
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2009, Vol. 45, No. 1, 157–174
DOI: 10.1214/07-AIHP159
© Association des Publications de l’Institut Henri Poincaré, 2009

Trees and asymptotic expansions for fractional stochastic
differential equations

A. Neuenkircha, I. Nourdinb, A. Rößlerc and S. Tindeld

aJohann Wolfgang Goethe-Universität Frankfurt, FB 12 Institut für Mathematik, Robert-Mayer-Strasse 10, 60325 Frankfurt am Main, Germany.
E-mail: neuenkir@math.uni-frankfurt.de

bLaboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Boîte courrier 188, 4 Place Jussieu, 75252 Paris Cedex 5,
France. E-mail: inourdin@gmail.com

cTechnische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstrasse 7, 64289 Darmstadt, Germany.
E-mail: roessler@mathematik.tu-darmstadt.de

dInstitut Élie Cartan Nancy (IECN), Boîte postale 239, 54506 Vandœuvre-lès-Nancy Cedex, France. E-mail: tindel@iecn.u-nancy.fr

Received 28 April 2007; revised 20 November 2007; accepted 29 November 2007

Abstract. In this article, we consider an n-dimensional stochastic differential equation driven by a fractional Brownian motion
with Hurst parameter H > 1/3. We derive an expansion for E[f (Xt )] in terms of t , where X denotes the solution to the SDE and
f :Rn → R is a regular function. Comparing to F. Baudoin and L. Coutin, Stochastic Process. Appl. 117 (2007) 550–574, where
the same problem is studied, we provide an improvement in three different directions: we are able to consider equations with drift,
we parametrize our expansion with trees, which makes it easier to use, and we obtain a sharp estimate of the remainder for the case
H > 1/2.

Résumé. Dans cet article, nous considérons une équation différentielle stochastique multidimensionnelle dirigée par un mouve-
ment brownien fractionnaire d’indice de Hurst H > 1/3. Nous développons E[f (Xt )] par rapport à t , où on note X la solution de
l’EDS et où f :Rn → R est une fonction régulière. Par rapport à F. Baudoin et L. Coutin, Stochastic Process. Appl. 117 (2007)
550–574, où le même problème est étudié, nous améliorons leur résultat dans trois directions différentes: nous traîtons le cas d’une
équation avec dérive, nous paramétrons notre développement à l’aide d’arbres, ce qui le rend plus facile à utiliser, et nous proposons
un contrôle plus fin du reste quand H > 1/2.
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1. Introduction

This article is concerned with a stochastic differential equation (SDE in short) of the following type:

Xa
t = a +

∫ t

0
σ
(
Xa

s

)
dBs +

∫ t

0
b
(
Xa

s

)
ds, t ∈ [0, T ], (1)

where B is a d-dimensional fractional Brownian motion (fBm in short) with Hurst index H > 1/3, a ∈ R
n is a non-

random initial value and σ : Rn → R
n×d and b : Rn → R

n are smooth functions. In the last years, significant advances
concerning the rigorous definition and the solution of such SDEs have been made: for instance, in the case H > 1/2
it is now well known that one can use the Young integral for integration with respect to fBm and, with this choice,
the existence and uniqueness of the solution for Eq. (1) in the class of processes, which have α-Hölder continuous
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paths with 1 − H < α < H , has been obtained e.g. in [23]. See also [10,17,24] for an approach based on fractional
derivatives. When 1/4 < H < 1/2, it is still possible to give a sense to equation (1), using the rough path theory,
which was initiated by Lyons [7,8] and applied to the fBm case by Coutin and Qian [5]. In this setting, we also have
existence and uniqueness in an appropriate class of processes. Moreover, by using a generalization of the symmetric
Russo–Vallois integral (namely the Newton–Cotes integral corrected by a Lévy area) one can obtain existence and
uniqueness for (1), but only in dimension n = d = 1, see [14]. All the techniques mentioned above, which have been
applied to fractional SDEs, are of pathwise (or semi-pathwise) type. However, in case of an equation in which the
noise enters linearly, Eq. (1) can be solved in the Skorohod sense, by means of some purely probabilistic methods, see
e.g. [15].

In this context, and with a rigorous definition of the solution to Eq. (1) at hand, it seems worthwhile to study the
basic properties of the solution of this SDE. Some steps in this direction, such as moments estimates [10], existence
of a density for the random variable Xa

t [13,18] or numerical approximations [11], have already been accomplished.
The current article can be seen as a part of this ongoing general project, and we will focus here on the following
problem: since the fBm B is not a Markov process when H �= 1/2, one cannot expect the law of Xa

t to satisfy a partial
differential equation. In order to cope with this problem, and to start an analysis of the law of the process Xa , Baudoin
and Coutin [2] studied the asymptotic expansion with respect to t of the quantity Ptf (a) defined by

Ptf (a) = E
(
f

(
Xa

t

))
, t ∈ [0, T ], a ∈ R

n, f ∈ C∞
c

(
R

n;R
)
, (2)

where Xa is the solution of (1). Note that in the Brownian case H = 1/2, this problem has already been addressed,
and the Taylor expansion of the Pt , which defines in this case a semigroup, is well studied, see, e.g. [20,21]. There
are several reasons to study the family of operators (Pt , t ≥ 0). As mentioned above, the knowledge of Ptf (a) for a
sufficiently large class of functions f characterizes the law of the random variable Xa

t . Moreover, the knowledge of
Ptf (a) helps, e.g., also in finding good sample designs for the reconstruction of fractional diffusions, see [11]. We
will therefore take up here the program initiated in [2], and improve their result in several directions:

1. In [2], the authors considered the case b ≡ 0. Consequently, their formula contains only powers of t of the form
tnH with n ∈ N. We are able to extend their result to the case of a general drift b, and we will obtain an expression
containing powers of the type tnH+m with n,m ∈ N.

2. In the current article, we use rooted trees in order to obtain a nice representation of our formula. In contrast
to the hierarchical set approach, where a cumulative sum of products of derivatives of the functions f , σ and b

corresponds to each multi-index, by using trees we can identify each single summand of the expansion with exactly
one corresponding rooted tree. As a result of this, rooted trees allow us to obtain a compact representation of the
expansion of Pt .

3. In the case where H > 1/2, we obtain a series expansion (20) of the operator Pt , which is not only valid for small
times as in [2], but for any fixed time t ≥ 0. This improvement will rely on a careful analysis of the behavior of
multiple integrals with respect to the fractional Brownian motion.

The crucial point in the problem considered above is to control the remainders of the derived expansions. This
depends of course heavily on the definition we use for the stochastic integrals with respect to the fractional Brownian
motion. Here we have chosen to solve Eq. (1) by means of the rough path theory introduced by Gubinelli in [9]. This
variant is based on an algebraic structure, which turns out to be useful for computational purposes, but has also its own
interest, and is in fact a nice alternative to the meanwhile classical theory of rough paths initiated by Lyons [7,8]. More
important for us, it leads to a simplification of some steps in the rough path analysis, and avoids some cumbersome
discretization procedures of the fractional Brownian path. These simplifications will be essential for the analysis of
the remainders.

The paper is organized as follows. In Section 2, we first present the basic setup of [9] and its application to
fractional Brownian motion, and moreover we give a short introduction to rooted trees. Finally, we state our main
result in Section 3 and prove it in Section 4.
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2. Preliminaries

2.1. Some elements of algebraic integration

This section contains a summary of the algebraic integration introduced in [9]. We recall its main features here, since
all our results are obtained in this setting.

In the sequel, we will denote by Ld,n the space of linear operators from R
d to R

n, i.e., the space of matrices of
R

n×d and we denote by A∗ the transpose of a vector or matrix A. Let x be a Hölder continuous R
d -valued function

of order γ , with 1/3 < γ ≤ 1/2. The case where γ > 1/2 is classically covered by means of Young’s integral, see e.g.
[23], and is therefore omitted in the present section. Moreover, let σ : Rn → R

n×d , b : Rn → R
n be two bounded and

smooth functions. In the sequel, we shall consider the n-dimensional equation

dyt = σ(yt )dxt + b(yt )dt, y0 = a ∈ R
n, t ∈ [0, T ]. (3)

In order to rigorously define and solve this equation, we will need some algebraic and analytic notions. Therefore,
we first present the basic algebraic structures which allow us to define a pathwise integral with respect to irregular
functions. For an arbitrary real number T > 0, a vector space V and an integer k ≥ 1 we denote by Ck(V ) the set of
functions g : [0, T ]k → V such that gt1,...,tk = 0, whenever ti = ti+1 for some i ≤ k − 1. Such a function will be called
a (k − 1)-increment, and we will set C∗(V ) = ⋃

k≥1 Ck(V ). An important elementary operator is defined by

δ : Ck(V ) → Ck+1(V ), (δg)t1,...,tk+1 =
k+1∑
i=1

(−1)k−igt1,...,t̂i ,...,tk+1
, (4)

where t̂i means that this particular argument is omitted. A fundamental property of δ, which is easily verified, is that
δδ = 0, where δδ is considered as an operator from Ck(V ) to Ck+2(V ). We will denote Z Ck(V ) = Ck(V ) ∩ Ker δ and
B Ck(V ) = Ck(V ) ∩ Im δ.

Note that our further discussion will mainly rely on k-increments with k ≤ 2. For the simplicity of the exposition,
we will assume from now on that V = R

d . We measure the size of these increments by Hölder norms, which are
defined in the following way: for f ∈ C2(V ) let ‖f ‖μ = sups,t∈[0,T ] |fs,t |/|t − s|μ and Cμ

2 (V ) = {f ∈ C2(V ); ‖f ‖μ <

∞}. Obviously, the usual Hölder spaces Cμ
1 (V ) are determined in the following way: for a continuous function g ∈

C1(V ), we simply set ‖g‖μ = ‖δg‖μ, and we say that g ∈ Cμ
1 (V ) iff ‖g‖μ is finite. Note that ‖ ·‖μ is only a semi-norm

on C1(V ), but we will work in general on spaces of the type Cμ
1,a(V ) = {g : [0, T ] → V ;g0 = a,‖g‖μ < ∞}, for a

given a ∈ V , on which ‖g‖μ is a norm. For h ∈ C3(V ) we set in the same way

‖h‖γ,ρ = sup
s,u,t∈[0,T ]

|hs,u,t |
|u − s|γ |t − u|ρ and ‖h‖μ = inf

∑
i

‖hi‖ρi ,μ−ρi
, (5)

where the infimum is taken over all sequences {hi ∈ C3(V )} such that h = ∑
i hi and for all choices of the numbers

ρi ∈ (0,μ). Then ‖ · ‖μ is easily seen to be a norm on C3(V ), and we set Cμ
3 (V ) := {h ∈ C3(V ); ‖h‖μ < ∞}. Even-

tually, let C 1+
3 (V ) = ⋃

μ>1 Cμ
3 (V ), and note that the same kind of norms can be considered on the spaces Z C3(V ),

leading to the definition of the spaces Z Cμ
3 (V ) and Z C 1+

3 (V ).
With these notations in mind, the crucial point in the presented approach to pathwise integration of irregular paths

is that the operator δ can be inverted under mild smoothness assumptions. This inverse is called Λ. The proof of the
following proposition can be found in [9]:

Proposition 2.1. There exists a unique linear map Λ : Z C 1+
3 (V ) → C 1+

2 (V ) such that δΛ = IdZ C 1+
3 (V )

and Λδ =
IdC 1+

2 (V )
. In other words, for any h ∈ C 1+

3 (V ) such that δh = 0 there exists a unique g = Λ(h) ∈ C 1+
2 (V ) such that

δg = h. Furthermore, for any μ > 1, the map Λ is continuous from Z Cμ
3 (V ) to Cμ

2 (V ) and we have ‖Λh‖μ ≤
1

2μ−2‖h‖μ for any h ∈ Z Cμ
3 (V ).

Moreover, Λ has a nice interpretation in terms of generalized Young integrals:
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Corollary 2.2. For any 1-increment g ∈ C2(V ) such that δg ∈ C 1+
3 , set δf = (Id−Λδ)g. Then (δf )s,t =

lim|Πt,s |→0
∑n

i=0 gti ,ti+1, where the limit is over any partition Πs,t = {t0 = s, . . . , tn = t} of [s, t] whose mesh tends to
zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

Now, we will give the definition of generalized integrals with respect to a rough path of order 2, and then explain
how to solve Eq. (3). Notice that, in the sequel, we will use both the notations

∫ t

s
f dg or Js,t (f dg) for the integral of

a function f with respect to a given increment dg on the interval [s, t]. The structure we will demand for a possible
solution of (3) is as follows:

Definition 2.3. Let z be a path in Cκ
1 (Rk) with κ ≤ γ and 2κ + γ > 1. We say that z is a controlled path based on x

if z0 = a (which is a given initial condition in R
k) and if δz ∈ Cκ

2 (Rk) can be decomposed into

δz = ζ δx + r, i.e. (δz)s,t = ζs(δx)s,t + ρs,t , s, t ∈ [0, T ], (6)

with ζ ∈ Cκ
1 (Rk×d) and ρ is a regular part belonging to C 2κ

2 (Rk). The space of classical controlled paths will be
denoted by Qκ,a(R

k), and a path z ∈ Qκ,a(R
k) should be considered in fact as a couple (z, ζ ). The semi-norm on

Qκ,a(R
k) is given by N [z; Qκ,a(R

k)] = ‖z‖κ + ‖ζ‖∞ + ‖ζ‖κ + ‖ρ‖2κ with ‖ζ‖∞ = sup0≤s≤T |ζs |Rk×d .

Having defined our algebraic and analytic framework, the strategy in order to solve Eq. (3) is now as follows:

(i) Verify the stability of Qκ,a(R
k) under a smooth map ϕ : Rk → R

n;
(ii) Define rigorously the integral

∫
zu dxu = J (zdx) for a controlled path z and compute its decomposition (6);

(iii) Solve Eq. (3) in the space Qκ,a(R
k) by a fixed point argument.

Actually, for the second point we have to assume the following hypothesis on the driving rough path, which is standard
in rough path type considerations:

Hypothesis 2.4. The R
d -valued γ -Hölder path x admits a Lévy area, that is a process x2 ∈ C 2γ

2 (Rd×d) satisfying

δx2 = δx ⊗ δx, i.e.
[(

δx2)
s,u,t

]
(i, j) = [

δxi
]
s,u

[
δxj

]
u,t

, s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.

Then, we have

Proposition 2.5. Let z ∈ Qκ,a(R
k) with decomposition (6), ϕ ∈ C2(Rk;R

n) be bounded with bounded derivatives
and set ẑ = ϕ(z), â = ϕ(a). Then ẑ ∈ Qκ,â(R

n). Moreover, it can be decomposed into δẑ = ζ̂ δx + r̂ , with ζ̂ = ∇ϕ(z)ζ

and r̂ = ∇ϕ(z)r + [δ(ϕ(z)) − ∇ϕ(z)δz]. Furthermore, it holds

N
[
ẑ; Qκ,â

(
R

n
)] ≤ cϕ,T

(
1 + N 2[z; Qκ,a

(
R

n
)])

. (7)

Concerning the integration of controlled paths, we have

Proposition 2.6. For a given γ > 1/3 and κ < γ , let x be a process satisfying Hypothesis 2.4. Furthermore, let
m ∈ Qκ,b(Ld,1) with decomposition m0 = b ∈ Ld,1 and

(δm)s,t = [
μs(δx)s,t

]∗ + rs,t , where μ ∈ Cκ
1

(
Ld,d

)
, r ∈ C 2κ

2

(
Ld,1). (8)

Define z by z0 = a ∈ R and δz = mδx +μ ·x2 +Λ(rδx +δμ ·x2). Finally, set J (mdx) = δz. Then z is well-defined
as an element of Qκ,a(R). Moreover, the semi-norm of z in Qκ,a(R) can be estimated as

N
[
z; Qκ,a(R)

] ≤ c
[‖x‖γ + ∥∥x2

∥∥
2γ

](‖m‖∞ + T γ−κ N
[
m; Qκ,b

(
Ld,1)]), (9)

for a universal constant c. We also have

‖δz‖κ ≤ c
[‖x‖γ + ∥∥x2

∥∥
2γ

]
T γ−κ N

[
m; Qκ,b

(
Ld,1)]. (10)



Trees and asymptotic expansions for fractional SDEs 161

Finally, it holds Js,t (mdx) = lim|Πs,t |→0
∑n

i=0[mti (δx)ti ,ti+1 + μti · x2
ti ,ti+1

] for any 0 ≤ s < t ≤ T , where the limit is
taken over all partitions Πs,t = {s = t0, . . . , tn = t} of [s, t] whose mesh tends to zero.

Finally, we can prove the following result, using the strategy and the tools sketched above (see [9], Proposition 8):

Theorem 2.7. Let x be a process satisfying Hypothesis 2.4. Let b : Rn → R
n and σ : Rn → R

n×d be twice continu-
ously differentiable and assume moreover that σ and b are bounded together with their derivatives. Then:

1. Equation (3) admits a unique solution y in Qκ,a(R
n) for any κ < γ such that 2κ + γ > 1.

2. The mapping (a, x,x2) �→ y is continuous from R
n × Cγ

1 (Rd) × C 2γ

2 (Rd×d) to Qκ,a(R
n).

In the sequel, it will also be crucial to have a change of variable formula. This will be achieved under the following
additional assumption on x2:

Hypothesis 2.8. Let x2 be the area process defined in Hypothesis 2.4 and denote by x2,s the symmetric part of x2, i.e.
x2,s = 1/2(x2 + (x2)∗). Then, we assume that we have x2,s

s,t = 1/2[δx]s,t ⊗ [δx]s,t for 0 ≤ s < t ≤ T .

Our change of variable formula, whose proof is left to the reader for the sake of conciseness, reads as follows:

Proposition 2.9. Assume that x satisfies both Hypothesis 2.4 and 2.8. Let b : Rn → R
n and σ : Rn → Ld,n be twice

continuously differentiable and assume moreover that σ and b are bounded together with their derivatives. Let y be
the unique solution to (3) given by Theorem 2.7. If f ∈ C2(Rn;R) is bounded together with its derivatives, then f (yt )

can be decomposed, for any t ∈ [0, T ], as

f (yt ) = f (a) +
∫ t

0
∇f (ys)b(ys)ds +

∫ t

0
∇f (ys)σ (ys)dxs. (11)

2.2. Application to fractional Brownian motion

A d-dimensional fractional Brownian motion (fBm in short) with Hurst parameter H is a centered Gaussian process
which can be written as B = {Bt = (B1

t , . . . ,Bd
t ); t ≥ 0}, where B1, . . . ,Bd are d independent one-dimensional fBm.

The fBm verifies the following two important properties:

(scaling) For any c > 0, B(c) = cH B·/c is a fBm, (12)

(stationary increments) For any h > 0, B·+h − Bh is a fBm. (13)

All the results of the previous Section 2.1 rely on the specific assumptions we have made on the process x. For
fBm, it can be checked (see, for instance, [12]) that

Proposition 2.10. Let B be a d-dimensional fractional Brownian motion and suppose H > 1/3. Then almost all
sample paths of B satisfy Hypothesis 2.4 and 2.8.

2.3. Rooted trees

In order to obtain a compact representation of the expansion of Pt we will use rooted trees following the approach in
[21,22].

Definition 2.11. A monotonically labelled S-tree (stochastic tree) t with l = l(t) ∈ N nodes is a pair of maps t = (t′, t′′)
of the form t′ : {2, . . . , l} −→ {1, . . . , l − 1} and t′′ : {1, . . . , l} −→ A, with A = {γ, τ0, τjk

, k ∈ N} where jk is a
variable index with jk ∈ {1, . . . , d}, such that t′(i) < i, t′′(1) = γ and t′′(i) ∈ A \ {γ } for i = 2, . . . , l. Let LTS denote
the set of all monotonically labelled S-trees.
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We will use the following notation: d(t) = |{i : t′′(i) = τ0}|, s(t) = |{i : t′′(i) = τjk
, jk �= 0}| = l(t) − d(t) − 1

and ρ(t) = Hs(t) + d(t), with ρ(γ ) = 0. In the following we also denote by LTS(S) ⊂ LTS, where (S) stands for
Stratonovich, the subset LTS(S) = {t ∈ LTS : s(t) = 2k, k ∈ N0} with N0 = N ∪ {0} containing all trees having an even
number of stochastic nodes.

Every monotonically labelled S-tree t can be represented as a graph, whose nodes are elements of {1, . . . , l(t)} and
whose arcs are the pairs (t′(i), i) for i = 2, . . . , l(t). Here, t′ defines a father-son relation between the nodes, i.e., t′(i)
is the father of the son i. Further, γ = denotes the root, τ0 = is a deterministic node and τjk

= jk
a stochastic

node. Here, we have to point out that each tree t ∈ LTS depends on the variable indices j1, . . . , js(t) ∈ {1, . . . , d}s(t),
although this is not mentioned explicitly if we shortly write t for the tree.

Definition 2.12. If t1, . . . , tk are coloured trees, then we denote by (t1, . . . , tk), [t1, . . . , tk] and {t1, . . . , tk}j the tree
in which t1, . . . , tk are each joined by a single branch to , and j , respectively (see also Fig. 2).

Therefore proceeding recursively, for the two examples tI and tII in Fig. 1 we obtain tI = ([ 4
j2

]2, 3
j1

)1 =
([τ 4

j2
]2, τ 3

j1
)1 and tII = ({ 4

, 3
j2

}2
j1

)1 = ({τ 4
0 , τ 3

j2
}2
j1

)1.
For every rooted tree t ∈ LTS, there exists a corresponding elementary differential which is a direct generalization

of the differential in the deterministic case, see also [21]. The elementary differential is defined recursively for some
x ∈ R

n by F(γ )(x) = f (x), F(τ0)(x) = b(x), F (τj )(x) = σ j (x), for single nodes and by

F(t)(x) =

⎧⎪⎨⎪⎩
f (k)(x) · (F(t1)(x), . . . ,F (tk)(x)

)
for t = (t1, . . . , tk),

b(k)(x) · (F(t1)(x), . . . ,F (tk)(x)
)

for t = [t1, . . . , tk],
σ j (k)

(x) · (F(t1)(x), . . . ,F (tk)(x)
)

for t = {t1, . . . , tk}j ,

(14)

for a tree t with more than one node and with σ j = (σ i,j )1≤i≤n denoting the j th column of the diffusion matrix σ .

Here f (k), b(k) and σ j (k)
define a symmetric k-linear differential operator, and one can choose the sequence of labelled

S-trees t1, . . . , tk in an arbitrary order. For example, the I th component of b(k) · (F (t1), . . . ,F (tk)) can be written as

(
b(k) · (F(t1), . . . ,F (tk)

))I =
n∑

J1,...,Jk=1

∂kbI

∂xJ1 · · · ∂xJk

(
FJ1(t1), . . . ,F

Jk (tk)
)
,

where the components of vectors are denoted by superscript indices, which are chosen as capitals. As a result of this
we get for tI and tII the elementary differentials

F(tI ) = f ′′(b′(σ j2
)
, σ j1

) =
n∑

J1,J2=1

∂2f

∂xJ1 ∂xJ2

(
n∑

K1=1

∂bJ1

∂xK1
σK1,j2 · σJ2,j1

)
,

Fig. 1. Some monotonically labelled trees in LTS.

Fig. 2. Writing a coloured S-tree with brackets.
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F(tII) = f ′(σ j1
′′(

b,σ j2
)) =

n∑
J1=1

∂f

∂xJ1

(
n∑

K1,K2=1

∂2σJ1,j1

∂xK1 ∂xK2
bK1 · σK2,j2

)
.

Next, we assign recursively to every t ∈ LTS a multiple stochastic integral by

It
(
g
(
Xa

s

))
t0,t

=
{

g
(
Xa

t

)
if t′′

(
l(t)

) = γ ,∫ t

t0
It−

(
g
(
Xa

u

))
t0,s

dB
j
s if t′′

(
l(t)

) = τj ,
(15)

for 0 ≤ j ≤ d with dB0
s = ds. Here, t – denotes the tree which is obtained from t by removing the last node with label

l(t).

3. Main result

We will denote by C∞
b (Rn;R) the space of all infinitely differentiable functions g ∈ C∞(Rn;R) which have bounded

derivatives of all orders, and by C∞
P (Rn;R) the space of all infinitely differentiable functions g ∈ C∞(Rn;R) for

which all partial derivatives have polynomial growth. (Recall that a function h : Rn → R is of polynomial growth, if
there exists c > 0 and q ∈ N such that |h(x)| ≤ c(1 + |x|q) for all x ∈ R

n.)
Moreover set Am = {0,1, . . . , d}m for m ∈ N, and define the differential operators D0 and Dj as

D0 =
n∑

k=1

bk ∂

∂xk
and Dj =

n∑
k=1

σk,j ∂

∂xk
(16)

for j = 1, . . . , d . Finally, set Dα = Dα1 · · · Dαm for a multi-index α ∈ Am.
Recall that the family of operators (Pt , t ∈ [0, T ]) has been defined by (2). To give the expansion of Pt we will

use different sets of assumptions on the function f : Rn → R, the drift vector b = (bi)i=1,...,n and the diffusion matrix
σ = (σ i,j )i=1,...,n,j=1,...,d .

In the case 1/3 < H < 1/2 we will assume that:

(A1) We have f,bi, σ i,j ∈ C∞
b (Rn;R) for i = 1, . . . , n, j = 1, . . . , d . Moreover, f,bi, σ i,j , i = 1, . . . , n, j =

1, . . . , d are bounded.

When H > 1/2 we will work with the following assumptions:

(A2) We have f ∈ C∞
P (Rn;R) and bi, σ i,j ∈ C∞

b (Rn;R) for i = 1, . . . , n, j = 1, . . . , d . Moreover, the following
regularity condition for the Malliavin derivative of the solution of Eq. (1) holds:

Y = max
i=1,...,n

max
j=1,...,d

sup
0≤u≤s≤T

E
∣∣Dj

uXi
s

∣∣4
< ∞.

Here Dj denotes the Malliavin derivative with respect to the j th component of the driving fBm, see Section 4.4.

The following theorem gives the expression of the expansion of Pt with respect to t :

Theorem 3.1. (1) If 1/3 < H < 1/2 and assumption (A1) is satisfied, then for any m ∈ N0:

Pt f (a) =
∑

t∈LTS(S)

l(t)≤m+1

d∑
j1,...,js(t)=1

F(t)(a)E
(

It(1)0,1
)
tρ(t) + O

(
t (m+1)H

)
, as t → 0. (17)

(2) Let H > 1/2 and assumption (A2) be satisfied. Then, for all t ∈ [0, T ], we have∣∣∣∣∣Pt f (a) −
∑

t∈LTS(S)

l(t)≤m+1

d∑
j1,...,js(t)=1

F(t)(a)E
(

It(1)0,1
)
tρ(t)

∣∣∣∣∣ ≤ Gm(1 + Y )
KmtH(m+1)

√
m! ,
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where G 2
m = sup

α∈Am+1

sup
0≤t≤T

E
∣∣Dαf (Xt )

∣∣2 + max
i=1,...,n

sup
α∈Am+1

sup
0≤t≤T

E

∣∣∣∣ ∂

∂xi

Dαf (Xt )

∣∣∣∣2

(18)

and K is a constant, which depends only on H,T ,n and d . In particular, if

Gm = O
(
(m!)κ)

(19)

with κ ∈ [0,1/2), then we have

Pt f (a) =
∑

t∈LTS(S)

d∑
j1,...,js(t)=1

F(t)(a)E
(

It(1)0,1
)
tρ(t), t ∈ [0, T ]. (20)

Remark 3.2. (1) Here, note that each tree t ∈ LTS(S) comprehends the variable indices j1, . . . , js(t) which can take
the values 1, . . . , d although these variables are not mentioned explicitly by writing shortly t for the whole tree. The
variables j1, . . . , js(t) correspond to the components of the driving fractional Brownian motion and appear in the
second sum in the formulas (17) and (20) as well as in each tree t of the summands.

(2) The growth condition (19) and the regularity condition on the Malliavin derivative, i.e. Y < ∞, are satisfied,
e.g., if f is a polynomial and bi, σ i,j , i = 1, . . . , n, j = 1, . . . , d are affine functions. Moreover, the growth condi-
tion (19) for the remainder term is also natural in the case H = 1/2, i.e. for the asymptotic expansion of Itô stochastic
differential equations. Compare, e.g., [3] and chapter 5 in [6].

4. Proof of Theorem 3.1

In the present section we will prove our main result, that is Theorem 3.1. We separate the proof into two parts: firstly,
we will show how to use trees for the parametrization of the expansion; secondly, we will control the remainder term,
which appears when we expand Ptf (a) with respect to t , according to the value of H .

4.1. Rooted trees approach

In this section, we assume that the Hurst index of the fBm B verifies H > 1/3. The first step in the proof of the
algebraic part of Theorem 3.1 is the following result.

Theorem 4.1. Let (Xa
t )t∈[0,T ] be the solution of (1) with initial value Xa

0 = a ∈ R
n. Then for m ∈ N0 and

f ∈ Cm+2
b (Rn;R), b, σ j ∈ Cm+2

b (Rn;R
n), 1 ≤ j ≤ d , we get for t ∈ [0, T ] the expansion f (Xa

t ) = ∑
t∈LTS,l(t)−1≤m ×∑d

j1,...,js(t)=1 F(t)(a)It(1)0,t + Rm(0, t) with a truncation term Rm(0, t) = ∑
t∈LTS,l(t)−1=m+1 ×∑d

j1,...,js(t)=1 It(F (t)(Xa
s ))0,t .

Proof. The proof is very similar to the proof of Theorem 4.2 in [21]. Details are left to the reader. �

Corollary 4.2. Let (Xa
t )t∈I be the solution of (1) with initial value Xa

0 = a ∈ R
n. Then for m ∈ N0 and f ∈

Cm+2
b (Rn,R), b, σ j ∈ Cm+2

b (Rn,R
n), 1 ≤ j ≤ d , we get for t ∈ [0, T ] the expansion

Pt f (a) =
∑

t∈LTS(S)

l(t)≤m+1

d∑
j1,...,js(t)=1

F(t)(a)E
(

It(1)0,1
)
tρ(t) + E

(
Rm(0, t)

)
. (21)

Proof. Apply Theorem 4.1 and take the expectation in the formula for f (Xa
t ). Moreover, due to the scaling property

(12), it follows that E(It(1)0,t ) = E(It(1)0,1)t
H |α|+m−|α| = E(It(1)0,1)t

ρ(t) holds with |α| = ∑m
i=1 1{αi �=0}, since we

have ρ(t) = H |α| + m − |α|. �

Now we derive the announced controls on the remainder term E(Rm(0, t)) appearing in (21), according to the
value of H and the assumptions on f,b and σ . These estimates will imply easily our Theorem 3.1.
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4.2. Study of the remainder term for 1/3 < H < 1/2

We assume in this section that 1/3 < H < 1/2 and that assumption (A) holds true. Then we will show that for fixed
m ∈ N, we have E(Rm(0, t)) = O(t(m+1)H ), a fact, which trivially yields (20) in Theorem 3.1. Furthermore, this
bound is a direct consequence of the following:

Lemma 4.3. Let g ∈ C2(Rn,R) be bounded with bounded derivatives and X be the unique solution to (1) in Qκ,a(R
n)

with κ ∈ ( 1−H
2 ,H). For any α1, . . . , αr ∈ {0, . . . , d} we have

E

∣∣∣∣∫
Δr([0,t])

g(Xtr )dB
αr
tr

· · · dB
α1
t1

∣∣∣∣ = O
(
t r−|α|(1−H)

)
, as t → 0, (22)

where |α| = ∑r
i=1 1{αi �=0}.

Proof. We only consider the case r = |α|, the other cases being easier. We split the proof into three steps.

Step 1: Scaling. For j ∈ {1, . . . , r} and c > 0, set B
αj ,(c)
u = cH B

αj

u/c and let X(c) denote the solution of (1), where

B is replaced by B(c). For fixed t , we have∫
�r([0,t])

g(Xtr )dB
αr
tr

· · ·dB
α1
t1

=
∫ t

0
dB

α1
t1

∫ t1

0
dB

α2
t2

· · ·
∫ tr−1

0
dB

αr
tr

g(Xtr )

=
∫ 1

0
dB

α1
t ·t1

∫ t1

0
dB

α2
t ·t2 · · ·

∫ tr−1

0
dB

αr
t ·tr g(Xt ·tr )

L= t rH
∫ 1

0
dB

α1,(t)
t1

∫ t1

0
dB

α2,(t)
t2

· · ·
∫ tr−1

0
dB

αr ,(t)
tr

g
(
X

(t)
t ·tr

)
.

Consequently, in order to obtain (22), it suffices to prove that

sup
t∈[0,T ]

E

∣∣∣∣∫ 1

0
dB

α1
t1

∫ t1

0
dB

α2
t2

· · ·
∫ tr−1

0
dB

αr
tr

g
(
X

(t)
t·tr

)∣∣∣∣ < ∞.

Step 2: Fix t and set zs = ∫ s

0 dB
αr
tr

g(X
(t)
t·tr ) for s ∈ [0,1]. Recall also our notation for norms in the spaces Q given

at Definition 2.3. By (7) and (9) we have

N [z; Qκ,0] ≤ cB

(
1 + N

[
g
(
X

(t)
t·

); Qκ,g(a)

]) ≤ cBcg

(
1 + N 2[X(t)

t· ; Qκ,a

])
.

Here, cB > 1 is the random constant appearing in (9), whose value will not change from line to line, while cg denotes
a non-random constant depending only on g, whose value can change from one line to another. Set now

qs =
∫ s

0
dB

αr−1
tr−1

∫ tr−1

0
dB

αr
tr

g
(
X

(t)
t·tr

) =
∫ s

0
dB

αr−1
tr−1

ztr−1 , s ∈ [0,1].

Similarly, we have N (q, Qκ,0) ≤ cB(1 + N (z, Qκ,0)) ≤ cB
2cg(1 + N 2(X

(t)
t· , Qκ,a)). By induction, we easily deduce

that

N
(∫ ·

0
dB

α1
t1

∫ t1

0
dB

α2
t2

· · ·
∫ tr−1

0
dB

αr
tr

g
(
X

(t)
t·tr

)
, Qκ,0

)
≤ cB

rcg

(
1 + N 2(X(t)

t· , Qκ,a

))
.

Since we have |z1| ≤ ‖z‖κ ≤ N (z, Qκ,0) for a path z starting from 0, we deduce from the Cauchy–Schwarz
inequality that (22) is in fact a consequence of showing E(cB

2r ) < ∞ and supt∈[0,T ] E|N 4(X
(t)
t· , Qκ,a)| =

supt∈[0,T ] E|N 4(Xt·, Qκ,a)| < ∞.

Step 3: Using that B has moments of all order, we easily obtain by (10) and [9], Corollary 4 (p. 119) that E(cB
2r ) <

∞. So, let us consider the second condition. We will only prove that E|N 4(X, Qκ,a)| < +∞, the general case being
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similar. Recall from the proof of [9], Proposition 7 (p. 113) that X defined on [0, τ ] belongs by definition to the ball
BM = {z; z0 = a, N [z; Qκ,a] ≤ M}, where M and τ verify M ≥ cσ,B(1 + τγ−κM2) with cσ,B a constant depending
only on σ and B . For fixed τ , the inequality u ≥ cσ,B(1 + τγ−κu2) admits solutions u iff cσ,B

−2 − 4τγ−κ > 0, i.e., iff
τγ−κ < (4cσ,B

2)−1. In this case, the solutions are u ∈ [M−,M+], for M± = (c−1
σ,B ± (cσ,B

−2 − 4τγ−κ )1/2)/(2τγ−κ ).

By choosing for instance τγ−κ = (8cσ,B
2)−1, we obtain that N (X|[0,τ ] , Qκ,a) ≤ (4 + 2

√
2)cσ,B . Furthermore, due to

the crucial fact that σ and its derivatives are bounded, we can in fact choose the same M for the bound of δX on
[τ,2τ ], [2τ,3τ ], etc. Using the triangle inequality we deduce:

N (X, Qκ,a) ≤ N (X|[0,τ ], Qκ,a) + N (X|[τ,2τ ], Qκ,Xτ ) + · · · + N (X|[�T τ−1�τ,T ] , Qκ,X�T τ−1�τ )

≤ (�T τ−1� + 1
)
M.

In other words, we have N (X, Qκ,a) ≤ cst cσ,B
1+2/(γ−κ). Thus it follows easily that the expectation E|N 4(X, Qκ,a)|

is finite, and the proof of Lemma 4.3 is finished. �

4.3. Some properties of iterated integrals in the case H > 1/2

In this section, we will assume that the Hurst index of B verifies H > 1/2. Again, the key point in order to prove the
second part of Theorem 3.1 will be to obtain a bound for E[Rm(0, t)]. Here, we will use estimates based on Malliavin
calculus tools and explicit computations of moments of iterated integrals with respect to the fractional Brownian
motion.

First, let us give a few facts about the Gaussian structure of fractional Brownian motion and its Malliavin derivative
process, following Chapter 1.2 in [16] and Section 2 in [18]. Let E be the set of step-functions on [0, T ] with values
in R

d . Consider the Hilbert space H defined as the closure of E with respect to the scalar product induced by

〈
(1[0,t1], . . . ,1[0,td ]), (1[0,s1], . . . ,1[0,sd ])

〉
H =

d∑
i=1

RH (ti, si), si , ti ∈ [0, T ], i = 1, . . . , d,

where RH (t, s) = 1/2(s2H + t2H − |t − s|2H ). The scalar product between two elements φ,ψ ∈ E is given by

〈ϕ,ψ〉H = γH

d∑
i=1

∫ T

0

∫ T

0
ϕi(r)ψi(u)|r − u|2H−2 dr du (23)

with γH = H(2H − 1). The space H contains L1/H ([0, T ];R
d), but its elements can be distributions, see, e.g., [19].

Formula (23) holds also for ϕ,ψ ∈ L1/H ([0, T ];R
d). The mapping (1[0,t1], . . . ,1[0,td ]) �→ ∑d

i=1 Bi
ti

can be extended
to an isometry between H and the Gaussian space H1(B) associated with B = (B1, . . . ,Bd). We denote this isometry
by ϕ �→ B(ϕ).

Let S be the set of smooth random variables of the form F = f (B(ϕ1), . . . ,B(ϕk)) for ϕi ∈ H, i = 1, . . . , k,

and f ∈ C∞(Rk,R) bounded with bounded derivatives. The derivative operator D of a smooth cylindrical random
variable of the above form is defined as the H-valued random variable DF = ∑k

i=1
∂f
∂xi

(B(ϕ1), . . . ,B(ϕn))ϕi . This

operator is closable from Lp(Ω) into Lp(Ω; H). As usual, D
1,2 denotes the closure of the set of smooth random

variables with respect to the norm ‖F‖2
1,2 = E|F |2 + E‖DF‖2

H. In particular, if DiF denotes the Malliavin derivative

of a functional F ∈ D
1,2 with respect to Bi , we have DiB

j
t = δi,j 1[0,t] for i, j = 1, . . . , d . Moreover, the space D

1,2
loc

is the set of random variables F for which there exists a sequence {Ωn,Fn}n∈N such that Ωn ↗ Ω for n → ∞ and
Fn = F a.s. on Ωn for all n ∈ N.

The divergence operator δ is the adjoint of the derivative operator. If a random variable u ∈ L2(Ω; H) belongs
to dom(δ), the domain of the divergence operator, then δ(u) is defined by the duality relationship E(Fδ(u)) =
E〈DF,u〉H, for every F ∈ D

1,2. Moreover, if u ∈ dom(δ) and F ∈ D
1,2 such that Fu ∈ L2(Ω; H), then we have

the following integration by parts formula: δ(Fu) = Fδ(u) − 〈DF,u〉H.

The following proposition is well known. For part (a) see, e.g., [17] and for part (b) and (c), see [18] and [10].



Trees and asymptotic expansions for fractional SDEs 167

Proposition 4.4. Let bi, σ i,j ∈ C∞
b (Rn;R) for i = 1, . . . , n, j = 1, . . . , d .

(a) Then Eq. (1) has a unique solution X = (X1, . . . ,Xn) in the Young sense in the class of all processes having
α-Hölder continuous sample paths with 1 − H < α < H .

(b) It holds maxi=1,...,n E sup0≤t≤T |Xi
t |p < ∞ for all p ≥ 1.

(c) Moreover, we have Xi
t ∈ D

1,2
loc(H) for all t ∈ [0, T ], i = 1, . . . , n. The Malliavin derivative satisfies almost

surely:

D
j
s Xi

t = σ i,j (Xs) + ∑n
k=1

∫ t

s
bi
xk

(Xu)D
j
s Xk

u du + ∑n
k=1

∑d
l=1

∫ t

s
σ

i,l
xk

(Xu)D
j
s Xk

u dBl
u, s ≤ t,

for j = 1, . . . , d , where D
j
s Xi

t is the j th component of DsX
i
t . If bi, σ i,j : Rn → R, i = 1, . . . , n, j = 1, . . . , d are

additionally bounded, then

max
j=1,...,d

max
i=1,...,n

sup
0≤s≤t≤T

E
∣∣Dj

s Xi
t

∣∣p < ∞.

Before we turn to the control of the remainder in the case H > 1/2, we will establish first some properties of
iterated integrals with respect to fractional Brownian motion. To do this, we require some additional notations.

For a multi-index α ∈ {0,1, . . . , d}k with k ∈ N denote by l(α) the length of α, i.e., l(α) = k. Moreover set Ak =
{0,1, . . . , d}k for k ∈ N, i.e., Ak is the set of all multi-indices of length k. Furthermore, define for α ∈ Ak the sets
Jα = {j = 1, . . . , k: αj �= 0} and Jα,i = {j = 1, . . . , k: αj = i}, for i = 1, . . . , d and |α| = |Jα|. Finally for a multi-
index α ∈ Ak and j = 1, . . . , k we denote α−j = (α1, α2, . . . , αj−1, αj+1, . . . , αk). Recall that for m ∈ N and 0 ≤
t1 ≤ t2 ≤ T we set Δm([t1, t2]) = {(τ1, . . . , τm) ∈ [0, T ]m: t1 ≤ τ1 ≤ τ2 ≤ · · · ≤ τm ≤ t2}. Moreover, we will use the
notation

∫
Δk([t1,t2]) dBα = ∫ t2

t1

∫ sk−1
t1

· · · ∫ s1
t1

dB
α1
s dB

α2
s1 · · · dB

αk
sk for α ∈ Ak .

With these notations in hand, the following proposition is shown easily, and its proof will be omitted here. Indeed,
part (a) follows immediately by the symmetry of fractional Brownian motion and parts (b) and (c) can be shown
analogously to Theorem 11 in [2].

Proposition 4.5. Let k ∈ N and α ∈ Ak .

(a) If |α| is odd, then we have E
∫
Δk([0,1]) dBα = 0.

(b) If |α| is even, then it holds E
∫
Δk([0,1]) dBα = (γH /2)|α|/2

(|α|/2)!
∑

s∈SJα
V (s, α) with

V (s, α) =
∫

0≤t1<···<tk≤1

|α|/2∏
l=1

δαs(2l−1),αs(2l)
|ts(2l) − ts(2l−1)|2H−2 dt1 · · · dtk,

where SJα
is the group of all permutations of the set Jα , γH = H(2H − 1) and δi,j is Kronecker’s symbol.

(c) It holds E| ∫
Δk([0,1]) dBα|2 = (γH /2)|α|

|α|!
∑

s∈SJ2
α

W (s, α) with

W (s, α) =
∫

0≤t1<···<tk≤1

∫
0≤tk+1<···<t2k≤1

|α|∏
l=1

δαs(2l−1),αs(2l)
|ts(2l) − ts(2l−1)|2H−2 dtk+1 · · · dt2k dt1 · · · dtk,

where SJ2
α denotes the group of all permutations of the set J2

α = {j = 1, . . . ,2k: j ∈ Jα or j − k ∈ Jα}.

Notice that part (a) and (b) of the above proposition yield a representation for the coefficients E(It(1)0,1), since
E(It(1)0,1) = E

∫
Δl(t)([0,1]) dBα with t′′(i) = αi ∈ {0,1, . . . , d}, i = 1, . . . , l(t).

For further computations, we also need the following positivity result for iterated integrals of the fractional Brown-
ian motion.

Proposition 4.6. Let mi ∈ N for i = 1, . . . , n with n ∈ N. Moreover let αmi ∈ Ami
and 0 ≤ si ≤ ti ≤ T for i =

1, . . . , n. It holds E[∏n
i=1

∫
Δmi ([si ,ti ]) dBαmi ] ≥ 0.
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Proof. Let t lk = k2−l , k = 0,1, . . . ,2l . For α = 0, . . . , d , denote by Bl,(α) the piecewise linear interpolation of B(α)

with step size 2−l , i.e., B
l,(α)
t = B

(α)

t lk
+ 2l(t − t lk)(B

(α)

t lk+1
− B

(α)

t lk
), t ∈ [t lk, t lk+1). We have

∏n
i=1

∫
Δmi ([si ,ti ]) dBαmi =

liml→∞
∏n

i=1

∫
Δmi ([si ,ti ]) dBl,αmi almost surely, due to Proposition 2.6. Since

∏n
i=1

∫
Δmi ([si ,ti ]) dBl,αmi belongs to a

finite Wiener chaos, we also have E
∏n

i=1

∫
Δmi ([si ,ti ]) dBαmi = liml→∞ E

∏n
i=1

∫
Δmi ([si ,ti ]) dBl,αmi according to [4].

Note that∫
Δmi ([si ,ti ])

dBl,αmi =
∫ ti

si

∫ tmi

si

· · ·
∫ t2

si

mi∏
j=1

Z
l,(α

mi
j )

tj
dt1 · · · dtmi−1 dtmi

,

where Z
l,(α

mi
j )

t = 2l (B
(α

mi
j )

t lk+1
− B

(α
mi
j )

t lk
), t ∈ [t lk, t lk+1) for α

mi

j �= 0 and Z
l,(0)
t = 1 for t ∈ [0, T ]. We thus have

n∏
i=1

∫
Δmi ([si ,ti ])

dBl,αmi =
∫

Δmn([sn,tn])
· · ·

∫
Δm1 ([s1,t1])

n∏
i=1

mi∏
j=1

Z
l,(α

mi
j )

t ij
dt

m1
1 · · · dtm1

m1
· · · dt

mn

1 · · · dtmn
mn

.

But the term
∏n

i=1
∏mi

j=1 Z
l,(α

mi
j )

t ij
is a product, which consists only of increments of the independent fractional Brown-

ian motions B1, . . . ,Bd with Hurst parameter H > 1/2 and of the constant factors 1. Since it is well known that the
increments of a fractional Brownian motion of Hurst index H > 1/2 are positively correlated, and also that we have,
for a centered Gaussian vector (G1, . . . ,G2k), that E(G1 · · ·G2k) = 1

k!2k

∑
s∈S2k

∏k
�=1 E(Gs(2�) Gs(2�−1)), we clearly

deduce that E
∏n

i=1
∏mi

j=1 Z
l,(α

mi
j )

t ij
≥ 0 for all t

m1
1 , . . . , t

mn
mn

∈ [0, T ]. Hence we obtain E
∏n

i=1

∫
Δmi ([si ,ti ]) dBl,αmi ≥ 0

for every l ∈ N, and the assertion follows. �

Our estimate of the remainder will also require the Malliavin derivative of an iterated integral. Recall then
that for a random variable F ∈ D

1,2 we denote by DiF the ith component of the Malliavin derivative, i.e.,
DF = (D1F, . . . ,DdF ). Recall moreover that for α ∈ Ak , k ∈ N, we have defined Jα = {j = 1, . . . , k: αj �= 0}
and Jα,i = {j = 1, . . . , k : αj = i}, for i = 1, . . . , d and α−j = (α1, α2, . . . , αj−1, αj+1, . . . , αk). Then the stochastic
derivative of a multiple integral can be computed as follows:

Proposition 4.7. Let m ∈ N and α ∈ Am. We have, for i = 1, . . . , d :

Di
u

∫
Δm([s,t])

dBα(t1, . . . , tm) =
∑

j∈Jα,i

∫
s≤t1≤···≤tj−1≤u≤tj ≤···≤tm−1≤t

dBα−j (t1, . . . , tm−1).

Proof. We can proceed by induction over l(α). Details are left to the reader. �

Now, we will establish an estimate for the second moment of an iterated integral, which will be the key for the
control of the remainder Rm(0, t) in the expansion of Ptf (a).

Proposition 4.8. Let m ∈ N and α ∈ Am. There exists a constant K1 > 0, depending only on H and T , such that, for
0 ≤ s ≤ t ≤ T , we have(

E

∣∣∣∣∫
Δm([s,t])

dBα

∣∣∣∣2)1/2

≤ Km
1√
m! |t − s||α|H+m−|α|. (24)

Proof. The proof is separated into three steps.

(i) By stationary increments (13) of the fractional Brownian motion, it follows
∫
Δm([s,t]) dBα L= ∫

Δm([0,t−s]) dBα.

Hence we obtain by the scaling property (12) of fractional Brownian motion that
∫
Δm([s,t]) dBα L= (t − s)H |α|+m−|α| ×
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Δm([0,1]) dBα . Now from Proposition 4.5(c) it is obvious that we have

E

∣∣∣∣∫
Δm([0,1])

dBα

∣∣∣∣2

≤ E

∣∣∣∣∫
Δm([0,1])

dBα̃

∣∣∣∣2

, (25)

where α̃ is given by α̃ = (̃α1, . . . , α̃m) with α̃j = 0 if j ∈ Jα,0 and α̃j = 1 if j ∈ Jα , i.e., all integrals with respect to
B(i), i = 2, . . . , n, are replaced by integrals with respect to B(1).

(ii) In the next step, we will replace also the integrals with respect to t by integrals with respect to B(1). More
precisely, we will show that

E

∣∣∣∣∫
Δm([0,1])

dBα̃

∣∣∣∣2

≤ γ
|α|−m
H E

∣∣∣∣∫
Δm([0,1])

dB(1,...,1)

∣∣∣∣2

, (26)

with γH = H(2H − 1). To prove (26) assume first that there is only one integral with respect to t , i.e. |Jα,0| = 1.
Thus we have

∫
Δm([0,1]) dBα̃ = ∫

Δk1 ([0,1])
∫ s

0

∫
Δk2 ([0,s]) dBα̃2 ds dBα̃1 with k1 + k2 + 1 = m and α̃ = (̃α2,0, α̃1). By a

Fubini-type lemma, we get∫
Δk1 ([0,1])

∫ s

0

∫
Δk2 ([0,s])

dBα̃2 ds dBα̃1 =
∫ 1

0
Ys ds,

where we have set Ys = ∫
Δk1 ([s,1])

∫
Δk2 ([0,s]) dBα̃2 dBα̃1 . With this notation in hand, observe that we also have∫

Δm([0,1]) dB(1,...,1) = ∫ 1
0 Ys dB

(1)
s . Hence, when |Jα,0| = 1, one can recast (26) into

E

∣∣∣∣∫ 1

0
Ys ds

∣∣∣∣2

≤ γH E

∣∣∣∣∫ 1

0
Ys dB(1)

s

∣∣∣∣2

. (27)

We will now proceed to the estimation of the two terms in (27): first of all, we easily get E| ∫ 1
0 Ys ds|2 =∫ 1

0

∫ 1
0 EYs1Ys2 ds1 ds2. Let us compute now E| ∫ 1

0 Ys dB(1)(s)|2: by the relation between the Young and the divergence
integral for fractional Brownian motion, see, e.g. [1] or Proposition 5.2.3 in [16], we have∫ 1

0
Ys dB(1)(s) = δ(1)(Y1[0,1]) + γH

∫ 1

0

∫ 1

0
D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2,

where we use the notation δ(1)(Y1[0,1]) = δ((Y1[0,1], . . . ,0)). Thus we obtain

E

∣∣∣∣∫ 1

0
Ys dB(1)(s)

∣∣∣∣2

= E
∣∣δ(1)(Y1[0,1])

∣∣2 + γ 2
H E

∣∣∣∣∫ 1

0

∫ 1

0
D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2

∣∣∣∣2

+ 2γH Eδ(1)(Y1[0,1])
∫ 1

0

∫ 1

0
D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2

≥ E
∣∣δ(1)(Y1[0,1])

∣∣2 + 2γH Eδ(1)(Y1[0,1])
∫ 1

0

∫ 1

0
D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2.

Since clearly
∫ 1

0

∫ 1
0 D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2 ∈ D

1,2, we have, owing to the duality between D and δ, that

E

[
δ(1)(Y1[0,1])

∫ 1

0

∫ 1

0
D1

s1
Ys2 |s1 − s2|2H−2 ds1 ds2

]

= γH

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
E
[
Ys1D

1
s2

D1
s3

Ys4

]|s3 − s4|2H−2|s1 − s2|2H−2 ds3 ds4 ds1 ds2.
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By the definition of Ys, s ∈ [0,1], and applying Proposition 4.7, we can decompose the product Ys1D
1
s2

D1
s3

Ys4 into
a sum of products of iterated integrals, and hence, for any s1, s2, s3, s4 ∈ [0,1], we have E[Ys1D

1
s2

D1
s3

Ys4] ≥ 0 by

Proposition 4.6. Consequently we obtain E| ∫ 1
0 Ys dB(1)(s)|2 ≥ E|δ(1)(Y1[0,1])|2. Furthermore, invoking [1], we get

E
∣∣δ(1)(Y1[0,1])

∣∣2 = γH

∫ 1

0

∫ 1

0
EYs1Ys2 |s1 − s2|2H−2 ds1 ds2

+ γ 2
H

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
ED1

τ1
Ys1D

1
s2

Yτ2 |s1 − s2|2H−2|τ1 − τ2|2H−2 ds1 ds2 dτ1 dτ2.

Besides, according to Proposition 4.6, and thanks to the fact that both Ys1Ys2 and D1
τ1

Ys1D
1
s2

Yτ2 are products of iterated
integrals, we obtain that ED1

τ1
Ys1D

1
s2

Yτ2 ≥ 0 and EYs1Ys2 ≥ 0 for any s1, s2 ∈ [0,1]. Since |s1 − s2|2H−2 ≥ 1 when
s1, s2 ∈ [0,1], we end up with

E

∣∣∣∣∫ 1

0
Ys dB(1)(s)

∣∣∣∣2

≥ γH E

∣∣∣∣∫ 1

0
Ys ds

∣∣∣∣2

,

which is the announced relation (27). We have thus proved that

E

∣∣∣∣∫
Δk1 ([0,1])

∫ s

0

∫
Δk2 ([0,s])

dBα̃2 ds dBα̃1

∣∣∣∣2

≤ γ −1
H E

∣∣∣∣∫
Δk1 ([0,1])

∫ s

0

∫
Δk2 ([0,s])

dBα̃2 dB(1) dBα̃1

∣∣∣∣2

.

Applying this procedure m − |α| times to replace all integrals with respect to t , Eq. (26) is now easily checked.
(iii) Let us conclude our proof: combining (25) and (26) yields

E

∣∣∣∣∫
Δm([0,1])

dBα

∣∣∣∣2

≤ γ
|α|
H

γ m
H

E

∣∣∣∣∫
Δm([0,1])

dB(1,...,1)

∣∣∣∣2

.

But clearly
∫
Δm([0,1]) dB(1,...,1) = (B1)

m/m! and thus we have E| ∫
Δm([0,1]) dB(1,...,1)|2 = (2m)!/(2m(m!)3). Since

(2m)!
2m(m!)2 ≤ 2m the assertion (24) follows.

�

Putting together Propositions 4.7 and 4.8, we also obtain the following estimate for the second moment of the
Malliavin derivative of an iterated integral.

Proposition 4.9. Let m ∈ N and α ∈ Am. There exists a constant K2 > 0, depending only on H and T , such that we
have, for i = 1, . . . , d and all 0 ≤ s ≤ t ≤ T :(

E

∣∣∣∣Di
u

∫
Δm([s,t])

dBα

∣∣∣∣2)1/2

≤ |Jα,i | Km−1
2√

(m − 1)! |t − s|(|α|−1)H+m−|α|. (28)

Proof. Thanks to Proposition 4.7 we have that

Di
u

∫
Δm([s,t])

dBα =
∑

j∈Jα,i

∫
s≤t1≤···≤tj−1≤u≤tj ≤···≤tm−1≤t

dBα−j (t1, . . . , tm−1).

Thus it follows(
E

∣∣∣∣Di
u

∫
Δm([s,t])

dBα(t1, . . . , tm)

∣∣∣∣2)1/2

≤
∑

j∈Jα,i

(
E

∣∣∣∣∫
s≤t1≤···≤tj−1≤u≤tj ≤···≤tm−1≤t

dBα−j (t1, . . . , tm−1)

∣∣∣∣2)1/2

. (29)
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Furthermore, it is easily checked that∫
s≤t1≤···≤tj−1≤u≤tj ≤···≤tm−1≤t

dBα−j (t1, . . . , tm−1) =
∫

Δl(αj1 )([s,u])
dBαj1 ×

∫
Δl(αj2 )([u,t])

dBαj2
,

with α = (αj1 , i, αj2). Since an iterated integral belongs to a finite chaos with respect to B , all its Lp norms are
equivalent. See, e.g., Theorem 1.4.1 in [16]. Thus, we obtain from Proposition 4.8 and Hölder’s inequality that

(
E

∣∣∣∣∫
s≤t1≤···≤tj−1≤u≤tj ≤···≤tm−1≤t

dBα−j (t1, . . . , tm−1)

∣∣∣∣2)1/2

≤ c2,4|t − s||α−j |H+m−1−|α−j | Km−1
1√

l(αj1)!√l(αj2)! , (30)

with a constant c2,4 > 0. Moreover, it is readily seen that
√

l(αj1)!√l(αj2)! ≥ [m/2]!, and according to the fact that

(2k)!/(k!)2 ≤ 22k , we end up with 1√
l(αj1 )!

√
l(αj2 )! ≤ 2(m−1)/2√

(m−1)! . Plugging this inequality into (30) and (29), we obtain

(
E

∣∣∣∣Di
u

∫
s≤t1≤···≤tm≤t

dBα(t1, . . . , tm)

∣∣∣∣2)1/2

≤ c2,4
(
√

2K1)
m−1

√
(m − 1)! |Jα,i ||t − s|(|α−j |H+m−1−|α−j |),

and since |α−j |H + m − 1 − |α−j | = (|α| − 1)H + m − |α|, our claim (28) follows. �

4.4. Study of the remainder term for H > 1/2

To avoid notational confusion we will write in the following Xt , t ∈ [0, T ], instead of Xa
t , t ∈ [0, T ], for the solution

of the SDE with X0 = a. Moreover, recall that Xi
t , t ∈ [0, T ], denotes the ith component of X. Recall also that the

differential operators D0 and Dj are defined by (16) and that we have set Dα = Dα1 · · · Dαk for a multi-index α ∈ Ak .
With the help of the auxiliary results contained in the previous section, we are now able to bound ERm(0, t) in the

following way when H > 1/2:

Theorem 4.10. Let m ∈ N, H > 1/2 and assume that assumption (A2) holds. Then there exists a constant K3 > 0,
depending only on H , T , d and n, such that

∣∣ERm(0, t)
∣∣ ≤ (Um+1 + Ũm+1 Y )

Km
3 tH(m+1)

√
m!

for all t ∈ [0, T ], where

Um = sup
α∈Am

sup
0≤t≤T

(
E
∣∣Dαf (Xt )

∣∣2)1/2
, Ũm = max

i=1,...,n
sup

α∈Am

sup
0≤t≤T

(
E

∣∣∣∣ ∂

∂xi

Dαf (Xt )

∣∣∣∣2)1/2

and Y = max
i=1,...,n

max
j=1,...,d

sup
0≤u≤s≤T

(
E
∣∣Dj

uXi
s

∣∣4)1/4
.

Notice then that the second part of Theorem 3.1 is an immediate consequence of the above estimate.
Before we can prove Theorem 4.10, we will need the following proposition:



172 A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel

Proposition 4.11. Let m ∈ N, α ∈ Am, let g ∈ C∞
P (Rn;R) and let assumption (A2) be satisfied. Moreover, set

Jα(s, t) = ∫
Δm([s,t]) dBα . Then it holds, for t ∈ [0, T ] and j = 1, . . . , d :

E

(∫ t

0
g(Xs)Jα(s, t)dB

j
s

)
= γH E

(∫ t

0

∫ s

0

n∑
i=1

gxi
(Xs)Jα(s, t)D

j
uXi

s |s − u|2H−2 duds

)

+ γH E

(∫ t

0

∫ t

s

g(Xs)D
j
uJα(s, t)|s − u|2H−2 duds

)
.

Proof. The assertion is a straightforward consequence of Proposition 5.2.3 in [16], Proposition 4.4, the properties of
iterated integrals of fractional Brownian motion and the product and chain rule of the Malliavin derivative. �

We are now ready to prove the main result of this section.

Proof of Theorem 4.10. Note that by the proof of Theorem 4.1 we have

Rm(0, t) =
∑

α∈Am+1

∫ t

0

∫ tm+1

0
· · ·

∫ t2

0
Dαf (Xt1)dB

α1
t1

dB
α2
t2

· · · dB
αm+1
tm+1

.

(a) We first consider a single integrand. By interchanging the order of integration, which is possible since all
integrals are pathwise defined, we have∫ t

0

∫ tm+1

0
· · ·

∫ t2

0
Dαf (Xt1)dB

α1
t1

dB
α2
t2

· · · dB
αm+1
tm+1

=
∫ t

0

∫ t

t1

∫ tm+1

t1

· · ·
∫ t3

t1

dB
α2
t2

· · · dB
αm
tm

dB
αm+1
tm+1

Dαf (Xt1)dB
α1
t1

=
∫ t

0

∫
Δm([s,t])

dBα−1 Dαf (Xs)dBα1
s .

Recall that Um = supα∈Am
sup0≤t≤T (E|Dαf (Xt )|2)1/2 and

Ũm = sup
i=1,...,n

sup
α∈Am

sup
0≤t≤T

(
E

∣∣∣∣ ∂

∂xi

Dαf (Xt )

∣∣∣∣2)1/2

.

If α1 = 0, we clearly have∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
≤ Um+1

∫ t

0

(
E

∣∣∣∣∫
Δm([s,t])

dBα−1

∣∣∣∣2)1/2

ds ≤ Um+1K
m
1

tHm+1

√
m! . (31)

If α1 �= 0 we have, according to Proposition 4.11:∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
≤ γH

∣∣∣∣∣
∫ t

0

∫ s

0

n∑
i=1

E
∂

∂xi

Dαf (Xs)

∫
Δm([s,t])

dBα−1Dα1
u Xi

s |s − u|2H−2 duds

∣∣∣∣∣
+ γH

∣∣∣∣∫ t

0

∫ t

s

EDαf (Xs)D
α1
u

∫
Δm([s,t])

dBα−1 |s − u|2H−2 duds

∣∣∣∣.



Trees and asymptotic expansions for fractional SDEs 173

(Note that we have Dαf ∈ C∞
P (Rn;R), since f ∈ C∞

P (Rn;R) and bi, σ i,j ∈ C∞
b (Rn;R) for i = 1, . . . , n, j =

1, . . . , d .) Thus it follows∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
≤

n∑
i=1

Ũm+1γH

∫ t

0

∫ s

0

(
E
∣∣Dα1

u Xi
s

∣∣4)1/4
(

E

∣∣∣∣∫
Δm([s,t])

dBα−1

∣∣∣∣4)1/4

|s − u|2H−2 duds

+ Um+1γH

∫ t

0

∫ t

s

(
E

∣∣∣∣Dα1
u

∫
Δm([s,t])

dBα−1

∣∣∣∣2)1/2

|s − u|2H−2 duds.

So recalling that we have set Y = maxi=1,...,n maxj=1,...,d sup0≤u≤s≤T (E|Dj
uXi

s |4)1/4, we get∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
≤ nŨm+1 Y γH

∫ t

0

∫ s

0

(
E

∣∣∣∣∫
Δm([s,t])

dBα−1

∣∣∣∣4)1/4

|s − u|2H−2 duds

+ Um+1γH

∫ t

0

∫ t

s

(
E

∣∣∣∣Dα1
u

∫
Δm([s,t])

dBα−1

∣∣∣∣2)1/2

|s − u|2H−2 duds.

Furthermore, invoking again the equivalence of Lp norms for the iterated integral and Proposition 4.8, we obtain

γH

∫ t

0

∫ s

0

(
E

∣∣∣∣∫
Δm([s,t])

dBα−1

∣∣∣∣4)1/4

|s − u|2H−2 duds

≤ c2,4
Km

1√
m!γH

∫ t

0

∫ s

0
|t − s|Hm|s − u|2H−2 duds ≤ c2,4K

m
1

tH(m+2)

√
m! .

By Proposition 4.9, we get similarly

γH

∫ t

0

∫ t

s

(
E

∣∣∣∣Dα1
u

∫
Δm([s,t])

dBα−1

∣∣∣∣2)1/2

|s − u|2H−2 duds ≤ c2,4K
m−1
2

tH(m+1)

√
(m − 1)! .

Thus, we have shown for α1 �= 0 the estimate∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
≤ nŨm+1 Y c2,4K

m
1

tH(m+2)

√
m! + Um+1c2,4K

m−1
2

tH(m+1)

√
(m − 1)! . (32)

(b) Now we consider the complete remainder term. We have

∣∣ERm(0, t)
∣∣ ≤

∑
α∈Am+1,α1=0

∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣
+

∑
α∈Am+1,α1 �=0

∣∣∣∣E∫
Δm+1([0,t])

Dαf (Xt1)dBα(t1, . . . , tm+1)

∣∣∣∣.
Since |Am| = (d + 1)m, it follows by (31) and (32), that there exists a constant K3 > 0 depending only on H , T , n

and d such that |ERm(0, t)| ≤ (Um+1 + Y Ũm+1)K
m
3

tH(m+1)√
m! , which completes the proof. �
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