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Abstract 

 

T he general trend of climatically-driven treeline advance is modified by regional, local and temporal varia-
tions. Treelines will not advance in a closed front parallel to the shift of any isotherm to higher elevations 

and more northern latitudes. The effects of varying topography on site conditions and the after-effects of his-
torical disturbances by natural and anthropogenic factors may override the effects of slightly higher average 
temperatures. Moreover, the varying treeline-forming species respond in different ways to a changing climate. 
Forest advance upwards and northwards primarily depends on successful regeneration and survival of young 
growth rather than on increasing growth rates of mature trees. Every assessment of treeline response to future 
climate change must consider the effects of local site conditions and feedbacks of increasing tree population in 
modulating the climatically-driven change. Treeline-shift will influence regional and local climates, pedogenesis, 
plant communities, animal populations and biodiversity as well as having a considerable effect on economic 
changes in primary production. A better understanding of the functional relationships between the many 
treeline-relevant factors and treeline dynamics can be achieved only by extensive research at different scales 
within different climatic regions supported by as many as possible experimental studies in the field together 
with laboratory and remote sensing techniques. 
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1   Introduction 

 

A fter the major mid-Holocene treeline 
retreat (ca. 4000 - 5000 BP) it has been 

necessary to wait until the end of the “Little 
Ice Age” in the late 1800s to witness the ini-
tiation of migration of plants and shifts of 
climatic treeline to greater elevations and 
higher latitudes. This review concentrates 
first of all on the changes that have been ob-
served in the altitudinal and polar treeline 
ecotones of the northern hemisphere during 
the favourable climatic period from the 
1920s to the 1940s (1950s) and during the 
last three decades (Holtmeier 2003, there 
further references). Comparatively little in-
formation is available on treeline response to 
present climate changes in the southern 
hemisphere and in the tropics (Rundel et al. 
1994; Villalba et al. 1997; Wardle & Coleman 
1992; Cuevas 2000, 2002; Biondi 2001; Cul-
len et al. 2001; Bader 2007).  
 
From a global view point, the increase of 
thermal deficiency with increasing altitude 
and latitude is the ultimate cause affecting 
tree physiological processes. From this it fol-
lows that regeneration and survival are also 
affected both directly and indirectly. Various 
other modifying factors such as wind, or 
late-lying winter snow pack, energy loss 
through snow melt, and evaporation also 
have to be considered. The limiting role of 
heat-deficiency is clearly reflected in the 
gradual decline of the treeline from its maxi-
mum altitudinal position in the subtropics 
towards the poles, and in tree stature de-
creasing towards the tree-limit. There are 
nevertheless exceptions as in some semi-arid 
or arid inland mountain areas and several 
oceanic subtropical islands low precipitation 
and limited plant available water during the 
growing season are likely to be controlling 
position and local pattern of treeline (e.g., 
Troll 1973; Horvat et al. 1974; Henning 

1974; Wardle 1974; Höllermann 1978; 
Leuschner & Schulte 1991; Leuschner 1996; 
Brandes 2006). This global pattern is under-
lain by more or less great regional and local 
variations (cf. Arno 1984; Holtmeier 2003).  
 
Altitudinal and polar treelines are conspicu-
ous landscape boundaries. They usually oc-
cur as more or less wide ecotones character-
ized by specific ecological conditions that 
differ from those of the closed mountain 
and northern (subarctic) forests and alpine 
or northern tundra (Holtmeier 2003). Thus, 
treeline advance to higher elevation and a 
more northern position will bring about fun-
damental landscape changes in mountains 
and subarctic regions.  
 
 

2   Present change at treeline 

 

I n the northern hemisphere, the climati-
cally-driven advance of altitudinal and po-

lar treelines is ubiquitous. The general trend, 
however, is being modified by more or less 
great regional, local and temporal variation 
as a result of the regionally varying magni-
tude of climate change and the role of the 
historical legacy of the landscape (climate, 
vegetation, soils, human use, etc.; e.g., Kear-
ney & Luckman 1983; Kullman, 2000, 
2005a, 2005c; Holtmeier 1985, 1993, 2003; 
Luckman & Kavanagh 1998; Lloyd et al. 
2003; Lloyd & Fastie 2002; Dalen & Hof-
gaard 2005; Lloyd 2005; Gamache & Payette 
2005). This is demonstrated in the following 
examples. 
 
At the treeline along the east coast of the 
Hudson Bay, for example, recent warming 
has not been strong enough to allow estab-
lishment of trees until the 1990s (Lescop-
Sinclair & Payette 1995). At the northern 
treeline in the Ennadai-Lake area (central 
Canada), no young growth became estab-
lished until the late 1970s (Elliott 1979) 
while intense regeneration simultaneously 
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occurred at the treeline in Labrador (Elliott 
& Short 1979; Elliott-Fisk 1983). In the 
Churchill area (Hudson Bay, Manitoba), the 
tree population increased within the treeline 
ecotone while young growth did not become 
established at treeline until the end of the 
1980s (Scott et al. 1987). In northern Qué-
bec, no young growth has occurred until re-
cently. Probably, the amplitude and magni-
tude of recent warming has not been large 
enough to compensate at such extreme loca-
tions for what is left of the negative after-
effects of the “Little Ice Age” (Payette et al. 
1989; Lescop-Sinclair & Payette 1995). Kull-
man (1990) reported a similar situation at a 
treeline on the Swedish Scandes, where since 
the early 1970s no regeneration had occurred 
until the late 1980s.  
 

 
In some localities of the Swedish Scandes, 
great numbers of fast-growing 10-15 years 
old saplings of mountain birch, spruce and 
pine occur 400-500 m or even up to 700 m 
above the current tree limits (Kullman 2003, 
2004, 2005a, 2005c). In the Handölan Valley 
(southern Swedish Scandes) Scots pine (Pinus 
sylvestris) population increased overall by 
50% during a 32-year monitoring period 

(1973-2005) despite having declined during 
the first decade. The consistent expansion 
that has taken place since the late 1980s 
more than compensates for the earlier de-
cline. It appears that the exceptionally warm 
summers since 1997 and low mortality rates 
due to milder winters have been responsible 
for the improved establishment of pine seed-
lings (Kullman 2007). In other places, height 
growth of climatically-stunted trees in wind-
exposed sites with little or even no snow in 
winter is still impeded, despite the generally 
warmer climate (cf. Holtmeier 2003, 2005a, 
2005b; Kullman 2005b). 
 
On the mountains in Finnish Lapland, where 
a general trend of treeline advance is obvious 
(e.g., Juntunen et al. 2002), regeneration and 
seedling establishment vary considerably 
among the localities. In some areas of north-
ernmost Finnish Lapland, for example, 
Holocene forest decline was locally followed 
by severe soil erosion (Fig. 1). Wind-eroded 
soils poor in nutrients and characterized by 
low water-holding capacity prevent moun-
tain birch from resettling formerly forested 
sites within the treeline ecotone and beyond 
the present tree limit. (e.g., Holtmeier et al. 
2003; Holtmeier et al. 2004; Kullman 2005c; 
Anschlag 2006; Broll et al. submitted). 
 
This contrasts with the general “rule” that 
bare mineral soil surfaces provide favourable 
seed beds for wind-mediated tree seeds (e.g., 
larch, birch: e.g., Holtmeier 1967a, 1967b; 
Kinnaird 1974; Löffler et al. 2004), mainly 
because competition with dwarf shrubs or 
grass vegetation is absent or reduced (see 
also Kallio & Lehtonen 1973; Hobbie & 
Chapin III 1998). Overgrazing by reindeer, 
however, appears to be the most harmful 
factor for birch seedlings. 
 
On the fells in western central Finnish Lap-
land, Scots pine seedlings (Pinus sylvestris) be-
came established at great numbers in the 
treeline ecotone during the favourable pe-
riod from the 1920s to the 1940s (cf. Hus-

Figure 1: Organic layer and upper mineral top 
soil have been eroded by wind on this exposed 
site (327 m) on Koahppeloaivi in northernmost 
Finnish Lapland. Lack of moisture and nutrients 
prevent birch from invading this formerly for-
ested site. Photograph taken by F.-K. Holtmeier, 
21 August 2004 
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tich 1937, 1942, 1958; Blüthgen 1942; Holt-
meier 1974; Holtmeier et al. 1996; Holtmeier 
et al. 2003), while comparatively few pines 
occurred in and above the birch-treeline 
ecotone on the fells in the northernmost 
part of Finland during the same period of 
time. It is probable that climatic conditions 
were less favourable than on the more 
southern fells (Autio & Colpaert 2005). 
Thus, current pine advance into the birch-
treeline ecotone and alpine tundra on the 
northern fells (Fig. 2) may be attributed to 
recent environmental change, which also ini-
tiated intensive regeneration on Pallastunturi 
(south-western Finnish Lapland). In this 
area, the number of seedlings has increased 
again since the 1970s, particularly since the 
mid-1980s until the end of the 20th century 
(Holtmeier et al. 1996; Tasanen et al. 1998; 
Holtmeier et al. 2003; Holtmeier 2005b).  
 
In Norway, regional differences in treeline 
response to climate warming are apparent. 
Stable or advancing treelines are common in 
the southernmost and probably in the mid-
dle regions while treeline is declining in the 
north (Dalen & Hofgaard 2005).  
 
In New Zealand, recent, continuous estab-
lishment of seedlings in the Nothofagus menzi-
esii treeline forests has not occurred nor has 
there been any upslope treeline movement. 
Recruitment continues to be as episodic as 
ever. Very likely, the absence of the natural 
disturbances that would create canopy open-
ings is the main factor preventing seedling 
establishment (Cullen et al. 2001). In north-
ern Patagonia, Nothofagus pumilio has not suc-
cessfully regenerated at the treeline although 
the temperature has risen since 1970 
(Daniels 2000). Regeneration failed probably 
because of moisture deficiency. This means 
that tree establishment above the present 
forest would only be possible if warming co-
incided with canopy disturbance (New Zea-
land) or favourable moisture conditions 
(Patagonia).  

In the Spanish Pyrenees, warm springs and 
wet summers enhanced pine regeneration 
(Pinus uncinata) within the treeline ecotone 
between 1955 and 1975. However, the tree 
limit did not advance (Camarero & Gutiér-
rez 2000).  
 
Regional, local and temporal variations may 
also be a consequence of the different re-
sponse of tree species to changing climate. 
On Beartooth Plateau (Montana/Wyoming), 
for example, seedlings of whitebark pine 
(Pinus albicaulis) have originated from seed 
caches of the Clark´s nutcracker (Nucifraga 
columbiana) during the last decade. By con-
trast, seedlings of Engelmann spruce (Picea 
engelmannii) and subalpine fir (Abies lasiocarpa) 
are almost absent (Mellmann-Brown 2002, 
2005).  
 

 
In the Colorado Front Range, Engelmann 
spruce is being more successful in invading 
treeless terrain at high elevation than is 
subalpine fir (Holtmeier 1999).  
 

Figure 2: Young Scots pine (Pinus sylvestris) 
which became established at an altitude of 
225 m in the birch treeline ecotone on Stalos-
kaidi in northernmost Finnish Lapland during 
the late 1980s. The pine, which is still protected 
from winter-injury by the snow cover and by 
the dwarfshrubs, shows undisturbed vertical 
growth. Since 1998 height growth has acceler-
ated. Photograph taken by F.-K. Holtmeier, 
8.  August 1999. 
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On Pallastunturi (see above), spruce seed-
lings (Picea abies) prevail and pine seedlings 
(Pinus sylvestris) are common. The number of 
birch seedlings (Betula pubescens ssp. czerepano-
vii), however, abruptly declines within a few 
meters distance from the seed trees growing 
in the upper orchard-like birch stands 
(Tab. 1; Holtmeier et al. 2003).  
 
Probably, the after-effects of landscape and 
site history are the most important agents 
shaping the present treeline. Primary and 
secondary succession (after disturbances), 
competition, natural and man-caused forest 
fires, heavy wind storms, extremely snow-
rich winters or winters almost without snow, 
droughts, mass outbreaks of leaf-eating in-
sects, and other extreme events often have a 
lasting  impact.  In the central Norwegian 
mountains  (Møre and Romsdal County),  
for example, present plant species composi-
tion and distribution pattern of the plant 
communities in the treeline ecotone and 
lower Alpine is strongly related to environ-
mental conditions "inherited" from the for-
mer forest, which has retreated steadily dur-
ing the Holocene (Hofgaard & Wilmann 
2002). 
 
The decline of the natural climatic treeline in 
the European Alps after the postglacial opti-
mum was considerably accelerated by human 
impact such as pastoral use, mining, salt-
works, charcoal production, etc., particularly 
during the Middle Ages (Fig. 3). Modern 
changes in economic structure have resulted 

in invasion of abandoned alpine pastures by 
trees. However, seedlings and young growth 
are being more affected by injurious climatic 
and biotic (snow fungi infection) influences 
than might be expected due to the anthropo-
genically caused low position of the present 
forest limit (cf. Fig. 3; see also Holtmeier 
1967a, 1967b, 1974, 2003; Stützer 2000). 
 
Moreover, gradually closing plant cover in-
fluences invading tree species differently. 
European larch (Larix decidua), a typical pio-
neer species on unvegetated or exposed min-
eral soils, is less successful than zoochorous 
Swiss stone pine (Pinus cembra) in resettling 
abandoned alpine pastures once a dense 
grass and dwarfshrub cover has developed 
(see also Holtmeier 1967a, 1967b, 1995b: 
Müterthies 2002). Grass cover also prevents 
prostrate mountain pine (Pinus mugo) from 
invading abandoned subalpine pastures in 
some areas of the northern limestone Alps. 
On the other hand, mountain pine is likely 
to invade rapidly alpine grassland at and 
above the present tree limit where competi-
tion with other vegetation is reduced 
(Dullinger et al. 2003, 2004). Competition 
with dense dwarfshrub vegetation seems to 
be impeding mountain birch establishment 
also at the treeline in Vågå upland (southern 
central Norway; Löffler et al. 2004). 
 
“Relic treelines” that became established at 
relatively high altitude under a warmer than 
the present climate, as on many ranges of 
the Rocky Mountains (Ives 1973, 1978; Ives 

Table 1:  Percentage of tree seedlings in altitudinal transects of Pallastunturi *). 
     

------Pyhäkero transect------- 
up to 550 m 550 m – 745 m

 
Tree species [%] 

Palkaskero 
Transect 1 

n = 52 

Palkaskero 
Transect 2 

n = 84 

Palkaskero 
Transect 3 

n = 83 n = 37 n = 15 
      
Norway spruce 77 70 70 30 67 
Scots pine 17 25 21 20 27 
Mountain birch 6 5 9 50 6 
*) Data from Holtmeier et al. 2003 
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& Hansen-Bristow 1983; Holtmeier 1985, 
2003), for example, were characterized by in-
creasing tree population within the treeline 
ecotone (Fig. 4) rather than by the establish-
ment of seedlings above the upper limit of 
the climatically stunted trees (“krummholz”). 
A similar situation has been reported from 
the subarctic altitudinal treeline of north-
western Canada (Szeicz & MacDonald 
1995). More recently, however, and locally 
increasing numbers of tree seedlings can also 
be found beyond the tree limit (Fig. 5).  
 
In many treeline ecotones, accelerated height 
growth of hitherto suppressed, low-growing 
trees (e.g., mat- or table-growth) rather than 
recent establishment of young growth be-
yond the existing tree limit indicates envi-
ronmental change. Many of these formerly 

suppressed trees now exceed the minimum 
height considered to be a criterion for a 
“tree” (e.g., Kullman 1987, 2000, 2002, 
2005a, 2005b, 2005d; Lavoie & Payette 1992; 
Lescop-Sinclair & Payette 1995; Kjällgren & 
Kullman 1998; Tasanen et al. 1998; Ga-
mache & Payette 2004, 2005; Vallé & Pay-
ette 2004). In other places, extreme events 
such as drought or severe frosts during the 
growing season have locally caused setbacks 
to tree development (Fig. 6). 
 
In many mountain regions the treeline has 
not advanced or advances less than expected 
during recent decades in relation to the ex-
tent of climatic warming (e.g. Holtmeier 
2003; Wardle & Coleman 1992; Lloyd & 
Graumlich 1997; MacDonald et al. 1998; Pe-
terson 1998; Tasanen et al. 1998; Cullen et 

Figure 3: Historical human impact and effects on treeline dynamics, Central Alps. 
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al. 2001; Holtmeier et al. 2003; Holtmeier & 
Broll 2005; Mazeda 2005). Lack of current 
change, however, may be an after-effect of a 
fast local response in the past (e.g., Butler et 
al. 1998; Malanson 2001).  
 
Insufficient carbon gain has long been con-
sidered to be the factor setting an absolute 
limit to high-elevation tree growth (see Tran-
quillini 1979 and Holtmeier 2003 for further 
references). Thus, increasing CO2 is ex-
pected to trigger altitudinal advance of 
treeline (e.g., Walsh et al. 1992). However, 
there has been no evidence of significant 
correlation of enriched CO2 and tree growth 
at treeline, thus far. Other factors seem to 
override the effects of increased CO2. For 
example, increased diameter growth that has 
occurred in bristlecone pines (Pinus longaeva ) 
in the treeline ecotone on the White Moun-
tains (California) and limber pine (Pinus flex-
ilis) on Mt. Washington (Nevada) (LaMarche 
& Mooney 1972; LaMarche et al. 1984) since 
the middle of the 19th century must be as-
cribed to increased precipitation rather than 

to enriched CO2 and/or higher temperatures 
(Stockton 1984). Diameter growth of subal-
pine trees in the Cascades remained unaf-
fected by increased CO2 and declined since 
the favourable 1940s, following the regional 
trend of temperature (Graumlich & 
Brubaker 1986; Graumlich et al. 1989). In 
the southern Sierra Nevada, last year's pre-
cipitation and current summer temperature 
have been completely overriding the effects 
of CO2-fertilization (Graumlich 1991). This 
supports the hypothesis of Körner (2003) 
that continuing increase in atmospheric CO2 
is unlikely to enhance tree growth and 
treeline advance on a global scale. The abun-
dance of such conflicting research results en-
sures that discussion on this is likely to con-
tinue (e.g., Smith et al. 2003; Johnson et al. 
2004).  
 
Altogether, the present conditions within the 
treeline ecotones can be explained only in 
view of the historical disturbances by natural 
and anthropogenic factors (cf. Fig. 3; see 
also Fig. 14). The current climate often has 

Figure 4: Seedlings of Engelmann spruce (Picea 
engelmannii) and subalpine fir (Abies lasiocarpa) in-
vading a swale (3373m) within the treeline ecotone 
of the Blue Lake Valley, Colorado Front Range. 
The swale was treeless in the early 1970s. Photo-
graph taken by J. B. Benedict, 27 July 2006. 

Figure 5: Young Engelmann spruce (Picea engel-
mannii) invading the alpine tundra on a south-ex-
posed slope on Ida Ridge (Rocky Mountain Na-
tional Park, Colorado). The highest new colonist is 
at an altitude of 3612 m. Photograph taken by J. B. 
Benedict 28, July 2006. 
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only a modulating effect. Past natural and 
anthropogenic disturbances have produced a 
spatial-temporal mosaic of patches at differ-
ent successional stages. In many areas, they 
are the factors responsible for resilience of 
present treeless areas within the present 
treeline ecotone to invasion by trees in face 
of a warming climate. 
 
 

3   Expected change at treeline 

 

T he relationship of the altitudinal or lati-
tudinal positions of the treeline to the 

future thermal conditions is currently of 
great interest, both from a global viewpoint 
as well as for regional and local concerns. 
However, predicting the future treeline is 
problematic and often imponderable. Thus, 

projecting the present relation of treeline 
and a certain isotherm considered to be the 
tree-growth limiting factor into a warmer fu-
ture may be misleading as in many places the 
present position of treeline is not in balance 
with the current climate. This holds particu-
larly true for the altitudinal treeline in the 
high mountains of Eurasia, many of them 
being settled throughout history (Holtmeier 
2003, further references therein). Another 
reason is the inertia of trees that became es-
tablished some hundred years ago (Fig. 7; 
see also Fig. 6) under different climatic con-
ditions from those that prevail at present cli-
mate (e.g., Larsen 1965; LaMarche & 
Mooney 1967; LaMarche 1969; Tolmachev 
1970; LaMarche & Mooney 1972; Ives 1973; 
Krebs 1973; LaMarche 1973; Nichols 1976; 
LaMarche 1977; Ives 1978; Elliott 1979; Pay-
ette & Gagnon 1979; Larsen 1980; Hansen-
Bristow 1981; Légère & Payette 1981; Ives & 
Hansen-Bristow 1983; Holtmeier 1985, 
1986; Larsen 1989; Brunstein & Yamaguchi 
1992; Payette & Morneau 1993; Kullman 
2000). Moreover, we are used to basing 
“predictions” of treeline on our knowledge 
of past and current treeline dynamics which 
brings in additional problems. We have to be 
aware that we do not really know whether 
the present interrelationships of temperature 
and the many other tree-growth influencing 
factors and their relative effectiveness will be 
the same in a warmer climate (see also 
Giorgi & Hewitson 2001; Holtmeier 2003; 
Holtmeier & Broll 2005). Furthermore, it is 
still an open question which effects will re-
sult from a delayed response of treeline to a 
rapid climatic change. Thus, the following 
“predictions” are speculative. 
 
The linkages between tree-cover and perma-
frost, for example, will be different. In su-
barctic lowlands such as the Hudson Bay 
area and western Siberia increasing paludifi-
cation, as a consequence of the warming cli-
mate and melting permafrost, is likely to 
cause a southward retreat of the boreal for-
est (e.g., Crawford 1978, 2005; Crawford et 
al. 2003). In high mountains such as the 

Figure 6: Severe winter injury to a clonal conifer 
group (Picea engelmannii and Abies lasiocarpa) near 
Devil`s Thumb at an altitude of 3420 m (Colo-
rado Front Range). The damage which is re-
flected in the discoloured, reddish needles and 
shoots (see arrow) was very likely caused or pre-
determined by an extreme frost in September 
1995. The basal part of the trees, which is pro-
tected by the winter snow pack, was not affected. 
The damage will have a lasting effect on future 
growth of these trees. Photograph taken by J. B. 
Benedict, 6 August 1996. 
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Alps, melting of local permafrost at high ele-
vations will result in destabilization of steep 
mountain slopes, thus increasing erosion of 
potential forest sites (Fig. 8; Burga & Perret 
2001; see also Harris 2005). At more wet-
snow conditions (usually in spring and in 
maritime regions) snow fungi infection 
might increase and reduce survival of seed-
lings and young growth of evergreen coni-
fers (Holtmeier 2005a, 2005b), whereas in a 
warmer and drier climate, earlier snow melt 
will reduce the risk of snow fungus infec-
tions.  
 
Nevertheless, earlier snow melt will expose 
seedling and saplings to late frost and 
drought. The effects of soil permeability, for 
example, may also be different in dry regions 
compared to humid regions (Holtmeier & 
Broll 2005). In dry climates, high permeabil-
ity may result in moisture stress to seedlings 

and saplings. In humid climates, high perme-
ability is likely to improve aeration of the 
rooting zone. Moreover, factors and proc-
esses at one scale may not be as important at 
another scale (Turner 1989; Holtmeier & 
Broll 2005). Insufficient soil moisture and 
nutrient supply, for example, which may af-
fect seedling establishment at the local scale 
will be less important in a global view of the 
factors controlling treeline dynamics.  
 
Because the effects of varying topography 
on site conditions may locally override the 
effects of slightly higher average tempera-
tures treelines will usually not advance in a 
closed front parallel to the shift of any iso-
therm. Exposure to solar radiation, wind ve-
locities and directions, as well as snow distri-
bution pattern and resultant effects (e.g. 
length of the growing season, snow fungus 
infection of evergreen conifers, mechanical 

Figure 7: Bristlecone pine (Pinus aristata) on Kingston Peak (Colorado Front Range) at an altitude of 
about 3360 m. This extremely wind-shaped pine became established more than 1000 years ago. Its physi-
ognomy has not changed very much in course of time. Seedlings did not become established at this site. 
Photograph taken by F.-K. Holtmeier, 2 August 1987. 
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damage to trees) will be playing an important 
role in this respect (e.g., Holtmeier 2003, 
2005a; Kullman 2005b). Likewise, soils, soil 
temperature, soil moisture and mineraliza-
tion will all play a role. By their physiological 
and mechanical effects permanent strong 
winds may suppress tree growth or produce 
dwarfed growth forms that may assume up-
right growth if climate will become more fa-
vourable (Fig. 9). A deteriorating climate 
may cause dieback again (cf. Fig. 6).  
 
Moreover, treeline response to changing cli-
mate will vary with tree species and type of 
treeline (e.g., Luckman & Kavanagh 1998; 
Holtmeier 2003; Holtmeier & Broll 2005). 
Treeline type depends on topography, tree 
species represented, and on history of land-
scape, climate and vegetation. In a warmer 
future, Engelmann spruce or subalpine fir 
(Rocky Mountains), for example, that have 

reproduced mainly by layering in the past are 
likely to regenerate preferentially by seed-
lings. This may have a sustainable effect on 
treeline dynamics.  
 
In the long-term perspective, local topogra-
phy is the only relatively constant factor in 
the treeline environment that will not be af-
fected by climate change. In mountainous 
regions, topography may be highly variable 
over relatively short distances. Topography 
on steep mountain slopes differs from to-
pography of a glacially moulded valley, a 
gently rolling uplifted land surface or a 
smoothly sculptured subarctic peneplain 
(Holtmeier 2003; Holtmeier & Broll 2005). 
Treelines on a rolling peneplain (e.g., Ga-
mache & Payette 2004, 2005) will respond in 
a different way to a warming climate than 
will treelines on rugged mountain topogra-
phy. In many steep-sided high mountain val-

Figure 8: View of the mountain slopes above Pontresina village (Upper Engadine, Switzerland). The ar-
row indicates an area of melting permafrost in a glacial cirque (2800 m). Permafrost melt is likely to trig-
ger a disastrous outburst of block-debris and mud that would destroy the present forests and impede 
climatically-driven forest advance for a long time. Photograph taken by F.-K. Holtmeier, February 1969. 
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leys, high avalanche activity (cf. Fig. 8), mass 
wasting, instable slope debris and frag-
mented or missing soil cover prevent forest 
from reaching its possible thermal altitudinal 
limit (Fig. 10) while those factors do not oc-
cur on flat or gently sloping topography.  
 
Moreover, treelines will respond to rising 
temperatures mainly with gradual infilling of 
the gaps between the existing trees and tree 
groups and, to a lesser extend, with the es-
tablishment of trees in places above the pre-
sent tree limit (cf. Figs. 4 and 5). Even under 
continued favourable climatic conditions the 
altitudinal and polar shift of the treeline may 
lag behind climate change by decades or 
even centuries (Holtmeier 1985, 1986, 2003; 
Davis 1986; Woodward 1998; Noble 1993; 
Hofgaard & Wilmann 2002; Lloyd 2005). In-
ter-annual and inter-decadal climate variabil-
ity causing abrupt and reversible effects have 
played and will play an important role as may 

be hypothesized in respect of recent treeline 
history (e.g., Bugmann & Pfister 2000; 
Müterthies 2002; Millar et al. 2004). Treeli-
nes influenced by pastoral use for centuries 
will respond to a warming climate in a differ-
ent way than undisturbed treelines. Aban-
doned pasture areas above the man-caused 
forest limit will continue to be rapidly in-
vaded by trees. However, establishment and 
survival of seedlings may be hampered more 
by negative effects of microclimates resulting 
from the historical removal of the high-
elevation forests than should be expected at 
the low level of the present forest limit (cf. 
Fig 3). Severe microclimates are more likely 
than global warming to control treeline dy-
namics at a local level, at least in the next fu-
ture. In the long-term, however, increasing 
tree populations may have a mitigating ef-
fect. 
 

Figure 9: Wind-shaped limber pines (Pinus flexilis on a wind-swept saddle (3450 m) in the treeline ecotone 
on Wheeler Peak (Nevada). Improving climatic conditions have allowed some terminal leaders to de-
velop into erect stems. Photograph taken by F.-K. Holtmeier, 30 July 1994. 
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Forest advance to higher elevations and 
more northern latitudes does not and will in 
general not depend on increasing growth 
rates of mature trees and change in growth 
form from “krummholz” to erect stems (cf. 
Fig. 9) but on successful regeneration and 
survival of young growth (Holtmeier 1993; 
Smith et al. 2003). The survival rate of seed-
lings has been generally low in the treeline 
environment during the first years after ger-
mination (e.g., Cui & Smith 1991; Mellmann-
Brown 2002). However, this may change in a 
warmer climate. Generally, the regeneration 
process is positively correlated to favourable 
thermal conditions of several sequential 
years (Fig. 11). Warmer summers are likely 
to favour production of viable seeds, seed-
ling establishment and thereby tree recruit-
ment in the present treeline ecotone pro-
vided that other factors do not interfere. 
Such factors will include drought, late melt-
ing snow pack and infection by snow blight 
or the brown snow felt fungus (Tab. 2). 
Their adverse effects may usually not be 

compensated by a slightly warmer environ-
ment (see also Henttonen et al. 1986; Holt-
meier 1993; Almquist et al. 1998; Holtmeier 
et al. 2003; Holtmeier & Broll 2005; Jun-
tunen & Neuvonen 2006). 
 
On rapidly draining substrates, soil moisture 
supply for seedlings and young growth may 
become the critical factor, particularly in dry 
continental climates. Late-lying snow, as a 
result of increased precipitation (higher va-
pour pressure at warmer air temperatures), 
may prevent new tree generations in mari-
time regions (cf. Holtmeier et al. 2003). Un-
der warmer climatic conditions more wet 
snow is likely that will increase the risk of 
snow fungus infection in the evergreen coni-
fers (cf. Tab. 2). On the other hand, at well-
drained sites with late-melting snow, plant 
growth will start with comparatively rapidly 
rising temperatures, which means that the 
quality (warmth and moisture) rather than 
the length of the snow-free period will con-
trol seedling establishment and growth (cf. 

Figure 10: Unstable block debris prevents treeline advance on the steep south-facing slopes of Mt Tu-
kuhnikivatz (3805 m) (La Sal Mountains, Utah). Photograph taken by F.-K. Holtmeier, 21 July 1994.  
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Walker et al. 1999; Weih 2000; Karlsson & 
Weih 2001). Although milder winters are 
likely to reduce mortality in seedlings and 
saplings  (e.g., Kullman 2007) they will also 
bring about an increase of freeze-thaw tem-
perature regimes that may prove extremely 
dangerous for plants that are not completely 
covered with snow (e.g., Skre 1988; Gross et 
al. 1991; Perkins et al. 1991). Dehardening of 
exposed needles and shoots during warm in-
tervals in the winter weather will increase 
frost damage. 
 
Treeline advancing to greater altitude will 
bring about exposure to a much windier en-
vironment. As a result, frost drought, defla-
tion and damage caused directly to the trees 
by strong winds, such as abrasion by snow,  
ice and sand particles,  as  well as frost 
drought are likely to increase as long as tree 
population is too small to enhance snow ac-
cumulation (e.g., Holtmeier 1974, 1985; 
Dahms 1992; Holtmeier 2003, Holtmeier et 
al. 2004; Seppälä 2004; Holtmeier 2005a; 
Kullman 2005b). In the most exposed loca-
tions of the treeline ecotone and above, 
seedling establishment and survival will 
profit from shelter provided by geomorphic 
features, i.e. the leeward sides of boulders, 
solifluction terraces or low ridges, for exam-
ple (cf. Holtmeier 2003; Resler et al. 2005; 
Resler 2006). The physiological and me-
chanical effects of strong winds will prevent 
the most exposed trees from developing 
“normal” growth. The advanced tree indi-
viduals will reach “tree size” only if they can 
survive after being decoupled from the rela-
tively warm microenvironment near the 
ground (Wegener 1923; Holtmeier 1974; 
Wardle 1974; Dahl 1986; Wilson et al. 1987; 
Grace 1988, 1989). This will probably 
change with increasing tree population den-
sities (e.g., Germino & Smith 1999; Germino 
et al. 2002; Smith et al. 2003; Johnson et al. 
2004; see also Fig. 14).  
 
Although continued warming is likely to be 
followed by an altitudinal and latitudinal 

treeline advance extreme events such as 
drought or severe frosts during the growing 
season, insect mass outbreaks, and wildfires 
may cause local setbacks to tree develop-
ment as has repeatedly happened in the past 
(cf. Table 2 and Figs. 3, 6). Extreme events, 
however, and their relative importance for 
treeline change cannot be predicted. In addi-
tion, the after-effects of landscape and site 
history (see also Halloy 1989) will have un-
predictable effects on treeline dynamics in 
the future. There is no good reason to ex-
pect that regional variations in treeline re-
sponse to the changing climate will be 
smaller in the future than they were in the 
past.  
 
The consequences of climate warming for al-
titudinal treeline on tropical mountains have 

Figure 11: Factors and processes controlling 
seed-based regeneration at treeline (modified 
from Holtmeier 1993) 
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Table 2: Factors influencing tree establishment within the treeline ecotone and beyond the present 

tree limit. 
Adverse factors Beneficial factors 

▪ Increase of cold and short growing seasons 
impeding photosynthetic performance and de-
velopment of cold resistance 

▪ Increase of warm and long growing seasons im-
proving photosynthetic performance and develop-
ment of cold resistance 

▪ Extremely snow-rich winters (may impede tree 
establishment, particularly in maritime climates) 

▪ Snow cover deep enough to provide seedlings and 
sapling with shelter from climatic injuries and her-
bivores during winter 

▪ Winters with little snow (may cause set-backs to 
seedlings and saplings, mainly in continental 
climates) 

  

▪ Drought (may cause setbacks to seedling estab-
lishment, mainly in continental climates) 

  

▪ Paludification, waterlogging (on flat topogra-
phy, in depressions and in the active layer) 

▪ Balanced soil moisture conditions, sufficient soil 
moisture supply 

▪ Frequent high wind velocities causing physio-
logical and mechanical stress 

▪ Low to moderate wind velocities 

▪ Late and early frosts ▪ Frost-free growing seasons 

▪ Avalanches, snow slides, snow creep ▪ No destructive snow movements 

▪ Land slides (e.g., triggered by thawing perma-
frost) 

▪ Stable substrate 

▪ Lack of viable seeds ▪ Sufficient viable seeds 

▪ Lack of seed beds suitable for germination ▪ Seed beds suitable for germination 

▪ Reproduction mainly by layering ▪ Large numbers of viable seedlings 

▪ Strong competition of seedlings and saplings 
with grassland and dwarfshrub vegetation, al-
lelopathic effects 

▪ No or little competition of seedlings and saplings 
with non-arborescent vegetation for light, nutri-
ents, and moisture 

▪ High seedling and sapling mortality ▪ High seedling and sapling survival rates 

  ▪ Facilitation of seedling establishment and survival 
by increasing tree population (reduced sky expo-
sure and wind velocities) 

▪ Overgrazing (wild-living ungulates) ▪ No or moderate grazing (wild-living ungulates) 

▪ Insufficient adaptability of the tree species to 
the changing environment 

▪ High adaptability of the trees species to the 
changing environment 

▪ Intense pastoral use ▪ Nor or moderate pastoral use 

▪ Pathogenic insects and fungi, diseases ▪ No or little disturbance by pathogenic insects and 
fungi, no diseases 

▪ Severe wildfires ▪ No wildfires 

▪ Nutrient deficiency ▪ Unlimited nutrient supply 

▪ Over-aging of trees ▪ Recovery of hitherto suppressed mat and table 
trees by releasing vertical leaders 
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almost not been considered so far. More fre-
quent and persistent droughts might affect 
treeline more than would the rise of average 
air temperature (Rundel et al. 1994). Any-
way, this is pure speculation, in particular as 
geoecological paradigms developed from 
studies on treelines outside the tropics are 
unlikely to be of any value for understanding 
treeline on tropical mountains (Biondi 2001). 
However, there are good reasons to expect 
regional variation also in tropical treeline re-
sponse to changing climate. These include 
natural factors, tree species represented, past 
and current anthropogenic influences as well 
as treeline history. In the Ecuadorian Andes, 
for example, and also in other tropical 
mountains, the altitudinal treelines are usu-
ally located below the present potential cli-
matic limit of tree growth. They have not 
kept up with climatic change during the 
Holocene for several reasons. Besides hu-
man impact (mainly pastoral use and fires), 
insufficient tolerance of tree seedlings to ex-
cessive solar radiation appears to be the 
most important adverse factor. High diurnal 
radiation loads combined with low night 
temperatures causing photoinhibition may 
impede seedlings from becoming established 
above the usually abrupt forest limits (Bader 
2007).  
 
 

4   Possible consequences of  
treeline advance 

 

T he feedbacks from advancing treelines 
and the influence of changing treelines 

on spatial structures will probably be as im-
portant as the effects of climatic warming it-
self. Tree line shift will influence regional 
and local climates, pedogenesis, mineraliza-
tion, plant assemblages and animal popula-
tions as well as biodiversity (e.g., Haag & 
Bliss 1974; Holtmeier 1979, Stugren & Pop-
ovici 1991; Chapin et al. 2000; Sala et al. 
2000; IPCC 2001; Callaghan et al. 2002a; 
Callaghan et al. 2002b; Bruun & Moen 2003; 

Holtmeier 2003; Sjögersten & Wookey 2005; 
Holtmeier & Broll 2006; Broll et al. submit-
ted). Fragmentation of alpine vegetation and 
tundra for example, by advancing treeline 
will increase the risk of species extinction 
(Moen et al. 2004).  
 
Advance of the altitudinal and northern 
treeline will also influence human occupa-
tion of the forest-tundra transition zone 
(e.g., Mattson 1995; Vlassova 2002) or in 
high-mountain valleys (Holtmeier 1973, 
1989, 2003). In high mountains, an altitud-
inal advance of forest would have a stabiliz-
ing effect on the snow in what at present are 
almost treeless avalanche-prone areas. A 
higher treeline position would improve the 
protective function of high-elevation forest 
(avalanches, erosion debris flows, etc.) and 
thus increase safety for the people living in 
the mountain valleys. As a consequence of 
northward shift of the polar treeline (boreal/
subarctic forest) considerable economic 
changes in primary production, for example, 
may be expected (e.g., IPCC 2001). It seems 
unlikely, however, that commercial timber 
production will take place in and beyond the 
present treeline ecotone in the foreseeable 
future as predicted by ACIA (2004). Infilling 
of the treeline ecotone will lag behind cli-
matic change. Consequently, the trees that 
will become established beyond the present 
tree limit are likely to grow at too slow a rate 
for the production of commercial timber.  
 
A northward expansion of the boreal forest 
of possibly hundreds of kilometres into the 
tundra will regionally reduce the albedo and 
increase the roughness of the land surface 
(e.g., Oke 1987; Bonan et al. 1992; Foley et 
al. 1994). The release of sensible heat from 
the low albedo areas to the lower atmo-
sphere is likely to result in a more northern 
preferred position of the Arctic front along 
the future polar forest boundary (Pielke & 
Vidale 1995; Betts & Ball 1997; Harding et 
al. 2002), which is in direct contrast with 
previous hypotheses (e.g., Bryson 1966; 
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Krebs & Barry 1970; Larsen 1971). A com-
parable significant and large-scale heating-
effect from mountain forest advancing to 
higher elevations cannot be expected, as on 
steep mountain slopes the increase of the 
forested area will be relatively small com-
pared with rolling northern peneplains. An 
advancing northern treeline will also have 
important implications for the global carbon 
cycle as the terrestrial carbon sink will 
probably increase (Grace et al. 2002). How-
ever, warming due to decreasing albedo 
might compensate for higher carbon storage 
and would thus have an opposite effect 
(Bachelet & Neilson 2000; ACIA 2004).  
 
Increasing tree populations will bring about 
deeper winter snow pack. Consequently, 
snow cover will last longer in the treeline 
ecotone than in the wind-swept Alpine and 
in the open tundra (Fig. 12) (Hare 1971; 
Holtmeier 1978, Hiltunen 1980; Holtmeier 
1993; Walsh et al. 1994; Holtmeier 1996; 
Hiemstra et al. 2002; Holtmeier 2003; Ged-
des et al. 2005; Holtmeier 2005a). In the 
treeline ecotone, snow accumulation will 
also be greater than under dense forest cano-
pies. The greater depth of the snow will in-
crease its insulating properties and snowmelt 
runoff but decrease the length of the grow-
ing season (Fig. 13; see also Liston et al. 
2002, therein further references). Soil mois-
ture will remain relatively high all-year round 
and soils will stay somewhat warmer during 
the winter as compared to the tundra (Rouse 
1984). In an ecotone sparsely covered with 
trees and tree-stands, i.e. at the beginning of 
tree invasion, snow depth and its side effects 
may vary abruptly and widely (Holtmeier 
1978, 2003, 2005a; Daly 1984; Holtmeier & 
Broll 1992; Broll & Holtmeier 1994; Kull-
man 2005a). 
 
Increased snow pack may facilitate seedling 
establishment (e.g., Germino & Smith 1999, 
2000; Germino et al. 2002; Smith et al. 2003; 
Bekker 2005), particularly in dry years and in 
dry regions. On the other hand, long-lying 

snow may curtail the growing season and in-
crease snow fungus infection (Phacidium in-
festans, Herpotrichia juniperi, Gremeniella abi-
etaina) of seedlings of evergreen conifers, 
mainly in wet years and maritime regions 
(Tab. 2, Fig. 13). Deciduous tree species 
such as birch, aspen and rowan (e.g., Sorbus 
aucuparia) would not be affected. In addition, 
mechanical damage to the seedlings and 
trees by heavy snow loads is likely (e.g., Seki 
et al. 2005).  
 
Within the treeline ecotones, growing tree 
population may reduce the risk of summer 
frost damage by reducing the exposure of 
seedlings and saplings to intense solar radia-
tion of days following cold nights (e.g., 
Lundmark & Hällgren 1987; Örlander 1993). 
Growing tree populations will even out the 
effects of local topography in the treeline 
ecotones on wind, snow relocation and solar 
radiation. 
 
At the northern treeline, reduced wind ve-
locity will exacerbate insect harassment of 
reindeer and caribou, mainly by warble flies 
(Hypoderma tarandi L.) and nose-bot flies 
(Cephenemyia trompe L.), thus affecting animal 
condition and survival (e.g., Mörschel & 
Klein 1997; Hagemoen & Reimers 2002; 
Holtmeier 2002). In northernmost Europe, 
this will have negative effects on the reindeer 
industry economy.  
 

 
5   Research needs 

 

T he changing treeline spatial pattern (Fig. 
14; see also Fig. 3) and its regional 

variation have to be considered to be the 
main objective of research on treeline posi-
tion in relation to altitudinal and northward 
relocation. Regional differentiation of the 
complex phenomenon “treeline” is needed 
for speculation on the physiognomic, bio-
logical and ecological diversity of future alti-
tudinal and polar treelines. Long-term re-
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search at the regional and landscape scales 
within different climatic regions, supported 
by as many as possible manipulations and 
other experimental studies in the field and 
laboratory (see also Callaghan et al. 2002a) 
appears to be the only way to obtain a 
deeper insight into the spatial and temporal 
treeline dynamics and to gain a better under-
standing of the functional relationships be-
tween the many treeline-relevant factors and 
the fate of the trees (growth, reproduction, 
survival, etc.).  
 
As to the functional “mechanism” of treeline 
advance, studies on the functional relation-
ships between regeneration success (survival 
of seedlings and saplings), for example, and 
topographically-controlled site conditions 
are still comparatively rare in the treeline 
zones and are urgently needed. The varying 
distribution of soil temperature and soil 
moisture, as related to topography (runoff, 
seepage), substrates (texture, soil organic 

matter), plant cover (transpiration, intercep-
tion of solar radiation, water use), needs to 
be studied more intensively at the local and 
landscape scales.  
 
The physiological response of trees, particu-
larly of seedlings and saplings, to low soil 
temperatures and related effects have to be 
studied in different treeline environments. 
Recently, inhibition of carbon investment 
due to low temperatures in the rooting zone 
has been put forward to be the main effect 
of low soil temperature on tree growth at the 
altitudinal treeline during the growing season 
rather than insufficient carbon gain or nutri-
ent limitation, for example (Körner 1998a, 
1998b, 1999; Hoch et al. 2002; Körner 2003; 
Hoch & Körner 2003; Körner & Paulsen 
2004; Shi et al. 2006). However, this “carbon 
sink hypothesis” contrasts with many obser-
vations (e.g., Benecke 1972; Ellenberg 1975; 
Tranquillini 1979; Turner & Streule 1983; 
Stevens & Fox 1991; Slatyer & Noble 1992; 

Figure 12: Treeline ecotone on Rollins Pass (east slope of the Colorado Front Range) in early summer. 
While the alpine tundra is almost snow-free the treeline ecotone and the forest floor are still covered 
with snow. Trees invading the present alpine tundra will gradually increase accumulation of drifting snow 
thus prolonging winter snow cover. Photograph taken by F.-K. Holtmeier, 29 June 1979. 
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Sveinbjörnsson et al. 1996; Körner 1994; 
Karlsson & Nordell 1996; Cairns 1998; 
Cairns & Malanson 1998; Karlsson & Weih 
2001; Hättenschwiler et al. 2002; Smith et al. 
2003; Brodersen et al. 2006). It has been 
speculated that the better trees are adapted 
to harsh treeline climates the less likely car-
bon will be a limiting factor to tree growth 
(Körner 2005). Thus, the carbon-sink hy-
pothesis needs further verification, especially 
for the establishment and survival of seed-
lings, before there can be any global gener-
alizations (Smith et al. 2003).  

Furthermore, the interactions of climatic 
summer and winter conditions (outside the 
tropics) and their effects on seedling estab-
lishment and survival need to be more in-
tensely studied in different treeline climates 
(continental, maritime) before speculating on 
the possible effects of a warmer environ-
ment.  
 
Moreover, consideration has to be given to 
the ecological properties and requirements 
of the tree species represented at the altitud-
inal and polar treelines. In particular, their 
sensitivity and response to extreme events 

Figure 13: Consequences of increasing tree population within the treeline ecotone and beyond the tree 
limit. Open arrow heads mean decrease or adverse effects. Filled arrow heads mean increase and benefi-
cial effects. Dashed lines with open arrow head mean positive or negative effects depending on the given 
situation. 
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and a gradually changing environment 
(physical and biotic) need to be considered. 
In this context, the adaptability of the tree 
species to the future environmental condi-
tions will play an important role. Acclima-
tion may lag behind a rapidly changing cli-
mate. 
Additionally, the distribution pattern of trees 
within the landscape mosaic, and not least, 
their competitive ability must be taken into 
consideration. Diseases, pathogens (e.g., 
parasitic snow fungi), insect infestations and 
the effects of wildlife (Holtmeier 2002; 
Cairns & Moen 2004) have also to be in-
cluded as agents causing disturbances to 

trees and other vegetation. Possible positive 
and negative effects of disturbances need to 
be assessed. Disturbances may result in in-
creased tree mortality and decline of tree 
stands or in intense regeneration and better 
growth of trees thus influencing the dynam-
ics (e.g., mosaic cycles) within the future 
treeline ecotones. Mosaic cycles often run 
counter to the long-term trend in treeline de-
velopment. Not least, there is a great unsatis-
fied need for studies on the consequences of 
changing climate for the treelines on tropical 
mountains (e.g., Bader 2007).  
 

Figure 14: Position, spatial pattern and dynamics of treeline as a result of historical treeline legacy and 
environmental change. 



 

 

© 2007 IALE-D. All rights reserved. www.landscapeonline.de  Page 20  

Landscape Online  F.-K. Holtmeier & G. Broll 

Treeline advance ...  1 / 2007  

In principle, remote sensing using space 
borne techniques (high resolution satellite 
imagery, orthophotos) are excellent instru-
ments to record the changing spatial and 
transient structures such as tree canopy 
cover, kind of vegetation, paludification 
(e.g., Callaghan et al. 2002b; Crawford et al. 
2003), and temporal monitoring of the melt-
out pattern in the treeline ecotone at high 
spatial resolution even in remote and inac-
cessible regions (e.g., Rees et al. 2002). Re-
mote sensing combined with data from as 
many as possible field studies and experi-
mental studies in the field and laboratory will 
contribute to rapidly filling the present local 
and regional knowledge gaps on spatial and 
temporal structures of both the northern 
and mountain treelines and help exploring 
the functional relationships behind them. 
Not least, there is a particular need for simi-
lar studies on the altitudinal treeline in the 
tropics and also in the southern hemisphere 
temperate zone. The worldwide documenta-
tion of the treeline spatial patterns and de-
velopment (e.g., changing tree population 
density) is an indispensable step in future 
treeline research rather than further focusing 
on “better” coincidences between the posi-
tion of treeline and certain mean air and/or 
soil temperatures considered to be essential 
to tree growth.  
 
Modelling will help to assess the possible 
magnitude of treeline advance to greater alti-
tude and more northern latitude. Scenarios 
may give an idea of changing spatial patterns 
of the treeline landscape. In contrast to first-
generation “equilibrium models” (e.g., 
Cramer 1997; Skre et al. 2002), dynamic 
vegetation models (e.g., Wolf et al. 2007) are 
able to represent continuous changes by in-
cluding processes such as establishment, 
growth, reproduction and mortality, physio-
logical adaptation and competition. Every 
assessment of treeline response to future cli-
mate change must consider the effects of lo-
cal site conditions and feedbacks of increas-
ing tree population in modulating this 

change (e.g., Holtmeier 1985, 1989, 1995a; 
Luckman & Kavanagh 1998; Holtmeier 
2003). So-called “ground truths” are impera-
tive as ever. However, adding all these com-
plexities to the existing models would in-
crease uncertainties in the predictions 
(Bachelet & Neilson 2000). 
 
Up- and downscaling of empirically found 
relationships between factors apparently in-
fluencing tree growth and treeline have be-
come very popular. The relative importance 
of the factors varies by the scale of consid-
eration. However, downscaling of statistical 
relationships existing between the treeline 
and one or two apparently tree growth limit-
ing environmental factors (e.g., low tempera-
ture, aridity) found at the global or zonal 
scale would produce simplistic scenarios that 
disguise the complexity of the treeline phe-
nomenon rather than being a contribution to 
a better causal (functional) understanding. 
On the other hand, the possibility of up-
scaling relationships found between soil con-
ditions, tree growth and patchiness of the 
treeline ecotone is also limited as they de-
pend on the topographical context and thus 
vary very locally. Soils specific to treeline do 
not exist. Instead, mosaics of different soil 
types closely related to the geological sub-
strate, more or less varying with microtopo-
graphy and plant cover (e.g., grassland, 
dwarfshrub vegetation) are common to the 
mountain and northern treeline ecotones 
(e.g., Burns 1980; Holtmeier 2003; Broll 
1994, 1998, 2000).  
 
In short, the complexity of the treeline phe-
nomenon gives us no reason to assume that 
we will be able to predict reliably how tree 
growth, tree regeneration and mortality, 
plant assemblages and animal populations 
might interact with environmental change in 
the future. How this “story” will continue 
may well produce many future surprises for 
forestry, ecology and for the well-being of 
our Planet.  
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