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Abstract

Background: Abies faxoniana is the dominant plant species of the forest ecosystem on the eastern edge of
Qinghai-Tibet Plateau, where the treeline is strongly defined by climate. The tree-ring chronologies and age
structure of Abies faxoniana were developed in the treeline ecotones on the northwestern and southeastern
aspects of the Min Mountains in the Wanglang Nature Reserve to examine the treeline dynamics of recent decades
in response to climate change.

Results: On the northwestern aspect, correlation analysis showed that the radial growth was significantly and
positively correlated with precipitation in current January and monthly mean temperature in current April, but
significantly and negatively correlated with monthly mean temperature in previous August. On the southeastern
aspect, the radial growth was significantly negatively correlated with monthly mean temperature in previous July
and August.

Conclusions: The different responses of radial growth to climatic variability on both the aspects might be mainly
due to the micro-environmental conditions. The recruitment benefited from the warm temperature in current April,
July and September on the northwestern aspect. The responses of radial growth and recruitment to climatic
variability were similar on the northwestern slope. Recruitment was greatly restricted by competition with dense
bamboos on the southeastern aspect.
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Background
Upper treeline ecotones within alpine and arctic ecosys-
tems are mainly controlled by climate (e.g. Lavoie and
Payette, 1994; Kullman, 1999; Grace et al., 2002), and are
considered as sensitive proxy biomonitors for revealing
the impact of climate variability on the distribution of
high-elevation mountain forests (e.g. Camarero and
Gutiérrez, 2004; Danby and Hik, 2007; Elliott, 2011).
Many studies have shown that climatic variables limit the
tree’s radial growth and recruitment at altitudinal treelines
(Cullen et al., 2001; Takahashi et al., 2003; Wilmking et al.,
2004; Elliott and Kipfmueller, 2011). The close relation-
ships between climatic factors and tree radial growth are
widely used to reconstruct past patterns of climate
changes (e.g. Fritts, 1976; Cullen et al., 2001; Liu et al.,
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2009). The frequency of seedling recruitment at treeline
ecotones can also reflect climatic change well (e.g.
Kullman, 1993; Daniels and Veblen, 2004).
Various studies have revealed that treeline position is

sensitive to temperature changes and climate warming
has caused an increase in treeline elevation over time
(e.g. Brubaker, 1986; Lloyd and Fastie, 2003; Danby and
Hik, 2007; Leonelli et al., 2011) and is likely to cause fur-
ther increases in treeline in the future (Munier et al.,
2010). Increasing temperatures can provide a possible
mechanism for abrupt increases in recruitment (Hessl
and Baker, 1997; Elliott and Kipfmueller, 2011). Tree
growth and survival at some upper timberlines are
strongly limited by the low-temperature among the main
factors controlling the treeline altitude (Tranquillini,
1979; Stevens and Fox, 1991; Körner, 2003; Holtmeier,
2009). In some altitudinal regions, radial growth of trees
is driven by summer temperatures (LaMarche and Fritts,
1971; Eckstein and Aniol, 1981; Schweingruber et al.,
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1991; Bradley and Jones, 1993). There have been strong
links between increased recruitment and warmer tem-
peratures during the growing season and the cool sea-
sons at treeline ecotones (Elliott and Baker, 2004; Danby
and Hik, 2007; Holtmeier and Broll, 2007; Harsch et al.,
2009; Kullman and Öberg, 2009).
As well as temperature, precipitation can also influence

the treeline dynamics greatly. Global warming could ex-
acerbate possible water limitations (Andersen et al., 2009)
and cause heat-induced moisture stress without a con-
comitant increase in precipitation at altitudinal treeline
(Weisberg and Baker, 1995; Daniels and Veblen, 2004). It
has shown that moisture stress could limit seedling recruit-
ment (Hessl and Baker, 1997; Lloyd and Graumlich, 1997)
and tree growth (Jacoby and D’Arrigo, 1995; Barber et al.,
2000; Lloyd and Fastie, 2002) at some upper treelines.
Trees may lose the ability to grow continuously in the
warmer temperature condition if insufficient soil water
leads to drought stress, therefore precipitation may show a
high positive correlation with tree ring-width (Bunn et al.,
2005). Inversely, less precipitation in late spring and early
summer may favor tree establishment by prolonging the
growing season (Elliott and Kipfmueller, 2011).
It has been suggested that dendroclimatic data alone

cannot determine the causes of changes in the structure of
ecosystems and populations (Moiseev, 2002). In fact, tree
radial growth and seedling recruitment are interrelated
and must be considered together in order to gain an ac-
curate understanding of treeline dynamics. Studies have
uncovered treeline dynamics in relation to climatic change
at the population and community level by studying den-
droecological techniques coupled with stand age struc-
tures, climatic factors and ecological attributes (Ruffner
and Abrams, 1998; Daniels and Veblen, 2004; Bunn et al.,
2005; Wang et al., 2006; Jump et al., 2007; Elliott and
Kipfmueller, 2011). At some altitudinal treelines, the cli-
mate conditions that facilitate the radial growth are similar
to those that are conductive to recruitment (e.g. Szeicz
and Macdonald, 1995; Camarero and Gutiérrez 1999;
Gervais and MacDonald, 2000; Jump et al., 2007; Dang
et al., 2009). Yet, the two processes of recruitment and
growth may respond differently to climatic factors in some
other treelines (e.g. Earle, 1993; Daniels and Veblen, 2004;
Wang et al., 2006). The sensitivity of treelines to climate
change varies with local and regional topographical condi-
tions and thus differs as to its extent, intensity and the
process of change (Holtmeier and Broll, 2005).
In mountainous areas, slope aspect has been consid-

ered as an important role for exploring the variability of
upper treelines to climate change (e.g. Danby and Hik,
2007; Dang et al., 2009; Elliott and Kipfmueller, 2010;
Elliott and Kipfmueller, 2011). For instance, soil moisture
conditions on different slopes may exert notable diffe-
rences in the spatiotemporal patterns of tree regeneration
at upper treelines (e.g. Daniels and Veblen, 2004; Elliott
and Kipfmueller, 2011). Treeline elevation and stand
density may increase differently between slope aspects
due to the differential presence of permafrost (e.g.
Danby and Hik, 2007). The environmental factors medi-
ated by slope aspect should be considered when
assessing possible treeline response to climate change
(Elliott and Kipfmueller, 2010).
To date, the manner by which climate variability af-

fects radial growth and seedling recruitment of many
upper treeline species in different geographic locations
is not completely understood (Wang et al., 2006; Dang
et al., 2009). Qinghai-Tibet Plateau (QTP) is considered
as one of the most sensitive areas to global climate
change in China (Hou et al., 2008). Some dendro-
chronological studies have been conducted in the north-
eastern QTP (Liu et al., 2006; Li et al., 2008; Fang et al.,
2009), but few of these have explored the main climatic
factors of temperature and precipitation to determine
how each (alone and in combination) influence the sub-
alpine treeline on the eastern edge of QTP. Based on re-
cent data, the temperature in QTP has increased
significantly over the past 50 years (Ding et al., 2009).
Thus, the study presented herein was designed to deter-
mine how radial growth and recruitment of Abies
faxoniana responded to the variability of temperature
and precipitation on both northwestern and southeas-
tern aspects in the Min Mountains on the eastern edge
of QTP. We predicted that: climate warming enhanced
both the radial growth and the seedling recruitment of
A. faxoniana in the latest decades.

Methods
Study area
This study was conducted in the Wanglang National
Nature Reserve (32°49′-33°02′N, 103°55′-104°10′E)
in the Min Mountains, on the eastern edge of QTP
in western Sichuan Province, southwestern China
(Figure 1). Elevations in the reserve range from 2300
to 4980 m. The terrain is steep and deeply dissected,
with sharp environmental gradients.
The Wanglang National Nature Reserve belongs to

Danba-Songpan semi-humid climate, which is characte-
rized by dry, cold winters and wet, cool summers. The
mean annual temperature is 2.3°C and the mean annual
total precipitation is about 1100 mm (Taylor et al., 2006).
The average July temperature is 12.7°C and the average
January temperature is −6.1°C, with a recorded extreme
high temperature of 26.2°C and extreme low temperature
of −17.8°C. The annual rainfall time may last more than
195 days and is concentrated in May, June and July.
Between 1951 and 2009, the annual mean temperature
increased at an average rate of 0.0137°C /yr (R2 = 0.1631,
P = 0.0015) (Figure 2a). However, insignificant descending



Figure 1 Locations of sampling sites (▲) at the treeline ecotones on the northwestern (NW) and southeastern (SE) of the Min
Mountains in the Wanglang Nature Reserve, southwestern China.
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trend for the annual precipitation was found during this
period (Figure 2b).
The subalpine fir, A. faxoniana, is the dominant conifer-

ous tree species in the study area, having the most widely
distributed range and largest volume. Most of the reserve
from an elevation of ~2700 m to the upper treeline is cov-
ered by this species. The conifer forests below 2700 m
were clear-felled in the 1950s, and some separate trees on
or near the valley bottoms above this altitude were also
cut until the reserve was established in 1964 (Taylor et al.,
2006). However, the uppermost trees, often situated in
fairly inaccessible locales, have remained generally undis-
turbed by humans or livestock. The treeline forests have
been generating without disturbance, with no evidences of
fires or previous logging.

Site selection and field sampling
From June to August of 2010, two plots (each was
100 m × 20 m, 0.2 ha) were established at the subalpine
treeline ecotones on the northwestern (32°59′27.3″ N,
104°01′44.0″ E, 3297 m a.s.l.) and southeastern (32°54′
09.5″ N, 104°02′51.6″ E, 3,225 m a.s.l.) aspects of the Min
Mountains in the Wanglang Nature Reserve (Figure 1).
The main reason for choosing contrasting slope aspects is
that the main mountain ridges all run northeast to south-
west in this area. Both plots on northwestern and south-
eastern aspects can represent the treeline ecotones exactly
here. The longer side of each plot was parallel to the
isoline. The plots were selected based on the criterion that
they should represent the fir forest structure at subalpine
treeline.
In the plot, A. faxoniana individuals were divided into

three height classes (Wang et al., 2006): trees (> 2 m), sap-
lings (0.5-2 m) and seedlings (< 0.5 m). The d.b.h. (diameter
at breast height) of each fir tree in the plot was measured. At
least one core of each tree was extracted at breast height
(1.3 m above the ground) in the direction parallel to the con-
tour line, using an increment borer. One additional core was
extracted from the opposite side of some trees. These trees
included the ones which were selected for developing chron-
ologies and the ones with broken or rotten increment cores.
For all the saplings and seedlings in the plot, the number of
branch whorls and bud scars on the main stem was counted
and recorded (Daniels and Veblen, 2004). In total, 208 incre-
ment cores from 119 trees were sampled and 615 saplings
and seedlings were measured at both the subalpine treelines.
In addition, 68 saplings and seedlings with normal growth
were randomly uprooted after recording their height and the
number of whorls and scars, and cross-sectional disks were
cut from their base stems to determine their accurate ages.
The time required for seedlings to reach the d.b.h. was esti-
mated through the age-height regression (Dang et al., 2009).
Shade-tolerant species can vary greatly in growth rate, for ex-
ample, individuals in the seedling bank of some Abies species
typically grow slowly and can persist for a very long period
(Antos et al., 2005). Consequently, fir seedlings and saplings



Figure 2 Variations in annual mean temperature (a), annual precipitation (b) during the period 1951–2009 at the study area,
calculated with data from Songpan meteorological station and using MTCLIM program.
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with severe release or suppression events (Nowacki and
Abrams, 1997) were excluded from developing age-height
regression (Dang et al., 2010).

Climate data
Climate data (1951–2009) were obtained from the
nearest meteorological station, Songpan (32°39′N, 103°
34′E, 2,580 m a.s.l.), approximately 55 km southwest of
the sampling sites. Monthly mean temperature and
monthly total precipitation of the sampling sites were
simulated by Mountain Climate Simulator (MTCLIM,
version 4.3; School of Forestry, University of Montana,
Bozeman) based on daily maximum and minimum
temperature and precipitation of base station (Thornton
et al., 1997; Dang et al., 2009).
Chronology development
In the laboratory, all the increment cores were mounted in
slotted wooden boards, air-dried and sanded with succes-
sively finer sandpaper to produce a polished transverse
surface for visual cross-dating (Stokes and Smiley, 1996).
The annual ring-widths were measured to the nearest
0.01 mm, and the rings were counted using a LINTAB II
measuring system. False rings, missing rings or measure-
ment mistakes were all identified by cross-dating the pat-
terns of wide and narrow rings among trees with the
software package TSAP-Win (Rinn, 2003). The quality of
cross-dating was controlled using the software COFECHA
(Holmes, 1983). Cores which were too short, fragmented
or rotted were discarded in order to improve the common
signals in tree ring-width sequences. In total, 73 cores



Figure 3 Relationship between ages and height of A. faxoniana
seedlings and saplings at the treeline ecotone in the Wanglang
Nature Reserve.
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from 38 trees and 59 cores from 41 trees were used to
build the chronologies for the northwestern and south-
eastern treelines, respectively.
The ring-width chronologies were standardized using

the program ARSTAN (Cook, 1985). Either negative
exponential curves or straight lines were used to remove
the effects of tree age (Fritts, 1976). If both of the curves
were failed, a cubic smoothing spline with a 50%
frequency-response cut-off of 80 years was applied. In
addition, a univariate autoregressive model was used to
remove the time series effect. The residual indices from
autoregressive modeling of the detrended series were
averaged by year with a robust mean calculation (Cook,
1985). The results were residual tree-ring chronologies,
representing the common signal for the site. Descriptive
statistics that were calculated for assessing the quality of
the chronology included mean sensitivity (MS), standard
deviation (SD), signal to noise ratio (SNR) and expressed
population signal (EPS).

Dendroclimatic analysis
In this study, correlation coefficients between tree-ring
chronologies with monthly mean temperature and
monthly precipitation derived from the MTCLM pro-
gram were used to identify the relationships between
radial growth variability of A. faxoniana and climate
variables (Tardif et al., 2001). Because climatic con-
ditions in previous growing season often influence the
radial growth in the following year (Fritts, 1976),
temperature and precipitation beginning in previous
June until current September (from 1951 to 2009) were
used to analyze the relationships between annual radial
growth and climate variables. The analyses were pro-
duced using the DENDROCLIM 2002 software (Biondi
and Waikul, 2004).

Age structure and recruitment analysis
For the individual fir trees, the ages were determined
using the cross-dated years from cores and the time to
reach the coring height. If the cores passed close to the
pith or missed inner parts, the number of rings missing
from the pith was estimated by the geometric method
(Duncan, 1989). Based on the relationship between age
(y, year) and height (x, cm) of the fir seedlings/saplings
(Figure 3):

y ¼ 0:180xþ 4:615 R2 ¼ 0:728; P < 0:001; n ¼ 68
� �

ð1Þ

the fir trees required 29 years to reach breast height
(1.3 m above the ground). The ages of the seedlings
and saplings were determined by the number of whorls
and scars on the main stem (Dang et al., 2009). The
ageing methodology may underestimate age by several
years (Lv and Zhang, 2011). From the statistics of differ-
ences between the discs’ ages and the number of whorls/
scars of the randomly uprooted seedlings and saplings, the
results showed that only 20% of the samples were accu-
rate. Of the samples, 15% were being underestimated one
year, 20% were being underestimated two years and 45%
were being underestimated three or more years. So the
age frequency data for seedlings and saplings were
smoothed using the following function (a method similar
to the one of Daniels and Veblen, 2004):

xt ¼ 0:20 f tð Þ þ 0:15 f tþ1

� �þ 0:20 f tþ2

� �þ 0:45 f tþ3

� �

ð2Þ

where x is the smoothed age frequency, f is the original
age frequency, and t is the year of seedling recruitment.
Rates of recruitment vs mortality cannot be differenti-

ated from a static age structure alone. So we detrended
the time series of annually recruited seedlings and sap-
lings to account for mortality by the best-fit theoretical
distributions, the exponential and power functions (Hett
and Loucks, 1976). The difference between the theore-
tical age frequency and observed age frequency provided
a time series of residuals (Szeicz and Macdonald, 1995).
Then the “seedling residuals” were used to assess
climate-recruitment relationships. The influence of cli-
mate change on recruitment was tested using Pearson’s
correlation coefficients between recruitment and climate
data derived from MTCLIM for the 1951–2009 periods
(Daniels and Veblen, 2004; Jump et al., 2007). The cli-
mate parameters were the same as those described for
the dendroclimatic analysis of the fir trees. The time
period of current year January-December was used in
this analysis (Jump et al., 2007).
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Results
Chronologies and descriptive statistics
Following standard procedures, residual chronologies
for A. faxoniana in the treelines on both the northwes-
tern and southeastern aspects and the statistics are
presented in Figure 4 and Table 1. Both chronologies
for the two aspects showed similar patterns with cha-
racteristic narrow rings in the same pointer years such
as 1893, 1935–1937, 1967, 1982 and 1989 (Figure 4).
All the descriptive statistics are higher in the chron-
ology for the northwestern aspect than in that for the
southeastern aspect (Table 1). Although the MS and SD
are not very high, the common interval analysis indi-
cates high SNR and EPS for the two chronologies, res-
pectively (Table 1).

Radial growth trends with climate
The main climatic influence on the radial growth of A.
faxoniana appears to be temperatures in the previous
summer, especially in previous August, which were sig-
nificantly negatively correlated with radial growth on
both aspects (Figure 5). On the northwestern aspect,
the radial growth of A. faxoniana was significantly
negatively correlated with monthly mean temperature
for the previous August, and was significantly posi-
tively correlated with monthly mean temperature for
the current April (Figure 5a); and precipitation in the
current January and September were significantly cor-
related positively and negatively with the current radial
growth, respectively (Figure 5a). On the southeastern
aspect, temperatures in the previous July and August
Figure 4 Radial growth patterns of A. faxoniana at the treeline ecoton
Wanglang Nature Reserve. Thin line and thick line represent the annual s
respectively. Dash line represents the number of cores included in each res
were significantly negatively correlated with the radial
growth (Figure 5b); and precipitation showed no sig-
nificant correlation with ring-width indices (Figure 5b).
Distribution of age structure
The age structures of A. faxoniana (10-year intervals) on
both northwestern and southeastern aspects are shown
in Figure 6. On the northwestern aspect, the 21-30-year-
old age class (fir trees that established in the 1980s)
accounted for the largest age class (25%). The majority
of fir trees (90%) were found during the period from the
1970s to the 2000s and their ages ranged from 1 to
40 years (Figure 6a).
On the southeastern aspect, the 1-10-year-old age

class (fir trees that established in the 2000s) formed the
largest age class (11%). The majority of fir trees (78%)
were successfully recruited into the treeline ecotone
from 1750 s to 1900s (Figure 6b). However, there was no
successful recruitment in successive decades from 1910s
to 1970s.
Recent recruitment and climate
The short-time recruitment records in recent decades
did not match with the available meteorological records
(1951–2009) in the treeline on the southeastern aspect
(Figure 6b), so we only assessed the climate-recruitment
relationships on the northwestern aspect.
During the last 60 years, significantly positive correla-

tions existed between recruitment and monthly mean
temperatures for the current April, July and September.
es on the northwestern (a) and southeastern (b) aspects in the
eries and 10-year smoothing spline of each ring-width chronology,
idual chronology.



Table 1 Descriptive parameters of residual chronologies
of A. faxoniana at the treeline ecotones on the
northwestern (NW) and southeastern (SE) aspects of the
Min Mountains in the Wanglang National Nature Reserve

Plot code NW SE

Chronology length 1715-2009 1803-2009

Number of cores/trees 73/38 59/41

Mean ring width (mm) 0.991 1.001

Mean sensitivity (MS) 0.139 0.110

Standard deviation (SD) 0.124 0.096

Autocorrelation order 1 (AC1) 0.004 0.002

Common interval time span 1873–2009 1926-2009

Number of cores/trees 67/37 47/33

Mean interseries correlation 0.562 0.556

Signal-to-noise ratio (SNR) 18.658 13.719

Express population signal (EPS) 0.949 0.932
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However, monthly precipitation had no significant corre-
lations with the recruitment (Figure 7).

Discussion
Correlations between radial growth and climate
Generally, the responses of radial growth to tempera-
tures in previous summer were similar at the treeline
ecotones on both the aspects. Significant negative
correlations with previous July/August mean tempera-
tures likely reflected the negative carry-over effects
(Figure 5). Negative correlations between tree growth
and previous-year July temperatures have been repor-
ted at high-elevation forests on southern (Liang et al.,
2010) and southeastern (Lv and Zhang, 2011) QTP.
High temperatures in the previous growing season
(July/August) may reduce storage of assimilates for
growth of next year (Liang et al., 2010). Moreover, fir
radial growth was significantly positively correlated
with monthly mean temperature in current April on
the northwestern aspect (Figure 5a). Li et al. (2010)
have also shown that radial growth of A. faxoniana was
positively correlated with the temperature in current
March at the treeline site in Wolong National Natural
Reserve (30°53′N, 102°59′E), which lies west of our
study area. Warmer temperatures early in the growing
season benefit A. faxoniana growth by inducing early
snowmelt and increasing available soil water (Wang
et al., 2006; Dang et al., 2009), which causes early initi-
ation of cambial activity and increases photosynthates
(Splechtna et al., 2000; Case and Peterson, 2005).
The correlations between the precipitation and radial

growth were different on both aspects (Figure 5). There
was no significant correlation between precipitation and
radial growth on the southeastern aspect (Figure 5b). On
the northwestern aspect, the precipitation of the current
January facilitated the radial growth (Figure 5a). This
might represent relationships with snowpack and the
subsequent effects on soil moisture (D’Arrigo et al. 2001.
Significant negative correlation was found between radial
growth and precipitation in the current September on
the northwestern aspect, indicating that excessively suffi-
cient precipitation will restrict the radial growth. Fre-
quent rainfall in the end of the growing season of A.
faxoniana might reduce solar radiation and effective
photosynthesis, thereby, shorten the growing season
(Wang et al., 2007; Jiang et al., 2010). The relationship
between radial growth and precipitation on both the as-
pects might indicate that the precipitation was not the
main limiting factor affecting radial growth during the
main growing season.
The differential responses of radial growth to climate

factors on both sites might be mainly due to the diffe-
rence in micro-environmental conditions between the
contrasting slope aspects. The studied area is domi-
nated by the southeast monsoon (Pu et al., 2008; Yao
et al., 2010). The southeastern aspect is wetter and
warmer than the northwestern aspect, and also with
stronger solar radiation. The sensitivity and response of
treelines to climate variability may vary both in local
and regional topographical conditions for the environ-
mental variation (Holtmeier and Broll, 2005; Elliott and
Kipfmueller, 2011). In our study, on the northwestern
aspect with relatively weak solar radiation, the radial
growth showed significantly negative correlation with pre-
cipitation in the end of the growing season (Figure 5a).
The precipitation in January only favored the radial
growth significantly on the northwestern aspect (Figure 5a)
might because the difference of soil moisture on both the
aspects. January snow might improve the soil moisture on
the relatively drought northwestern slope in spring, there-
fore favored fir growth at the beginning of growing
season.

Recruitment and climate correlations on the
northwestern aspect
The age structure of a stand can provide a fairly accurate
picture of temporal variations in the recruitment rate
(Kullman, 1991) with the dynamics of climate change
(Payette and Filion, 1985), because tree recruitment is
more sensitive than tree mortality to climate variability
(Camarero and Gutiérrez, 2004). Most of the fir trees in
the treeline on the northwestern aspect were younger
than 40 years, but only about 10% were successfully
recruited into the stand before 1960 (Figure 6a), which
showed that fir recruitment had a sporadic mode from
1670 to 1960. In the Min Mountains, the fir trees pos-
sessed good soil seed banks at treeline ecotones (Fang,
2006), which suggests that seed production has not been
an important influencing factor on the age-structure



Figure 5 Correlations between climate variables from 1951 to 2009 and chronologies for A. faxoniana at the treelines on the
northwestern (a) and southeastern (b) aspects in the Wanglang Nature Reserve from June of the previous year to September of the
current year. The gray bars represent monthly mean temperature and the black bars represent monthly total precipitation. * P < 0.05.
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distribution (Wang et al., 2006; Dang et al., 2009). Cheng
et al. (2005) have revealed that the high mortality of A.
faxoniana at the treeline of the Min Mountains on the
eastern edge of QTP might be controlled mainly by
temperature, wind, snowpack depth and winter drought.
Recruitment was mainly affected by the temperatures

in the spring, summer and early autumn seasons, and it
was found to have significantly positive correlations
with mean temperatures in April, July and September
(Figure 7). Temperatures in spring facilitating fir seed-
ling establishment were also found in the treeline eco-
tones of the Shennongjia Mountains (Dang et al.,
2009). High temperatures in spring are very important
for germination (Camarero and Gutiérrez, 1999) and
might simulate tree recruitment from soil seed banks
(Dang et al., 2009). The significant positive correlations
between summer temperatures and recruitment were
also reported from conifer seedlings in alpine treeline
ecotone of the Snowy Range in Wyoming USA (Germino
and Smith, 1999) and from Abies spectabilis forest in the
alpine timberline of the Mt. Everest in southern QTP,
China (Lv and Zhang, 2011). Higher summer tempera-
tures will strengthen the photosynthesis rate, which could
encourage both growth and nonstructural carbon storage
for fir seedlings to survive harsh winter climate (Camarero
and Gutiérrez, 1999).

Recruitment on the southeastern aspect
There was a large gap in recruitment during the middle
of the 20th century on the southeastern aspect (Figure 6).
Competition from the dense bamboos might be mainly
responsible for the rare recruitment (Dang et al., 2009).
The bamboo cover in the southeastern plot (42.25%)
was much higher than that in the northwestern plot
(19.53%) (Zhao et al., 2012). Some studies have demon-
strated that bamboos with a relatively high cover seem
sufficient to impede tree establishment in subalpine
forests (Takahashi, 1997; Holz and Veblen, 2006). In our
study, the microenvironment on the southeastern aspect
might be more suitable for bamboos’ cloning growth.



Figure 6 Age frequency distribution patterns (10-year intervals) of A. faxoniana at the treelines on the northwestern (a) and
southeastern (b) aspects in the Wanglang Nature Reserve.
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The restriction of dense bamboos might exceed the fa-
cilitation of warm climate to the recruitment in recent
decades.

Radial growth versus recruitment
Over the most recent decades, the radial growth of A.
faxoniana had no obvious increasing trends with small
fluctuations on both the aspects (Figure 4). However, the
Figure 7 Correlations between climate variables and
recruitment residuals for A. faxoniana on the northwestern
aspect from January to December (1951–2009). Legends as for
Figure 5. # P < 0.01 and * P < 0.05.
recruitment has increased sharply, especially on the
northwestern aspect (Figure 6a). Obvious increases of
tree recruitment with the recent climate change were
also found in other treeline ecotones, such as European
Alps (Leonelli et al., 2011), Swedish Scandes (Kullman,
2005) and U.S. Rocky Mountain (Elliott and Kipfmueller,
2011). Our result was accordant with the treeline dy-
namics about A. spectabilis on the southern QTP (Lv
and Zhang, 2011), but was different from those obtained
in similar studies carried out in the central Tianshan
Mountains (Wang et al., 2006) and the Shennongjia
Mountains (Dang et al., 2009). Wang et al. (2006) and
Dang et al. (2009) have found more radial growth but
less recruitment with Picea schrenkiana and Abies
fargesii in response to warm climate over several of the
most recent decades. The different results suggest that
the response of treeline ecotones to climate change va-
ries with both local site conditions and the individual
species (Luckman and Kavanagh, 1998).
At many upper treeline ecotones the climatic condi-

tions that facilitate seedling recruitment are frequently
similar to those conducive to radial growth of trees
(Szeicz and Macdonald, 1995; Camarero and Gutiérrez,
1999; Jump et al., 2007; Dang et al., 2009). In our study
the climatic conditions that facilitated the A. faxoniana
seedling recruitment were also similar to those that
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enhanced the radial growth of fir trees. For example,
high temperatures in current April enhanced the recruit-
ment of A. faxoniana and facilitated the radial growth
(Figures 5 and 7); more January precipitation in current
year strengthened both seedling recruitment and radial
growth (Figures 5 and 7).

Conclusions
In summary, we investigated the climatic response of ra-
dial growth and recruitment of A. faxoniana in the tree-
line ecotones on the eastern edge of QTP. For the
geographical novelty, QTP is attracting more and more at-
tention on conducting similar studies (Liang et al., 2010;
Lv and Zhang, 2011). In the future, continuous studies
should be conducted, such as carrying out a second census
within the same plots or setting up plots covering larger
elevational gradients, in order to understand the dynamics
of treeline position with the climatic variability on the
eastern edge of QTP. Moreover, such studies will un-
doubtedly advance our knowledge of the other treelines
on the eastern edge of QTP and reveal common and
species-specific responses to climate change that may be
exploited in conservation and protection efforts.
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