zhou Y: TreeJuxta-
poser: Scalable Tree Comparison using Focus+Context with
Guaranteed Visibility. SIGGRAPH: ACM Transactions on Graphics
2003:453-462.

7. Hillis DM, TA H, K SJ: Analysis and Visualization of Tree Space.
Syst Biol 2005, 54:471-482.

8. Chevenet F, Bañuls AL, Barnabé C: TreeDyn: un éditeur interac-
tif d'arbres phylogénétiques. Actes des Premières Journées Ouvertes
Biologie, Informatique et Mathématiques ENSAM/Montpellier 2000:87-90.

9. Zmasek CM, Eddy SR: ATV: display and manipulation of anno-
tated phylogenetic trees. Bioinformatics 2001, 17:383-384.

10. Pasquier C, Girardot F, Jevardat de Fombelle K, Christen R: THEA:
ontology-driven analysis of microarray data. Bioinformatics
2004, 20:2636-2643.

11. Tao Y, Liu Y, Friedman C, Lussier YA: Information visualization
techniques in bioinformatics during the postgenomic era.
Drug Discovery Today: BIOSILICO 2004:237-245.

12. Carrizo SF: Phylogenetic trees: an information visualisation
perspective. Proceedings of the second conference on Asia-Pacific bioin-
formatics 2004:315-320.

13. Amenta N, Klingner J: Case Study: Visualizing Sets of Evolution-
ary Trees. IEEE Symposium on Information Visualization (InfoVis'02)
2002:71-76.

14. Lott PL, Mundry M, Sassenberg C, Lorkowski S, Fuellen G: Simplify-
ing gene trees for easier comprehension. BMC Bioinformatics
2006, 7:231.

15. Ousterhout JK: Tcl and the Tk Toolkit. Addison-Wesley; 1994.
16. Welch BB: Practical Programming in Tcl and Tk. Fourth edi-

tion. Prentice Hall; 2003.
17. Cleveland WS, McGill ME: Dynamic Graphics for Statistics.

Wadsworth & Brooks/Cole; 1998.
18. Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B: GOTool-

Box, functional analysis of gene datasets based on Gene
Ontology. Genome Biology 2004, 5:R101.

19. Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B: Func-
tional classification of proteins for the prediction of cellular
function from a protein-protein interaction network. Genome
Biology 2003, 5:R6.

20. Zhong W, Sternberg PW: Genome-Wide Prediction of C. ele-
gans Genetic Interactions. Science 2006, 311:1481-1484.

21. Baudot A, Martin D, Mouren P, Chevenet F, Guenoche A, Jacq B, Brun
C: PRODISTIN web site: a tool for the functional classifica-
tion of proteins from interaction networks. Bioinformatics 2006,
22:248-250.

22. Sanderson MJ, Baldwin BG, Bharathan G, Campbell CS, Ferguson D,
Porter JM, Von Dohlen C, Wojciechowski MF, Donoghue MJ: The
growth of phylogenetic information and the need for a phyl-
ogenetic database. Syst Biol 1993, 42:562-568.

23. Sanderson MJ, Donoghue , Piel W, Eriksson T: TreeBASE: a pro-
totype database of phylogenetic analyses and an interactive
tool for browsing the phylogeny of life. Amer Jour Bot 1994,
81:163.

24. Donoghue MJ: Progress and prospects in reconstructing plant
phylogeny. Ann Missouri Bot Gard 1994, 81:405-418.

25. Morell V: TreeBASE: the roots of phylogeny. Science 1996,
273:569-569.

26. Marco C, Eleonora G, Luca S, Edward PS, Antonella I, Roberta B:
PoInTree: a polar and interactive phylogenetic tree. Genomics
Proteomics Bioinformatics 2005, 3:58-60.

27. Plaisant C, Grosjean J, Bederson BB: SpaceTree: supporting
exploration in large node link tree, design evolution and
empirical evaluation. Information Visualization. INFOVIS IEEE
Symposium 2002:57-64.

28. Ruths DA, Chen ES, Ellis L: Arbor 3D: an interactive environ-
ment for examining phylogenetic and taxonomic trees in
multiple dimensions. Bioinformatics 2000, 16:1003-1009.

29. Stolk B, Abdoelrahman F, Koning A, Wielinga P, Neefs JM, Stubbs A,
de Bondt A, Leemans P, vdS P: Mining the human genome using
virtual reality. In Fourth Eurographics Workshop on Parallel Graphics
and Visualization: 9–10 September Blaubeuren Germany Germany Euro-
graphics Digital Library; 2002:17-21.

30. Munzner T: Interactive Visualization of Large Graphs and
Networks. Stanford University; 2000.

31. Müller J, K M: TreeGraph: automated drawing of complex tree
figures using an extensible tree description format. Molecular
Ecology Notes 2004, 4:786-788.

32. Drummond A, Strimmer K: PAL: an object-oriented program-
ming library for molecular evolution and phylogenetics. Bio-
informatics 2001, 17:662-663.

33. Day W: Optimal algorithms for comparing trees with labeled
leaves. Journal of Classification 1985, 2:7-28.

34. Bryant D: A classification of consensus methods for phyloge-
netics. DIMACS Series in Discrete Mathematics and Theoretical Compu-
ter Science 2003:163-184.

35. Montealegre I, St John K: Visualizing Restricted Landscapes of
Phylogenetic Trees. 2002 [http://comet.lehman.cuny.edu/treeviz/
papers/Evolu_Montealegre_20030601_061139.pdf].

36. Felsenstein J: The Newick tree format. 1986 [http://evolu
tion.genetics.washington.edu/phylip/newicktree.html].

37. Maddison DR, Swofford DL, Maddison WP: NEXUS: an extensible
file format for systematic information. Syst Biol 1997,
46:590-621.

38. Simon O, Chevenet F, Williams T, Caballero P, Lopez-Ferber M:
Physical and partial genetic map of Spodoptera frugiperda
nucleopolyhedrovirus (SfMNPV) genome. Virus Genes 2005,
30:403-417.

39. TreeDyn [http://www.treedyn.org]

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8902363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11836218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16012112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16643669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16643669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15575967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14709178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14709178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14709178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16527984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16527984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16269417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16269417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11159311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11448888
http://comet.lehman.cuny.edu/treeviz/papers/Evolu_Montealegre_20030601_061139.pdf
http://comet.lehman.cuny.edu/treeviz/papers/Evolu_Montealegre_20030601_061139.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3024605
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11975335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11975335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15830159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15830159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15830159
http://www.treedyn.org
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results
	Importing exporting
	Editing
	Projection
	Identification
	Reflection
	Scripting
	TreeDyn Packages

	Discussion
	Layout
	Aspect
	Export trees
	Comparing trees
	Annotations

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

