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Abstract—Accurate gene tree reconstruction is a fundamental problem in phylogenetics, with many important applications.
However, sequence data alone often lack enough information to confidently support one gene tree topology over many
competing alternatives. Here, we present a novel framework for combining sequence data and species tree information,
and we describe an implementation of this framework in TreeFix, a new phylogenetic program for improving gene tree
reconstructions. Given a gene tree (preferably computed using a maximum-likelihood phylogenetic program), TreeFix
finds a “statistically equivalent” gene tree that minimizes a species tree-based cost function. We have applied TreeFix to 2
clades of 12 Drosophila and 16 fungal genomes, as well as to simulated phylogenies and show that it dramatically improves
reconstructions compared with current state-of-the-art programs. Givenits accuracy, speed, and simplicity, TreeFix should be
applicable to a wide range of analyses and have many important implications for future investigations of gene evolution. The
source code and asample data set are available at http:/ /compbio.mit.edu/treefix. [Gene tree error correction; phylogenetics;

reconciliation.]

Gene trees and species trees play a fundamental part
in many phylogenetic analyses. Although species trees
represent evolutionary histories at the species level, gene
trees depict the evolutionary histories of families of
genes. By reconstructing gene trees and reconciling (i.e.,
comparing) them to a species tree, one can infer the
history of gene duplications, losses, and other important
evolutionary events that have occurred within a gene
family (Page 1994; Vilella et al. 2009). In addition, gene
trees can be used to infer orthologs and paralogs,
allowing functions to be mapped across different species
(Eisen 1998), or gene trees can be reconstructed on the
genome-wide scale to gain insight into how gene families
expand and contract (Hahn et al. 2007) or to understand
the evolutionary impact of genome-wide events (Jiao
et al. 2011).

Although gene trees have many powerful
applications, all of these analyses depend strongly
on the accuracy of the reconstruction (Hahn 2007;
Rasmussen and Kellis 2011). However, unlike species tree
reconstruction, which can benefit from the use of well-
behaved gene families as well as multigene phylogeny
construction methods (Delsuc et al. 2005; Burleigh et al.
2011), gene tree reconstruction is complicated by the fact
that many genes lack enough information to confidently
support a single gene tree topology. Thus, “sequence-
only” algorithms that reconstruct gene trees using
only the sequence data [e.g.,, PAUP* (Swofford 2002),
BioN] (Gascuel 1997), PhyML (Guindon and Gascuel
2003), RAXML (Stamatakis 2006), MrBayes (Ronquist
and Huelsenbeck 2003)] often produce incorrect and
poorly supported gene trees. However, recent studies
have found that incorporating species tree information
can drastically improve gene tree accuracy (Vilella et al.
2009; Rasmussen and Kellis 2011). This has led to the
formulation of “species tree aware” methods, which

often combine sequence likelihood with a topology
prior based on a known species tree, with the most
principled methods adopting a Bayesian approach [e.g.,
PrIME-GSR (Arvestad et al. 2004), SPIMAP (Rasmussen
and Kellis 2011)], though simpler models [e.g., TreeBest
(Vilella et al. 2009), SPIDIR (Rasmussen and Kellis
2007)] also exist. However, these models often require
additional parameters, such as estimates of divergence
times and duplication-loss rates, and they tend to be
very computationally intensive.

In parallel, several “hybrid” methods have been
developed for resolving gene tree and species tree
incongruence to produce “error-corrected” gene trees.
These are often based on a reconciliation framework and
attempt to minimize a species tree aware cost function
based on the inferred evolutionary events. For example,
both NOTUNG (Durand et al. 2006) and tt (Goérecki
and Eulenstein 2011) consider local rearrangements
around an initial gene tree to find an error-corrected
gene tree that has minimum duplication-loss cost
after reconciliation. Although these algorithms only
require a known species tree topology and are therefore
much simpler than model-based species tree aware
approaches, they suffer from 2 important drawbacks:
(1) they limit their search space and can therefore miss
the correct tree topology if it is distant from the initial
tree and (2) because they ignore whether the corrected
gene tree is supported by the sequence data, they cannot
guarantee that the corrected gene tree does not overfit to
the species tree.

To address these shortcomings, we present a novel
hybrid method TreeFix. Like other hybrid methods,
TreeFix rearranges an input gene tree to minimize the
number of inferred duplications and losses. However,
TreeFix is novel in that it also uses the sequence data
(i.e., nucleotide or peptide alignment) to guarantee
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that the final corrected gene tree is “statistically
equivalent” in likelihood to the initial input tree (i.e.,
the difference in likelihood between the 2 trees is
not significant). In essence, TreeFix recognizes that
although phylogenetic programs often return a single
optimal gene tree (or possibly a consensus tree across
multiple bootstraps), multiple gene trees are often
statistically equivalent, as measured by likelihood ratio
tests, such as the Kishino-Hasegawa (KH) test (Kishino
and Hasegawa 1989), the Shimodaira-Hasegawa (SH)
test (Shimodaira and Hasegawa 1999), or many others
(Shimodaira and Hasegawa 2001). Furthermore, one
of these statistically equivalent gene trees will often
more accurately reflect the true gene tree topology. By
incorporating this statistical test with a reconciliation
cost, such as the duplication-loss cost, we can therefore
improve phylogenetic accuracy. In addition, because
of this guarantee, TreeFix is free to use an expanded
search algorithm that can explore more distant parts of
the tree space. We find that together, these techniques
lead to a simple yet powerful method that requires
few modeling assumptions or parameters and produces
highly accurate gene trees ideal for inferring the
evolutionary history of gene families.

We have applied TreeFix to both real and simulated
data sets and compared its performance with that
of several other gene tree reconstruction methods.
We find that TreeFix shows drastic improvement over
existing sequence-only and hybrid approaches, with
performance comparable to the most sophisticated
species tree aware Bayesian approaches.

METHODS

Gene Tree Landscape

To understand the basic idea behind TreeFix, consider
the likelihood landscape of the gene tree space (Fig. 1a).
Ideally, TreeFix is given as input the maximum-
likelihood (ML) tree (models with non-unique ML trees
should not be used). This tree corresponds to the highest
peak in the landscape, but often this peak is located
in a plateau of high likelihood topologies. Methods
such as NOTUNG and tt make local rearrangements
to explore this surrounding plateau for the topology
that minimizes some user-defined cost function (e.g., the
number of inferred duplications and losses), where this
cost function is used as a heuristic for improving gene
tree accuracy. However, these local moves may result
in a topology outside the plateau that has significantly
worse likelihood than the ML topology. Furthermore, the
likelihood landscape may also contain multiple peaks
and valleys, necessitating a larger search to explore
distant plateaus. TreeFix essentially searches among
topologies within the landscape that lie above a certain
threshold, using reconciliation cost as a heuristic to
determine an optimal tree among these topologies.
In this way, TreeFix is able to move beyond local

rearrangements to find a minimum cost gene tree
without overfitting to the species tree.

Note that TreeFix inherently assumes that regions of
high sequence likelihood and low reconciliation cost
overlap, an assumption held up in practice (Fig. 1b).
When this is not the case, TreeFix errs on the side of
sequence support (rather than species tree support) and
returns a gene tree with high sequence likelihood and
high reconciliation cost.

Major Components

Our goal is to find, among all gene tree topologies
that are statistically equivalent to the ML tree, one that
minimizes a user-defined reconciliation cost. Thus, at its
core, TreeFix consists of 3 basic components: (i) a test of
statistical equivalence to filter out gene tree topologies
that are suboptimal, (ii) a gene tree and species tree
reconciliation method to compute the reconciliation cost,
and (iii) a tree search to explore the space of alternative
gene tree topologies. We elaborate on each of these
below.

Statistical comparison of sequence support for multiple
topologies—Many statistical tests have been developed
for computing the equivalence of 2 or more tree
topologies chosen a priori (Kishino and Hasegawa
1989; Shimodaira and Hasegawa 1999; Goldman et al.
2000; Shimodaira and Hasegawa 2001). In essence,
these tests compute a test statistic that captures the
observed likelihood difference between trees, then rely
on hypothesis testing in which the null hypothesis is that
the trees are equally supported by the sequence data, and
the alternative hypothesis is that the trees are not equally
supported. Because sequence evolution is a stochastic
process, these tests determine a p-value that represents
the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming
that the null hypothesis is true. Given a significance level
a that represents the probability of false rejection (i.e., we
believe the trees are not equally supported when they
actually are), we then reject the null hypothesis and say
the trees are not equally supported if p<a, or we fail
to reject the null hypothesis and say that the trees are
equally supported if p > a. Note that if a =0, all trees are
equally supported, effectively removing the statistical
testand causing TreeFix to return the minimum cost gene
tree regardless of sequence support, whereas if a=1, no
trees are equally supported, effectively causing TreeFix
to return only the tree with highest sequence support,
for example, the ML tree.

Although users may implement their own statistical
module, by default, TreeFix uses the SH test provided
by the RAXML package. For further information on
likelihood tests, including a discussion of statistical
power, how to correct for multiple comparisons,
and an error rate analysis, see Supplementary
Sections S1 and S2 (available at http://datadryad.org,
doi:10.5061 /dryad.44cbb5).
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FIGURE 1. Gene tree landscape. a) Each point within the landscape corresponds to a gene tree Ty, whose optimality can be measured

through its likelihood Ly (height) and its reconciliation cost ¢, (color). The ML tree Ty is located at the peak of this landscape but may have
a high cost. Rearranging Tmr to a nearby tree T, can result in a negligible decrease in likelihood (8 =Lmr — Ly < 8r) While simultaneously
reducing the tree cost (cy <cmr), thus producing a more congruent gene tree that is statistically equivalent to the ML tree. TreeFix utilizes this
basic idea by balancing the 2 optimality criteria to return an optimal tree T* for which §* is negligible and c* is minimal. b) The landscape for a
simulated gene family shows a wide range of likelihood and cost values. In this instance, TreeFix searched over 3560 gene trees of the 8.2 x 102
possible unrooted topologies (number of genes = 21). Although most trees have statistically worse likelihoods compared with the ML tree (x),
a subset of high likelihood trees are statistically equivalent (circles). As the search progresses, the search space generally moves toward the
top-left, corresponding to topologies with high likelihood and low duplication-loss cost (enlarged at right, accepted trees per iteration shown as
squares). In this case, TreeFix has rearranged T (beige triangle) to produce a new optimal tree T* (purple triangle) with equivalent likelihood
and lower cost. Note that T* is incorrect because the true tree Tiye (black triangle) has a slightly higher duplication—loss cost. (Likelihoods were

computed with e=2.)

Gene tree and species tree reconciliation—To calculate
a species tree aware cost, we make use of the
reconciliation framework, in which any incongruence
between the gene tree and species tree topologies is
explained by postulating evolutionary events, such as
gene duplication, gene loss, horizontal gene transfer, or
incomplete lineage sorting (Maddison 1997). Although
users may implement their own cost module, by default,
TreeFix uses maximum parsimony reconciliation (Page
1994; Zmasek and Eddy 2001) with the duplication—
loss cost function (Goodman et al. 1979), which seeks
the reconciliation with the fewest total number of
inferred duplications and losses. In addition to being the
standard model used in many species tree aware and
hybrid approaches, for example, in SPIMAP, TreeBest,
NOTUNG, and tt, we found the reconciliation cost to
be highly correlated with gene tree topological accuracy
(Supplementary Section S3), lending support to our
approach of using this metric to incorporate information
from the species tree into the gene tree reconstruction.

Tree search.—Because it is impractical to search through
the space of all possible gene tree topologies, we use a
heuristic hill climbing search strategy. The idea is to start
with the given input gene tree and find a better tree in its
neighborhood (defined using some tree edit operation).
This constitutes one local search step. This better tree
then becomes the starting point for the next local search
step, and so on, for either a predefined number of local
search steps or until a local optima is reached. Local
search forms the basis of almost all known parsimony
and likelihood-based phylogeny construction programs,
for example, in PAUP*, RAXML, PhyML, and others and
has been used for gene tree error correction as well.

In our implementation, we use nearest neighbor
interchange (NNI) and subtree prune and regraft (SPR)
(Felsenstein 2003, Ch. 4) to define the neighborhood
in each local search step. In addition, we use the
reconciliation cost to prescreen topology proposals. In
particular, on each iteration, we perform a random NNI
or SPR operation on the current optimal gene tree and
compute its cost. This proposal is always accepted if it
has a lower cost and is accepted with some predefined
probability if it has a higher cost, and we repeat this
local search until we have 1, proposals, after which only
those proposals with a cost lower than the optimal are
retained. We then sort the proposals by their costs, set
the first proposal with statistically equivalent likelihood
as the new optimal, and repeat this entire process for
n; iterations. Notably, this search strategy allows us to
“jump” over valleys of low tree cost or low likelihood
and explore distant parts of the gene tree landscape.

Algorithm

TreeFix takes as input a gene tree T, (often the ML
tree), a multiple alignment A, a species tree Ts, a test
statistic stat and significance level o € [0, 1] for likelihood
equivalence. Additionally, it takes 3 search parameters:
n;j,ng>1 that control the number of tree proposals and
f €10,1] that specifies the fraction of proposals to reroot.

For an arbitrary gene tree Ty, TreeFix evaluates 2
functions in order to determine how the tree fits within
the likelihood landscape: (1) cy=c(Tx;Ts)>0, that is,
the cost of the gene tree based on the species tree
and (2) px.dx =LHstat(Tx; A, Tin), that is, the statistical
significance and change in likelihood Li,—Ly of the
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gene tree (against the input gene tree) based on the test
statistic, multiple alignment, and input tree.

TreeFix outputs the optimal rooted gene tree T*, that
is, the gene tree with minimum cost and statistically
equivalent likelihood, if such a tree is found. If multiple
trees have minimum cost and are statistically equivalent,
the one with minimum change in likelihood is returned.
The main algorithm is as follows (Supplementary
Fig. S1):

1. Compute cjn, and initialize T*=Tj,, ¢* =cjn, and
8* =Li,—L*=0.

2. Make n, proposals {Ty}, computing cy for all Ty
in {Ty} and rerooting f of them to have minimum
cost.

3. Sort{Ty}in order of increasing cost, and retain only
those for which ¢, <c*. Call this [Ty].

4. For each Ty in [Ty], compute py and dy. If px>a
and either (a) ¢y <c* or (b) cy=c* and 8, <3*, set
T*=Ty, c*=cy, and 3* =3y, and go to step 5. Else
consider the next proposal.

5. Repeat steps 2—4 for n; iterations, or until c* =0.

Although users can input any tree, in practice, we
recommend that users input a ML tree, for example, from
RAXML or PhyML, and use the same likelihood model
as the input tree when computing the test statistic.

Note that TreeFix does nothing if the input gene tree
contains <2 genes, is unrooted and contains <3 genes,
or has a reconciliation cost of 0. Furthermore, if the gene
family contains one gene per species, TreeFix first checks
the likelihood and reconciliation cost of the gene tree
topology that is congruent to the species tree topology.

To measure the uncertainty of different topologies
and events, we also implemented a bootstrapping
procedure. To bootstrap the entire pipeline would
require resampling the alignments, reconstructing the
ML trees using these alignments, then passing both
the resampled alignments and associated ML trees to
TreeFix for error correction. However, such a procedure
would be computationally expensive and infeasible for
large data sets. Furthermore, we envision TreeFix as
a tool to be used in conjunction with existing ML
programs, most of which store only the bootstrap trees
and not the bootstrap alignments. Therefore, we have
implemented an approximation in which we bootstrap
only the TreeFix stage of the pipeline. If bootstrapping
is enabled, then TreeFix resamples the alignment and
error corrects the input gene tree for each resampled
alignment. Note that we reuse the original ML tree
topology (reconstructed from the full data) across these
bootstraps; that is, we do not explore the uncertainty
in the topology of Ti,. However, the likelihood test
does optimize the branch lengths and recalculates
the likelihood of Tj, on each resampled alignment.
Therefore, as long as the ML tree topology reconstructed
from the full alignment can be considered as a good

proxy for the ML tree topology that would have been
reconstructed from the bootstrapped alignments, this
approximation should have little effect on the statistical
significance of alternative topologies and the resulting
TreeFix corrected gene trees.

REsULTS

We evaluated TreeFix using 2 clades of species, the
12 Drosophila and 16 fungi (Supplementary Fig. S2),
and using the same data sets used to evaluate SPIMAP
(Rasmussen and Kellis 2011). This included 1000
simulated gene families (generated under the SPIMAP
model) across each clade, as well as 5351 real gene
families across the 16 fungal genomes.

For comparison, we also evaluated several
phylogenetic programs, including the “sequence-
only” probabilistic program RAxML, the “species
tree aware” programs SPIMAP and TreeBest, and the
“hybrid” programs NOTUNG and tt [pipeline and
algorithm parameters provided in Supplementary
Section S4; results using sequence-only methods BioN],
PHYML, and MrBayes, and species tree aware method
PrIME-GSR can be found in Rasmussen and Kellis
(2011)].

Reconstruction Accuracy

Simulated data set.—In the simulated data set, the correct
phylogeny is unambiguously known, allowing us to
analyze several different aspects of the phylogenetic
programs.

To measure accuracy, we evaluated several different
metrics including topological accuracy, branch accuracy,
and sensitivity and precision of duplication, loss, and
ortholog inference (Fig. 2). Although we ran TreeFix on
both the fly and fungi clades, we focus our discussion
here on the results of the larger fungi clade, as the
phylogenetic programs performed similarly across many
of the metrics using the smaller fly clade.

We found that TreeFix significantly improves on the
input RAXML trees, improving topological accuracy
by 82.8-84.8%, branch accuracy by 22.7-23.2%, and
duplication and loss precision by 64.6-69.6% and
82.9-89.6%. (The other metrics are less sensitive to
gene tree errors, showing between 0.3% reduction and
13.6% improvement.) Additionally, TreeFix performance
is comparable to that of the most sophisticated
reconstruction method analyzed (SPIMAP), and both of
these dramatically outperform all other methods.

The low performance of RAXML is, of course, expected
as it uses only sequence data. Among the species
tree aware and hybrid methods, TreeBest performs
by far the worst, which we believe can be attributed
to its relatively simple penalized likelihood approach.
(Results presented here used default parameters for
TreeBest. Analysis using a variety of parameter settings
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FIGURE 2.

Phylogenetic accuracy and runtime using several phylogenetic methods on simulated fly and fungal data sets. a) Both hybrid

and species tree aware methods have high reconstruction accuracy for correctly inferring the full gene tree topology for the fly data set. TreeFix
has the highest reconstruction accuracy for the larger fungal data set. b) The percent of accurately reconstructed branches is similar across all
methods for the fly data set, but the hybrid methods and SPIMAP show significant improvement over TreeBest and RAXML for the fungal data
set. ¢) Despite topological and branch inaccuracies, pairwise ortholog detection is robust across all methods in both precision and sensitivity.
d,e) TreeFix (long) and SPIMAP infer duplications and losses with a high degree of sensitivity and precision, with both these methods offering
a slight improvement over TreeFix and NOTUNG (100). Again, the hybrid methods and SPIMAP greatly outperform TreeBest and RAXML,
particularly in terms of precision for the fungal data set. f) TreeFix achieves performance comparable to SPIMAP at a fraction of the runtime
(average runtimes provided for the fungal data set). Note that TreeBest and RAXML were run with 100 bootstraps, whereas all other methods were
run without bootstrapping. g) TreeFix runtime can likely be improved if the program were ported to a more efficient programming language.

For more metrics, see Supplementary Table S1.

for TreeBest did not show an appreciable change in
accuracy.)

Using quick search parameters, TreeFix performs
slightly better than NOTUNG (3.9% improvement in
topological accuracy, 2.3% and 7.2% in duplication/loss
precision) and significantly better than tt (20.4%, 25.1%,
53.5% improvement). Furthermore, we found that 1.8%
of the NOTUNG trees and 1.1% of tt trees fail the SH
test (compared with the input RAXML trees at a=0.05),
suggesting that the decreased performance of these
hybrid methods is at least partially a result of overfitting
to the species tree.

In light of this, we analyzed TreeFix to determine
the effect of overfitting on gene tree error. We ran
TreeFix with a=0, effectively removing the likelihood
test and finding the minimum duplication-loss tree.
We found that 7.4% of the resulting trees fail the
SH test (at a=0.05), and that topological accuracy

decreases by 5.2% to (a level of) 88.8%, and duplication
precision decreases by 9.0% to (a level of) 79.8%.
This suggests that, as expected, ignoring sequence
information is detrimental to gene tree accuracy and
further supports our strategy of balancing a tree search
strategy with a likelihood test. Further analysis showed
that TreeFix performance remains relatively stable for
1073 <a <0.2 (Supplementary Fig. S5). Within this range,
the Robinson-Foulds (RF) distances (Robinson and
Foulds 1981) against the TreeFix trees at a =0.05 are also
highly similar (average RF < 0.009), suggesting there
exists a good compromise between sequence and species
tree information.

Impressively, TreeFix performance is comparable to,
and, using expanded search parameters, even exceeds,
that of SPIMAP (4.8% and 6.6% improvement in
duplication/loss precision, <3.3% difference in all other
metrics). This is despite the SPIMAP model being used to
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generate the simulated trees, and SPIMAP incorporating
a number of additional parameters, including species
divergence times, duplication and loss rates, and lineage-
specific gene rates, in its model, whereas TreeFix uses
only the species tree topology. It is possible that given
a longer search time, SPIMAP would perform the best,
though itis also worthwhile to note that SPIMAP already
has an average runtime 2.3x that of RAxXML+TreeFix
(long) and 16.4x that of RAXML+TreeFix (with default
search parameters).

Our goal with TreeFix was to develop a method
that is feasible enough to include in a phylogenomic
pipeline containing thousands of trees and a variety of
family sizes. Thus, we also evaluated its reconstruction
speed and scalability with gene family size. We found
that TreeFix reconstructs gene trees with accuracy
comparable to species tree aware Bayesian methods at
a fraction of the runtime (Fig. 2f). Furthermore, TreeFix
consistently outperforms other methods across a range
of gene family sizes, and its runtime increases at the same
rate as RAXML runtime (Supplementary Section 56, and
Supplementary Fig. S6), meaning that TreeFix can easily
be inserted into existing phylogenetic pipelines without
a noticeable increase in runtime complexity.

Real data set.—We have also assessed the performance of
TreeFix on a real data set. Most TreeFix trees were well
supported: the minimum and mean bootstraps averaged
over all trees were 51.8% and 85.8%, respectively. (This is
similar to RAXML support at 54.0% and 86.8%.) As the
ground truth is not known for real data, we used several
informative metrics to assess the quality of reconstructed
gene trees (Table 1).

For the first metric, we assessed each program’s
ability to infer syntenic orthologs, defined as pairwise
orthologs that are highly likely to be orthologs given
their surrounding conserved gene order. We found
that TreeFix recovers syntenic orthologs with 95.2-
97.6% sensitivity, comparable to SPIMAP at 96.5% and
NOTUNG at 96.1% and a significant improvement over
RAXML, which performed the worst, at 63.8%. However,
note that these high sensitivities are also accompanied
by predictions of as many as 24.4% more orthologs
compared with other methods, suggesting that the
improvement in sensitivity could be tied to a loss in
specificity.

The second metric evaluates the total number of
inferred duplications and losses across the clade. We,
of course, expect the hybrid methods to infer much
fewer duplications and losses compared with RAXML,
as their objective is to minimize the duplication-loss
cost by rearranging the input RAXML gene tree. Here,
SPIMAP infers the fewest number of events, though
again, TreeFix, SPIMAP, and NOTUNG found far fewer
events than the other methods, inferring at least 33.5%
fewer duplications and 47.6% fewer losses.

For the third metricc we used the duplication
consistency score (Vilella et al. 2009) to evaluate
the plausibility of the inferred duplications by each

method. For each duplication node, this score computes
the percentage of species overlap in the 2 child
subtrees, under the assumption that a low species
overlap is indicative of a false duplication (followed
by many compensating losses). We found that TreeFix,
SPIMAP, and NOTUNG show similar duplication
consistency distributions (Supplementary Fig. S3) and
again outperform the other methods, with SPIMAP
detecting the fewest fully inconsistent duplications
(score = 0) and NOTUNG detecting the most fully
consistent duplications (score = 1).

The fourth metric assesses each program’s ability to
recover more recent duplications due to gene conversion
events, which effectively tests the ability of species tree
aware and hybrid methods to properly weigh conflicting
species information and sequence information. Here,
we found that TreeFix performs the best, recovering
94.6% of recent gene converted paralogs compared
with the next best methods at 89.2%. This suggests
that our approach of balancing species and sequence
information using a likelihood ratio test may be superior
to Bayesian (SPIMAP) or penalized likelihood (TreeBest)
approaches, as well as approaches that ignore sequence
information (NOTUNG, tt) or species information
(RAXML) in the final tree. (One parameterization of
NOTUNG was also able to recover 94.6% of these
paralogs but only at the expense of far lower scores
across the other metrics.) Interestingly, while neither the
species tree aware nor the hybrid methods model gene
conversion, the hybrid methods (>89.2%) outperform
the species tree aware methods (81.1-83.8%) and are
able to attain performance at least as well as the
sequence-only method (89.2%), suggesting that the
underlying assumptions of these hybrid methods do not
tend to cause species information to override sequence
information at the expense of recovering gene conversion
events.

Note that, according to our metrics, TreeFix shows
performance comparable to that of SPIMAP and
NOTUNG. The high performance of SPIMAP is
unsurprising because it uses a sophisticated Bayesian
approach. In addition, SPIMAP requires extensive
preparation and training, and due to excessive runtimes,
cannot easily be applied to larger data sets. In fact,
we believe this demonstrates the advantages of TreeFix,
as it is able to achieve these high levels of accuracy
while requiring far fewer modeling assumptions and no
additional training or parameter estimation.

We also believe that TreeFix has advantages over
NOTUNG in several ways. For example, as we previously
showed (Fig. 2), our first metric of ortholog sensitivity
may not reflect topological inaccuracies, and NOTUNG
was only able to achieve these high levels of performance
by considering all branches with bootstrap support
<100% of the maximum bootstrap as weak. Furthermore,
both NOTUNG and tt operate under the implicit
assumption that by only using minor rearrangements,
the final output tree is still supported by the sequence
data. This assumption may not hold, however; if we
compare output trees against input trees, we found
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TaBLE 1. Evaluation of several phylogenetic programs on real fungal dataset

Program?® % OrthsP # Orths® # Dups© # Losses® DCsd % GC* % Fail SH' RF8 Runtime®
TreeFix (Iong) 96.4 574,946 6,062 10,981 0.649 97.3 * 0.306 21.35 min
TreeFix 95.2 569,664 6,505 12,532 0.609 94.6 * 0.302 45.68 s
NOTUNG (100) 96.1 582,581 6,161 10,835 0.659 89.2 19.2 0.285 0.41s
NOTUNG (90) 89.1 556,685 9,906 23,917 0.395 94.6 7.5 0.211 0.38s
NOTUNG (50) 70.1 487,875 18,322 54,101 0.191 89.2 0.8 0.051 0.40s

tt (3) 82.8 522,834 9,780 26,621 0.354 89.2 16.3 0.224 3.29s

tt (2) 76.5 503,323 12,552 35,898 0.272 89.2 10.7 0.171 0.18s

tt (1) 70.0 482,439 16,310 48,036 0.206 89.2 5.1 0.100 0.05s
SPIMAP 96.5 557,981 5,407 10,384 0.650 83.8 - - 21.89 min
TreeBest 79.5 480,680 11,240 34,287 0.266 811 - - 25.72s
RAXML 63.8 462,039 21,083 64,037 0.159 89.2 - - 4.32 min

2See Supplementary Section S4 for program details.
bPercentage of 183,374 syntenic orthologs recovered.

‘Number of pairwise orthologs, duplications, and losses inferred across all gene trees.

d Average duplication consistency score.
°Percentage of 37 recent gene converted paralogs recovered.

fFor the hybrid methods, percentage of trees that fail the SH test compared with the input RAXML trees at o =0.05. By design, TreeFix always

returns a statistically equivalent tree (x=0).

&For the hybrid methods, average RF distance compared with the input RAXML trees.
h Average runtime for reconstructing each gene tree. Note that TreeBest and RAXML were run with 100 bootstraps.

that RF distance and p-value have little correlation
(Supplementary Fig. 54). Although NOTUNG can attain
high performance using our metrics, almost 19.2% of the
resulting trees are no longer supported by the sequence
data (e.g., they fail the SH test at « =0.05). In comparison,
TreeFix can attain higher RF scores, reaching parts of
the tree space unreachable by the other hybrid methods,
while also returning a tree supported by the sequence
data.

Effect of Using Alternative Species Tree Topologies

In practice, the true species tree is not known with
certainty. Therefore, we also evaluated how robust
TreeFix is to incorrect species tree topologies. For the
16 fungi data set, we assumed the correct species tree
topology matched that of Butler et al. (2009), which
used additional evidence from genomic rearrangements,
synteny, and nucleotide, purine + pyrimidine, and
peptide alignments. Here, we re-evaluated the simulated
fungi data sets using four alternative species tree
topologies (Supplementary Fig. S7a). These topologies
were chosen by evaluating a real data set of 739 one-
to-one syntenic orthologs. A concatenated nucleotide
alignment of these 739 families supported topology T4,
which differs from our assumed species tree topology
T in 3 branches (the single branch differences make up
topologies T1 —T3). However, the differences in sequence
support between the alternative topologies and the
assumed true topology were also found to be negligible
(SH-test, p~1 in all cases).

For the simulated data set, topological accuracy
decreases dramatically (by 62.5-92.3%) when an
incorrect species tree is used (Supplementary Fig. S7),

as expected. Surprisingly, however, using this metric,
TreeFix using a species tree topology with a single branch
error outperformed RAXML using the correct topology
(recall that while RAXML is a sequence-only method,
the resulting tree is still reconciled against the correct
species tree). This suggests that incorrect species tree
topologies still provide a lot of correct information, and
furthermore, this additional information is sufficient to
overcome gene tree errors caused by uncertainty in the
sequence data. Using more robust metrics, we found that
branch accuracy and duplication precision are reduced,
though to a lesser effect (by 10.0-22.6% and 5.0-24.6%),
and that ortholog inference is robust to species tree
topology errors (>98.6% accuracy), as is duplication
sensitivity (>92.2% accuracy, <0.7% difference). Again,
using branch accuracy as our metric, TreeFix using
species tree topologies with a single error outperformed
TreeBest and RAXML using the correct topology. Even
using a species tree topology with 3 branch errors,
TreeFix performed as well as RAXML using the correct
topology. This improvement is even more pronounced
for duplication accuracy: TreeFix using an incorrect
topology is able to outperform all other evaluated
phylogenetic methods except SPIMAP using the correct
topology. However, species tree topology errors do seem
to cause errors in loss inference (17.1-60.7% decrease
in sensitivity, 32.3-82.3% decrease in precision), an
unsurprising result, as many of the inferred losses have
likely migrated to other parts of the gene tree.

For the real data set, we found that using
alternative species tree topologies, TreeFix shows similar
improvement over RAXML as with the assumed correct
species tree topology (e.g., higher recovery of syntenic
orthologs, lower number of inferred duplications
and losses, higher duplication consistency, higher
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recovery of gene conversion events; Supplementary
Tables S3 and S4). Furthermore, we found high
agreement between ortholog calls (>97.3%), with less
agreement in duplication and loss inference (55.6-69.2%,
29.7-711%).

Using the real data set, we also analyzed support for
our alternative species tree topologies using RAXML and
TreeFix gene trees. Indeed, one of the main applications
of gene tree error correction is to determine the species
tree topology most supported by the corrected gene trees
(Gérecki and Eulenstein 2011), that is, the species tree
topology with the fewest event counts. One advantage
of this approach is that it allows us to make use
of all gene families rather than only one-to-one gene
families, as is the case when testing sequence support
using concatenated alignments. Rather than looking
only at event counts, however, we tested whether the
differences in event counts between multiple species tree
topologies are significant. That is, we found event count
distributions using bootstrapped gene trees with the
assumed correct species tree topology, then determined
the p-value of the event counts with the alternative
species tree topologies. If p<a, the gene trees support
one species tree topology over the other, whereas if p> o,
there is not enough evidence to support a single species
tree topology. As with the concatenated alignment,
we found that all alternative topologies are equally
supported (RAXxML — T1: p=0.27, T2: p=0.28, T3: p=
0.26, T4: p=0.14; TreeFix — T1l: p=0.61, T2: p=0.64,
T3: p=0.64, T4: p=0.51; one-sided test). Interestingly,
TreeFix returns higher p-values than RAXML. Thus, if
we used a different significance level, for example, an
a for which prAxML <@ <PTreeFix, We might conclude
that an alternative species tree topology is not supported
by the RAXML gene trees but is supported by the
TreeFix trees. Because TreeFix returns gene trees that are
statistically equivalent to the RAXML trees, this suggests
that when using sequence-only methods, the evidence
supporting one species tree topology over another can
be partly attributed to insufficient sequence information.
Therefore, care should be taken when using gene tree
parsimony methods that reconstruct species trees based
on sequence-only gene trees.

In summary, we found that TreeFix is more accurate
than RAXxML even when the species tree topology
contains possible errors. In practice, if the species
tree topology is uncertain, one conservative approach
is to run TreeFix with multiple topologies and take
the intersection of their inferred orthologs and events.
Alternatively, if the multiple topologies are believed to
be equally likely, then one could combine gene tree
bootstraps into a single pool and from that pool, perform
tree consensus to get branch bootstrap values.

Effect of Species Tree Divergence and Size

We are also interested in how TreeFix performs for
a variety of species trees; in particular, how might
features of the species tree, such as speciation rate and

tree size (number of extant taxa), affect performance?
To address this, we simulated species trees using
TreeSample (Hartmann et al. 2010) with a constant-
rate birth-death model and a variety of settings for
the speciation rate (0.05-1 events/species/myr) and
tree size (5-100 extant species). In all cases, TreeFix
shows dramatic improvement over most other programs
(Supplementary Fig. S8). (SPIMAP was not run on these
gene trees due to model differences, and NOTUNG
performed better than TreeFix in some cases, for reasons
discussed below.)

As the speciation rate increases, in effect causing
shorter branches in the species tree, we found that the
topology and branch accuracy of TreeFix and NOTUNG
remain relatively constant whereas the duplication and
loss precision decrease. In contrast, all other methods
show a decrease in performance across all metrics, which
is understandable, as shorter branches result in more
similar gene sequences, making it harder for typical
phylogenetic methods to accurately reconstruct gene
trees. Also note that for high speciation rates, NOTUNG
is able to outperform TreeFix if we lower the threshold
for uncertain branches. We believe this is because fast
speciation rates with a constant tree size result in shorter
species tree depths and fewer total gene duplications and
losses (under our simulation model), thus producing
gene trees that are highly congruent to the species trees.
Therefore, ignoring sequence data and reconstructing
the gene trees most congruent to the species tree, as in
NOTUNG, results in high accuracy.

Furthermore, we found that TreeFix (with long search
settings) shows consistent or only minor degradations
in performance as the tree size increases, suggesting
that high accuracy is achievable by balancing sequence
and species tree information and increasing the tree
search space. In contrast, the performances of RAXML,
NOTUNG, tt, and, to some degree, TreeBest and TreeFix
(with quick search settings) decrease dramatically with
increasing tree size. This can be attributed to larger
species trees resulting in more duplication and loss
events per gene tree and thus more incongruence
between gene trees and species trees. Note that for
large tree sizes, NOTUNG is again able to outperform
TreeFix if many rearrangements are allowed. With
such a parameter setting, NOTUNG performance, as
measured by duplication and loss precision, increases
with increasing tree size. We believe this is a result
of large species trees generating large gene trees so
that many branches in the gene tree reconstruction are
uncertain. This allows NOTUNG more freedom in its
reconstruction compared with small gene trees, and
this larger search space translates to increased accuracy.
Finally, note that TreeFix is scalable to many species, and
again scales at the same rate as RAXML, whereas one
major limitation of Bayesian approaches is their inability
to handle large species trees.

As sequencing costs continue to decline, both the net
speciation rate and size of species trees will only increase.
Given its improved accuracy over other methods and its
scalability compared with more complex approaches,
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we believe that TreeFix should be useful for future
phylogenetic analyses.

DiscussioN

In this article, we have presented a new framework
for combining sequence and species tree information
in a principled manner. In addition, we have described
a novel phylogenetic algorithm TreeFix that uses
this framework to dramatically improve gene tree
reconstructions, with performance comparable to the
most sophisticated gene tree reconstruction algorithms
achievable at a fraction of the runtime.

A major feature of TreeFix is its simplicity. There are
few assumptions or parameters, and the algorithm'’s
behavior is easy to understand and control. The output
gene tree from TreeFix is guaranteed to be statistically
equivalent to the input tree, which is a condition that
is directly interpretable and can be easily controlled
through the test statistic and significance level. In
contrast, other hybrid methods are not as careful in
balancing the trade-off between species tree congruence
and sequence data likelihood, likely resulting in their
lower performance in our evaluations. Methods that do
balance these 2 types of information in a more principled
way (e.g., SPIMAP and PrIME-GSR) require more
modeling assumptions and parameters, which may be
difficult to make or obtain in many situations. Thus, we
feel that TreeFix offers a useful and powerful approach
that will likely be applicable to many phylogenetic data
sets.

Additionally, TreeFix’s modeling assumptions are
fully contained within the sequence likelihood and
reconciliation model. We have used some of the most
basic phylogenetic assumptions in our analysis (GTR-T'
model of evolution and a duplication-loss reconciliation
cost). Therefore, unlike species tree aware methods
that tend to make many assumptions on gene tree
evolution, TreeFix is applicable to a variety of data
sets and compatible with a wide range of downstream
algorithms, including those that account for more
complicated evolutionary events. Used in conjunction,
TreeFix would correct for gene tree errors due to
uncertainty, and other algorithms would correct for
errors due to events such as horizontal gene transfer and
deep coalescence.

TreeFix is also highly modular. It has no dependency
on the method used to compute the input gene tree, and
it is very straightforward to substitute other likelihood
tests and cost functions. For example, while our current
implementation uses RAXML-computed likelihoods and
the SH test, users who prefer other likelihood models
or test statistics only need to implement a small Python
plugin module. We have also implemented a similar
modular approach to the cost heuristic, thereby allowing
users to incorporate other reconciliation models, such as
those that account for horizontal gene transfer (Conow
et al. 2010; David and Alm 2011; Doyon et al. 2011), deep
coalescence (Maddison 1997; Degnan and Rosenberg

2009), or non-binary reconciliations (Chen et al. 2000),
or other sources of information, such as synteny or
local region properties. This leaves the complexity of
the likelihood and reconciliation models to the user
and allows TreeFix to serve as a useful framework for
measuring the effects of different statistical tests or cost
heuristics on gene tree accuracy.

Along these lines, note that while many statistical tests
compare the likelihoods of multiple trees, and we have
formulated the gene tree landscape using likelihood
values, the framework discussed here could easily be
extended to other probabilistic measures, in particular
to penalized likelihoods, as in TreeBest, or to a posteriori
probabilities, as in Bayesian reconstruction methods. Of
course, some of these probabilities rely on topology
priors and therefore, our statistical comparisons would
no longer be based solely on sequence support. In our
approach, we have chosen to differentiate sequence
support and species tree support, using likelihood-based
statistical tests for the former and a reconciliation cost for
the latter.

As with any phylogenetic method, users must decide
whether the models for sequence evolution and gene
tree-species tree reconciliation used in TreeFix are
appropriate for a given data set. The duplication-loss
reconciliation cost was chosen as the default in TreeFix
as it is broadly applicable, especially in eukaryotes
(Goodman et al. 1979; Page 1994, 2000; Wapinski et al.
2007; Vilella et al. 2009; Burleigh et al. 2011; Ness
et al. 2011) and is the model used by many species
tree aware and hybrid methods (Arvestad et al. 2004;
Durand et al. 2006; Rasmussen and Kellis 2007; Vilella
et al. 2009; Gorecki and Eulenstein 2011; Rasmussen
and Kellis 2011). Still, if the species under analysis
are closely related, it may be appropriate to use
more advanced models that combine the duplication,
loss, and deep coalescence processes (Rasmussen and
Kellis 2012). Similarly, when working with prokaryotic
species, models that incorporate horizontal gene transfer
may yield better performance (David and Alm 2011;
Doyon et al. 2011; Tofigh et al. 2011). As we have
mentioned, users have multiple options for correcting
possible model mismatches. Because a TreeFix tree
is statistically equivalent to the ML tree and equally
supported by the sequence data, users can simply run
TreeFix as an intermediate step between initial ML gene
tree reconstruction and other methods that account
for these evolutionary events. Alternatively, users may
incorporate the evolutionary model directly into TreeFix
by implementing their own reconciliation cost function.

Aside from improved gene tree reconstruction,
because TreeFix guarantees that the final error-corrected
gene tree is equivalent to the input tree in terms of
sequence likelihood, it can also be used to measure
the robustness of existing trees in a manner similar
to bootstrapping. Furthermore, TreeFix can be used to
validate biological conclusions based on phylogenetic
analysis. For example, studies that compare duplication
and loss counts or posit genome-wide events based
on event distributions across the species trees can run
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TreeFix on their existing gene trees to determine whether
their conclusions hold for the TreeFix-corrected gene
trees. Those conclusions that are no longer supported
should then be further analyzed using other methods.
Similarly, TreeFix can be used to test multiple species tree
topologies. If multiple topologies are equally supported,
then gene trees may be insufficient to resolve the
underlying species phylogeny, and other metrics, such
as synteny, should be used.

Although we have shown that TreeFix likely would
not dramatically increase runtime complexity if applied
to RAXML trees, it does currently perform significantly
slower than other hybrid methods. This is most likely
because we have implemented TreeFix using Python
compared with the efficient programming languages
(NOTUNG: Java, tt: C++) used by the other programs.
Furthermore, while we have not implemented many
optimizations thus far, many of the techniques used
by NOTUNG and tt to reuse computation between tree
proposals could also be applied to TreeFix, or the species
tree topology or likelihood landscape could be used to
more efficiently guide the tree search. Recent advances
using GPU computation (Suchard and Rambaut 2009)
may also be leveraged. Thus, future speed improvements
are likely possible.

In conclusion, we believe that the concepts presented
here offer a simple yet powerful alternative to existing
hybrid and Bayesian models of gene tree reconstruction,
and we feel that TreeFix will be a valuable addition to the
phylogenetists” toolkit, as it can be easily integrated into
existing phylogenomic pipelines to significantly improve
gene tree reconstructions.
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