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Abstract

There is a forgetful map from the mapping class group of a punctured

surface to that of the surface with one fewer puncture. We prove that

finitely generated purely pseudo-Anosov subgroups of the kernel of this

map are convex cocompact in the sense of B. Farb and L. Mosher. In par-

ticular, we obtain an affirmative answer to their question of local convex

cocompactness of K. Whittlesey’s group.

In the course of the proof, we obtain a new proof of a theorem of I.

Kra. We also relate the action of this kernel on the curve complex to a

family of actions on trees. This quickly yields a new proof of a theorem

of J. Harer.

1 Introduction

Let S = Sg,m be an orientable surface of genus g with m punctures and assume
throughout that the complexity ξ(S) = 3g−3+m is at least 1. Let (S, z) denote
the surface S equipped with a marked point z. There is a homomorphism from
the mapping class group of (S, z) to that of S which fits into J. Birman’s exact
sequence [3, 4]

1 → π1(S, z) → Mod(S, z) → Mod(S) → 1,

see §2. We use this sequence to view π1(S, z) as a subgroup of Mod(S, z).
Our main theorem answers Question 6 of [13].

Theorem 6.1. If G < π1(S, z) < Mod(S, z) is finitely generated and purely
pseudo-Anosov, then G is convex cocompact.
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Convex cocompactness for subgroups of the mapping class group was defined
by B. Farb and L. Mosher in [8] via the action on Teichmüller space by way of
analogy with Kleinian groups and their action on hyperbolic space: a subgroup
is convex cocompact if it has a quasiconvex orbit in the Teichmüller space.
Their work exhibits an intimate connection between convex cocompactness of a
subgroup of the mapping class group and the geometry of the associated surface
group extension. This concept was studied further by the first two authors in
[13], extending the analogy with Kleinian groups; and by U. Hamenstädt in [9],
where the connection to surface group extensions was strengthened. We note
that Theorem 6.1 provides the first nontrivial examples of convex cocompact
groups that do not arise from a combination or ping–pong argument.

In terms of the analogy with Kleinian groups, Theorem 6.1 should be com-
pared with a theorem of G. P. Scott and G. A. Swarup [18]: finitely generated
subgroups of infinite index in fiber subgroups of fibered hyperbolic 3–manifold
groups are geometrically finite. Indeed, the exact sequence of such a fibration

1 → π1(S, z) → π1(M, z) → Z → 1

injects into Birman’s sequence, and the subgroups covered by Theorem 6.1 are
natural analogues of those considered by Scott and Swarup.

Convex cocompact groups are necessarily finitely generated and virtually
purely pseudo-Anosov [8]. An important question is whether the converse
holds—this is Question 1.5 of [8] (see also Problem 3.4 of [17]), asked by Farb
and Mosher for free groups. A negative answer would imply a negative answer
to M. Gromov’s Question, Question 1.1 of [2], regarding necessary and sufficient
conditions for a group to be word hyperbolic. See Section 8 of [14] for a discus-
sion of the connection between Gromov’s question and convex cocompactness.

Question 6 of [13] is a natural test question for Question 1.5 of [8] as the
necessary and sufficient condition for an element in π1(S, z) to be pseudo-Anosov
as an element of Mod(S, z) is a topological one, and not a priori related to any
algebraic structure. I. Kra discovered this necessary and sufficient condition
[15]—see Theorem 4.2 here—and his proof of sufficiency is Teichmüller theoretic
(necessity is obvious). We give an alternative proof here based entirely on
topological and group theoretic considerations, see §4.

The class of groups covered by Theorem 6.1 also includes the test case pro-
posed by Farb and Mosher in Question 1.6 of [8] (see also Problem 3.5 of [17]).
These are the finitely generated subgroups of K. Whittlesey’s groups. Recall
that Whittlesey’s groups are normal purely pseudo-Anosov subgroups of the
mapping class groups of the sphere with n ≥ 5 punctures and of the closed
genus–2 surface.

Corollary. Whittlesey’s groups are locally convex cocompact: finitely generated
subgroups are convex cocompact.

Proof of the Corollary from Theorem 6.1. It suffices to prove the theorem for
Whittlesey’s subgroups of Mod(S0,n), as there is a surjection

Mod(S2,0) → Mod(S0,6)
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with order–two central kernel [5], and an isometry of Teichmüller spaces which
is equivariant with respect to this “virtual isomorphism.”

We can view any one of the punctures of S0,n as being obtained from S0,n−1

by removing a marked point z. There are thus n different Birman sequences and
so n surjective homomorphisms Mod(S0,n) → Mod(S0,n−1). The intersection of
these kernels is Whittlesey’s group, and hence lies in π1(S0,n−1) < Mod(S0,n).
Any finitely generated subgroup of Whittlesey’s group is thus also a finitely
generated purely pseudo-Anosov subgroup of π1(S0,n−1). Since n ≥ 5, Theorem
6.1 implies that such a subgroup is convex cocompact.

The proof of Theorem 6.1 relies on a characterization of convex cocompact-
ness discovered by the first two authors [13] and, independently, by Hamenstädt
[9] in terms of the action on the curve complex C. We are thus lead to a study of
the action of π1(S, z) < Mod(S, z) on the curve complex of (S, z) (equivalently,
that of S \ {z}), and there is an interesting observation regarding this action
that we now describe.

If S is closed (m = 0), then there is a map of curve complexes Π: C(S, z) →
C(S); see §2.2. In general, the desired map is not globally well-defined as essen-
tial simple closed curves on (S, z) may become peripheral in S. In this case we

restrict Π to the largest subcomplex on which it is well-defined, denoted Ĉ(S, z).
The fibers of this map are invariant under the action of π1(S, z) < Mod(S, z),
and have a simple geometric description:

Theorem 7.1. The fiber of Π over a point in the interior of a simplex v ⊂ C(S)
is π1(S, z)–equivariantly homeomorphic to the tree Tv determined by v.

The tree Tv is the tree dual to the multi-curve v equipped with its action
by π1(S, z); see §7. This is the Bass–Serre tree for the splitting of π1(S, z)
determined by the multi-curve v.

A consequence of the theorem is the following fact due to J. Harer [10]—a
new proof of this is due to A. Hatcher and K. Vogtmann [11].

Corollary 1.1 (Harer). With the polyhedral topologies, C(S) and Ĉ(S, z) are
homotopy equivalent.

The corollary is proven using a section of Π described by Harer and perform-
ing the straight–line homotopy to the section along the fibers given by Theorem
7.1. See §7.

Acknowledgments. The authors thank Yair Minsky, Ursula Hamenstädt,
Alan Reid, and Ben Wieland for helpful and interesting conversations. The
second author thanks the Max-Plank-Institut für Mathematik in Bonn for its
hospitality during part of this work. We also thank Andy Putman for his careful
reading and comments on an earlier version of this paper and the referee for
providing helpful organizational advice.
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2 Definitions and conventions

We have chosen to work with the surface (S, z) marked with z rather than S\{z}
as this is generally more convenient. However, occasionally our arguments are
clarified by working with S\{z}. When this is the case, we refer to the puncture
obtained by removing z as the z–puncture.

We say that a closed curve in S is nontrivial if it is homotopically nontrivial
in S and essential if it is nontrivial and nonperipheral, that is, not homotopic
into every neighborhood of a puncture. These definitions are extended to (S, z)
by defining a closed curve in (S, z) to be a closed curve in S which is contained
in S\{z}. A closed curve in (S, z) is then nontrivial (respectively, essential) if
it is so in S \ {z}. Isotopy in (S, z) means isotopy in S fixing z. Thus nontrivial
and essential simple closed curves in (S, z) are isotopic if and only if they are
isotopic in S \ {z}.

We fix a complete finite area hyperbolic metric on S and let p : S̃ → S
denote the universal covering. The hyperbolic metric on S pulls back to one on
S̃ making S̃ isometric to the hyperbolic plane.

We view π1(S) as the group of covering transformations of the universal

covering p : S̃ → S and fix this action once and for all. A point z̃ ∈ p−1(z)
determines an isomorphism of π1(S) with the fundamental group π1(S, z). We
fix a basepoint z̃ ∈ p−1(z), and hence an isomorphism π1(S) ∼= π1(S, z).

2.1 Mapping class groups and Birman’s sequence

The mapping class group of S is the group Mod(S) = π0(Diff+(S)), where
Diff+(S) is the group of orientation preserving diffeomorphisms of S that fix each
of the punctures. We define Mod(S, z) to be π0(Diff+(S, z)), where Diff+(S, z) is
the group of orientation preserving diffeomorphisms of S that fix each puncture
and that also fix z. There is a canonical isomorphism Mod(S, z) ∼= Mod(S\{z}).

Birman’s exact sequence [3, 4] relates the mapping class group of S with
that of (S, z) and π1(S, z). Namely

1 → π1(S, z) → Mod(S, z) → Mod(S) → 1.

To describe the inclusion π1(S, z) → Mod(S, z) concretely, we first represent
an element of π1(S, z) by a loop γ based at z. Writing γ : [0, 1] → S with
γ(0) = γ(1) = z, let ht : S → S, t ∈ [0, 1], be any isotopy such that h0 = IdS

and γ(1 − t) = ht(z) for all t ∈ [0, 1]. Since h1(z) = z, the map h1 determines
a mapping class in Mod(S, z), and this is the image of γ in Mod(S, z) in the
exact sequence. It is clear that the isotopy ht may be constructed so that the
diffeomorphism h1 is supported on any given neighborhood of the curve γ ⊂ S.

For clarity, we write hγ for the diffeomorphism or mapping class associated
to γ ∈ π1(S, z).

Any element f ∈ Mod(S) determines an outer automorphism f∗ of π1(S, z),
and this defines a homomorphism Mod(S) → Out(π1(S, z))—the codomain is
Out(π1(S, z)) rather than Aut(π1(S, z)) as representatives of f need not fix the
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basepoint. The Dehn–Nielsen Theorem states that this is an isomorphism onto
an index–two subgroup when S is closed (see Stillwell’s appendix to [7]), but in
general it is only injective [20]. Working with Mod(S, z) erases the difficulty of
moving basepoints and there is an injection Mod(S, z) → Aut(π1(S, z)). Since
π1(S, z) has trivial center, π1(S, z) ∼= Inn(π1(S, z)) and Birman’s exact sequence
injects into the classical short exact sequence associated to Aut(π1(S, z)):

1 // π1(S, z) //

��

Mod(S, z) //

��

Mod(S) //

��

1

1 // Inn(π1(S, z)) // Aut(π1(S, z)) // Out(π1(S, z)) // 1

All of the squares commute, and, for any α, γ ∈ π1(S, z), the first one becomes

(hγ)∗(α) = γαγ−1. (1)

2.2 Curve complexes

The simplicial curve complex of S will be denoted C∆(S). This is an abstract
simplicial complex defined on the set of isotopy classes of essential simple closed
curves on S by declaring a set v = {v0, . . . , vk} of k + 1 distinct isotopy classes
of essential simple closed curves to be a k–simplex if the isotopy classes can be
represented by pairwise disjoint curves. We stress that C∆(S) is an abstract
simplicial complex and so its elements are simplices. Inclusion of faces induces
a natural partial order on C∆(S). The simplicial curve complex of (S, z) is
similarly denoted C∆(S, z)

Following the nomenclature of the subject, we let C(S) and C(S, z) denote
the curve complexes of S and (S, z), respectively. These are geodesic metric
spaces obtained by isometrically gluing regular Euclidean simplices with all edge
lengths equal to one according to the combinatorics of the associated abstract
simplicial complex (compare [6, I.7]). The necessity for distinguishing between
C and C∆ will soon become apparent.

In the case that ξ(S) = 1, C∆(S) is zero dimensional and one often makes a
separate definition for the curve complexes in these cases. However, we do not
do this here, and so considering C(S) a geodesic metric space is nonsensical—a
geodesic metric would have to assign an “infinite distance” to any two points.
In this special case, we simply treat C(S) as a countable set of points. As we
will only consider metric properties of C(S, z), and not C(S), this is not a serious
issue. For this reason, and so we need not continue to comment on the special
case, we discuss the relevant metric geometry of C(S, z) only.

The 1-skeleton C1(S, z) is itself a metric space (with the induced geodesic
metric), and the inclusion into C(S, z) is a quasiisometry. Because a geodesic
in C1(S, z) between vertices has a combinatorial description as a sequence of
adjacent vertices, we may mix combinatorial and geometric arguments in the
metric space C1(S, z). We will therefore work with the metric on C0(S, z) induced
by the inclusion into C1(S, z), which takes integer values only.
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A simplex v ∈ C∆ determines a subset v ⊂ C—its realization in C—as well
as a union of curves on the surface v ⊂ S, realizing the isotopy class determined
by v. To avoid burdening the reader with additional notation, will write v for
all of these with the context determining the particular meaning.

For clarity, we will typically denote simplices of C∆(S, z) by u = {u0, . . . , uk}
and simplices of C∆(S) by v = {v0, . . . , vk}. If v is a simplex in C∆(S), we will
write [v] for the geodesic representative of v, which is a union of pairwise disjoint
embedded simple closed geodesics in S.

2.3 Forgetful projection

Any simple closed curve u in (S, z) can be viewed as a curve in S which we
denote Π(u). However, if S has punctures then an essential curve in (S, z) may
become inessential in S by becoming peripheral. The only time this can happen
is when the curve is the boundary of a once–punctured disk (Y, z) ⊂ (S, z)
containing the marked point. We call such a curve u in (S, z) preperipheral.
A simplex u = {u0, . . . , uk} ∈ C∆(S, z) is called preperipheral if one of its
vertices ui is a preperipheral curve in (S, z), and nonpreperipheral otherwise.

We define the nonpreperipheral subcomplex of C∆(S, z) by

Ĉ∆(S, z) = {u ∈ C∆(S, z) |u is nonpreperipheral}.

There is now a well-defined simplicial map

Π∆ : Ĉ∆(S, z) → C∆(S)

determined by forgetting the marked point z. We also write

Π: Ĉ(S, z) → C(S)

for the induced map on metric spaces (or sets if ξ(S) = 1).

Lemma 2.1. If u ⊂ Ĉ(S, z) is a k–simplex, then Π(u) has dimension at least
k − 1.

If Π|u is noninjective (so that Π(u) has dimension k−1) and after reordering
the vertices of u we have Π(u0) = Π(u1), then the curves u0 and u1 cobound an
annulus (Y, z) ⊂ (S, z) containing z.

Proof. Every simplex u ∈ Ĉ∆(S, z) is contained in a maximal simplex u′ in
C∆(S, z), which determines a pants decomposition (of S \ {z}). So u′ has
dimension ξ(S \ {z}) − 1 = ξ(S). Since ξ(S) ≥ 1, an easy argument allows us

to assume that u′ ∈ Ĉ(S, z).
Every component of (S \ {z}) \ u′ is a pair of pants, exactly one of which

contains the z–puncture. So the corresponding component (Y, z) ⊂ (S, z) of
S\u′ is an annulus with two boundary components. After reordering the vertices
we may assume these are u0, u1 ∈ u′. Clearly Π(u′) is a pants decomposition of
S, and so has dimension ξ(S)− 1, one less than that of u. Since Π|{u0,u1} is not
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injective, it follows that Π|u will be noninjective if and only if it contains both
u0 and u1, which thus cobound the annulus (Y, z). In any case, the dimension
can be at most one less than that of u.

We say that a simplex u of Ĉ(S, z) is injective if Π|u is injective and non-

injective otherwise.

3 Subsurfaces

Consider a compact π1–injective subsurface (Y, z) ⊂ (S, z) with Y 6∼= D2 and
π1(Y, z) < π1(S, z) a proper subgroup. The boundary ∂Y is a disjoint union
of nontrivial simple closed curves in (S, z). It can happen that some of the
components in ∂Y are isotopic to each other in (S, z) and that some of the
components are peripheral in (S, z). We let ∂0Y denote the simplex in C∆(S, z)
obtained by identifying pairs of components of ∂Y that are isotopic in (S, z)
and forgetting the peripheral components.

z z

z

u

Y (u)

∂0Y (u)

Figure 1: A simplex u ∈ C∆(S, z), its subsurface (Y (u), z), and ∂0Y (u) ⊆ u.

Let u ∈ C∆(S, z) be any simplex. We construct a subsurface (Y (u), z) ⊂
(S, z) as follows. Remove from S a small open tubular neighborhood of u and
small open cusp neighborhoods of the punctures (in particular, these neigh-
borhoods should be pairwise disjoint and not contain z), and let Y (u) be the
component of this subsurface containing z. Note that ∂0Y (u) ⊆ u is a poten-
tially proper face—see Figure 1 for an example. We can iterate this process of
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taking subsurface, then ∂0, but it immediately stabilizes: Y (∂0Y (u)) is isotopic
fixing z to Y (u).

Lemma 3.1. If u ∈ C(S, z), then (Y (u), z) is an annulus (containing z) if and
only if u is either preperipheral or nonpreperipheral and noninjective. Further-
more, in this case u is preperipheral if and only if the boundary components of
Y (u) are peripheral in S.

Proof. If u ∈ Ĉ∆(S, z), the lemma follows immediately from Lemma 2.1 and the
definitions.

All that remains is to prove that for a preperipheral simplex u ∈ C∆(S, z),
Y (u) is an annulus for which the boundary components are peripheral in S. Let
u0 ∈ u be the preperipheral vertex. It follows that u bounds a once-punctured
disk containing z, that is, Y (u0) is an annulus of the required type. Now let
u1 ∈ u be any other vertex. The curve u1 cannot be contained in (Y (u), z), since
Y (u)−{z} is a pair of pants and thus contains no essential simple closed curves.
Therefore, all other components of u lie outside Y (u0), and so Y (u0) = Y (u),
completing the proof.

3.1 From simplices to groups

To each subsurface (Y, z) ⊂ (S, z) described in the previous section we can asso-
ciate its fundamental group π1(Y, z) < π1(S, z). We let D denote the collection
of all such subgroups and define a map

Γ: C∆(S, z) → D

by declaring that Γ(u) = π1(Y (u), z) < π1(S, z). Note that while (Y (u), z) is
only defined up to isotopy fixing z (since u is), Γ(u) is a well defined subgroup
of π1(S, z).

The set D admits a natural partial order by inclusion as well as an action of
π1(S, z) by conjugation.

Proposition 3.2. The map Γ is a π1(S, z)–equivariant order–reversing surjec-
tion.

Proof. Given a subgroup π1(Y, z) < π1(S, z) in D, we have π1(Y (∂0Y ), z) =
π1(Y, z), and hence Γ(∂0Y ) = π1(Y, z). So Γ is surjective. If u ⊆ u′ is a
face, then Y (u) ⊇ Y (u′), and so π1(Y (u), z) ≥ π1(Y (u′), z). In other words,
Γ(u) ≥ Γ(u′). So Γ is order–reversing.

If γ ∈ π1(S, z), then Y (hγu) = hγ(Y (u)). We have

Γ(hγu) = π1(Y (hγu), z) = π1(hγ(Y (u)), z)

= γπ1(Y (u), z)γ−1 by (1)

= γΓ(u)γ−1

and it follows that Γ is equivariant.
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3.2 From groups to convex hulls

In the following, all stabilizers are taken with respect to actions of π1(S) and
are denoted Stab(·). Our choice of isomorphism π1(S) ∼= π1(S, z) allows us to

view D as a collection of subgroups of π1(S) acting on the hyperbolic plane S̃.
The type of the group Γ(u) is reflected by the type of the simplex u. More
precisely, from the definitions and Lemma 3.1 we have the following:

(i) Γ(u) is a nonabelian free group if and only if u is nonpreperipheral and u
is injective.

(ii) Γ(u) is cyclic generated by a hyperbolic element if and only if u is non-
preperipheral and u is noninjective.

(iii) Γ(u) is cyclic generated by a parabolic element if and only if u is prepe-
ripheral.

In cases (i) and (ii), we let Hull(Γ(u)) denote the convex hull of the limit set

ΛΓ(u) of Γ(u) acting on S̃ ∼= H2. In case (ii), Γ(u) is cyclic and Hull(Γ(u))
is the axis of the elements of Γ(u). Alternatively, Hull(Γ(u)) is a compo-
nent of p−1([Π(u)]) (recall that [Π(u)] is the geodesic representative of Π(u)).
Note that Γ(u) = Stab(Hull(Γ(u))) since the natural map of the quotient
Hull(Γ(u))/Γ(u) = [Π(u)] into S is injective.

If Γ(u) is not cyclic (case (i)), then Hull(Γ(u)) is a subsurface of S̃ bounded
by geodesics. Consider the isotopy (not fixing z) from Π(u) to the geodesic
representative [Π(u)] in S. This takes Y (u) to a compact core for the quo-
tient of the interior int(Hull(Γ(u)))/Γ(u) ⊂ S. This can be seen by lifting the

isotopy to a π1(S)–equivariant isotopy in S̃ taking p−1(Π(u)) to p−1([Π(u)]).
Because int(Hull(Γ(u)))/Γ(u) injects into S and since Stab(Hull(Γ(u))) =
Stab(int(Hull(Γ(u)))) it follows that Γ(u) = Stab(Hull(Γ(u))).

In case (iii), the convex hull of the limit set of Γ(u) is empty since the limit
set is a single point. Here we define Hull(Γ(u)) to be a Γ(u)–invariant horoball,
chosen as follows. We choose a π1(S)–invariant family of horoballs, one centered
at each parabolic fixed point, with the property that for any horoball in the
family

(I) the quotient by the stabilizer embeds as a cusp neighborhood of the asso-
ciated puncture in S

and

(II) the boundary of the cusp neighborhood (which is the quotient of the
boundary horocycle by the stabilizer) is disjoint from every simple closed
geodesic in S.

That this is possible is a well–known consequence of Jørgensen’s inequality (more
precisely, the Shimizu–Leutbecher Lemma [16, II.C]). In Section 6 we impose
tighter restrictions on these horoballs, but, for now, this suffices.

Note that we also have Stab(Hull(Γ(u))) = Γ(u) in case (iii) since Γ(u) is
necessarily a maximal parabolic subgroup. We therefore have
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Lemma 3.3. For every Γ(u) ∈ D, Stab(Hull(Γ(u))) = Γ(u).

Let N(Γ(u)) denote the normalizer of Γ(u) in π1(S). Lemma 3.3 yields

Proposition 3.4. For every Γ(u) ∈ D, N(Γ(u)) = Γ(u).

Proof. As is true for any subgroup of π1(S), we have

Γ(u) ≤ N(Γ(u)) ≤ Stab(ΛΓ(u))

and
Stab(ΛΓ(u)) = Stab(Hull(Γ(u))).

Combining these relations with Lemma 3.3 we have

Γ(u) ≤ N(Γ(u)) ≤ Γ(u),

and the proposition follows.

We have associated to each Γ(u) ∈ D a convex set Hull(Γ(u)) and we let H
denote the set of all such convex sets. We order H by inclusion and note that
π1(S) clearly acts on H as convex hulls of limit sets are natural and our set of
horoballs is π1(S)–invariant.

Lemma 3.5. The map Hull : D → H is a π1(S)–equivariant order–preserving
surjection.

Proof. First observe that Γ(u) ≤ Γ(u′) implies ΛΓ(u) ⊆ ΛΓ(u′).
If neither group Γ(u) nor Γ(u′) is parabolic, then it immediately follows

that Hull(Γ(u)) ⊆ Hull(Γ(u′)). If both groups are parabolic, then we must
have Γ(u) = Γ(u′), for the parabolic subgroups of D are maximal parabolic
subgroups, and so Hull(Γ(u)) = Hull(Γ(u′)).

The only remaining case is when Γ(u) is parabolic and Γ(u′) is not. Since
Γ(u) < Γ(u′), some Γ(u)–invariant horoball is contained in Hull(Γ(u′)). Since
Hull(Γ(u′)) is bounded by geodesics that descend to simple closed geodesics in S,
and these geodesics are disjoint from the boundaries of the cusps Hull(Γ(u))/Γ(u)
by construction, it follows that Hull(Γ(u)) ⊆ Hull(Γ(u′)).

The map is surjective by construction.

Proposition 3.2 and Lemma 3.5 have the following corollary.

Corollary 3.6.

Hull ◦ Γ: C∆(S, z) → H

is a π1(S)–equivariant order–reversing surjection.
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4 Stabilizers and Kra’s Theorem

Theorem 4.1. If u ∈ C∆(S, z) is any simplex, then

Stab(u) = Γ(u)

with respect to the action determined by the inclusion π1(S, z) < Mod(S, z).

We note that the stabilizer in π1(S, z) < Mod(S, z) of a simplex u fixes that
simplex pointwise since π1(S, z) acts trivially on homology, and so by Theorem
1.2 of [12], it consists entirely of pure mapping classes.

Proof. One inclusion is obvious. Namely,

Γ(u) = π1(Y (u), z) ≤ Stab(u)

for if γ ∈ π1(Y (u), z), then the diffeomorphism hγ can be chosen to be supported
on Y (u). In particular, hγ fixes u.

To prove the other inclusion, observe that the π1(S, z)–equivariance of Γ
implies that the stabilizer of u is contained in the stabilizer of Γ(u). Since
π1(S, z) acts by conjugation on D this means that

Stab(u) ≤ N(Γ(u)).

Proposition 3.4 implies N(Γ(u)) = Γ(u) and so

Stab(u) ≤ Γ(u)

as required.

We obtain Kra’s Theorem as a corollary:

Theorem 4.2 (Kra). Given γ ∈ π1(S, z), hγ ∈ Mod(S, z) is pseudo-Anosov if
and only if γ is filling.

An element of π1(S, z) is filling if every representative loop nontrivially in-
tersects every essential closed curve in S. We note that every representative
loop of an element γ ∈ π1(S, z) intersects every essential closed curve in S if
every closed curve in the free homotopy class of γ does.

Proof. Since hγ is pure, it is pseudo-Anosov if and only if it does not stabilize
any simplex. By Theorem 4.1 this happens if and only if γ is not in any group
π1(Y (u), z) for any u ∈ C∆(S, z).

We claim that γ is not in any group π1(Y (u), z) for any u ∈ C∆(S, z) if and
only if γ is filling. To see this, first observe that γ is in π1(Y (u), z) if and only
if it can be realized disjoint from ∂0Y (u). If ∂0Y (u) is not preperipheral, then
γ has a representative disjoint from any component of Π(∂0Y (u)), which is an
essential curve in S. If ∂0Y (u) is preperipheral, then γ is a peripheral loop, so
has a representative disjoint from a representative of any essential closed curve
in S.

11



5 Purely pseudo-Anosov subgroups

Let G < π1(S, z) be a finitely generated subgroup, purely pseudo-Anosov when
considered a subgroup of Mod(S, z). We view G as a subgroup of π1(S) acting

as a fuchsian group on the hyperbolic plane S̃ and make uniform estimates to
be used in the proof of Theorem 6.1.

By Theorem 4.2, the free homotopy class in S defined by any nontrivial
element of G fills S. Let Σ = Hull(G)/G be the quotient hyperbolic surface
with geodesic boundary and let

p0 : Hull(G) → Σ

be the covering projection.
The surface Σ is compact. To see this, note that finite generation of fuchsian

groups is equivalent to geometric finiteness (see Theorem 10.1.2 of [1]) and

that G is purely hyperbolic as a fuchsian group acting on S̃, as every element
corresponds to a filling loop on S.

The inclusion Hull(G) → S̃ induces an immersion f : Σ → S with f∗(π1(Σ)) =
G. We collect our maps into a commuting diagram:

Σ̃ //

p0

��

S̃

p

��

Σ
f

// S

Since every nontrivial conjugacy class in G is filling, for any geodesic [v] in
S, f−1([v]) cuts Σ into disks. To see this, note that if this were not the case,
then there would be a nontrivial loop γ ∈ π1(Σ) disjoint from f−1([v]), and so
f∗(γ) could not be filling as it would be disjoint from v. Moreover, as we will
see, the family of arcs of f−1([v]) as v ranges over all of C0(S) is a precompact
family.

It will be convenient in the proof of the lower bound for Theorem 6.3 to
demonstrate precompactness of the family in a slightly larger surface. Namely,
let Σ1 = N1(Hull(G))/G denote the quotient of the 1-neighborhood of Hull(G)
by G. This adds a collar of width one to each boundary component of Σ. There
is an obvious extension of f to Σ1 ⊃ Σ that we still denote f : Σ1 → S. Let A
denote the set of all arcs of f−1([v]) in Σ1 as v ranges over all of C0(S).

Proposition 5.1. There are only finitely many isotopy classes in A and there
is a uniform upper bound on the length of any arc in A.

Proof. The first statement clearly follows from the second.
Suppose that there is a sequence {vn} ⊂ C0(S) and components Ln ⊂

f−1([vn]) so that ℓ(Ln) → ∞. After passing to a subsequence, we may as-
sume that [vn] has a Hausdorff limit λ, a geodesic lamination on S. Let λ′ be
the maximal measurable sublamination of λ, obtained from λ by throwing away
all non-closed isolated leaves.

12



After passing to a further subsequence if necessary, we assume that Ln has
a Hausdorff limit, necessarily contained in f−1(λ). Since ℓ(Ln) → ∞, there is a
connected geodesic lamination κ contained in this limit and f(κ) is a component
of λ′—the components of λ′ are exactly the sublaminations. If κ is a simple
closed geodesic, then f(κ) ⊂ λ′ represents a conjugacy class in G which is not
filling and we obtain a contradiction. So κ is not a simple closed geodesic.

Let Wκ denote the supporting subsurface of κ—the smallest open, locally
convex subsurface containing κ—and let Yf(κ) be the supporting subsurface of
f(κ). Since the supporting subsurface is determined by the preimage of the
lamination in the universal cover, it easily follows that

f(Wκ) = Yf(κ).

Thus the surface f(Wκ) is the component of the supporting subsurface of λ′

containing f(κ) and f(∂Wκ) is disjoint from λ′. This is impossible since every
curve representing a conjugacy class of G intersects every lamination in S, and
any component of f(∂Wκ) represents a conjugacy class in G.

Note that each component of Σ1 \ f−1([v]) is a not only a disk, but a
disk with uniformly bounded diameter (with respect to the induced path met-
ric): it is convex, and has uniformly bounded circumference. This implies the
same statement for the disks N1(Hull(G)) \ p−1([v]), which are just the disks of

p−1
0 (Σ1 \ f−1([v])). Moreover, since N1(Hull(G))∩p−1([v]) = p−1

0 (Σ1∩f−1([v])),
the lemma tells us that these arcs have uniformly bounded diameter also.

The components of p−1([v]) and the closures of the components of S̃\p−1([v])
are precisely the convex hulls Hull(Γ(u)) for Γ(u) ∈ D with Π∆(u) = v. With
the remarks of the previous paragraph and Proposition 5.1, this implies the
following.

Corollary 5.2. There exists a D > 0 so that for any simplex u ∈ Ĉ∆(S, z),

diam(Hull(Γ(u)) ∩ N1(Hull(G))) ≤ D.

6 Convex cocompactness

Theorem 6.1. If ξ(S) ≥ 1 and G < π1(S, z) is finitely generated and purely
pseudo-Anosov as a subgroup of Mod(S, z), then G is convex cocompact.

Fix a purely pseudo-Anosov subgroup G < π1(S, z) < Mod(S, z) and let

Hull(G) ⊂ N1(Hull(G)) ⊂ S̃ and f : Σ1 → S be as in the previous section.
We assume that for any preperipheral simplex u ∈ C∆(S, z) we have chosen
Hull(Γ(u)) so that

Hull(Γ(u)) ∩ N1(Hull(G)) = ∅.

This is possible since f(Σ1) is a compact subset of S, and there are only finitely
many such conjugacy classes of subgroups Γ(u) (recall from §3.2 that the Γ(u)
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are precisely the maximal parabolic subgroups and the Hull(Γ(u)) are invariant
horoballs).

From this choice and Corollary 5.2, we obtain the following refinement of
that corollary.

Proposition 6.2. There exists a D > 0 so that for any simplex u ∈ C∆(S, z),

diam
(
Hull(Γ(u)) ∩ N1(Hull(G))

)
≤ D.

Proof. Let D be as in Corollary 5.2. If u ∈ Ĉ∆(S, z), then the bound on diameter

is precisely the conclusion of Corollary 5.2. If u ∈ C∆(S, z)− Ĉ∆(S, z), then u is
preperipheral and so by our choice of horoball Hull(Γ(u))∩N1(Hull(G)) = ∅.

Fix a vertex u ∈ C0(S, z) and a point x ∈ Hull(Γ(u)) ∩ Hull(G). A finite
generating set for G defines a word metric on G, but it is more convenient to
use the metric

dG(g, h) := dHull(G)(g(x), h(x)) = deS
(g(x), h(x))

which is quasiisometric to any such word metric by the Milnor-Švarc Lemma.
The following implies Theorem 6.1.

Theorem 6.3. The orbit map G → G · u given by g 7→ g · u is a quasiisometric
embedding into C(S, z).

Proof of Theorem 6.1 from Theorem 6.3. It was shown in [13] (Theorem 1.3)
and independently in [9] (Theorem 2.9) that a finitely generated subgroup of
the mapping class group is convex cocompact if and only if the orbit map to
the curve complex is a quasiisometric embedding.

Proof of Theorem 6.3. Write d1 for the metric on C0(S, z) induced from the
inclusion into C1(S, z), see §2.2. We must find K ≥ 1 and C ≥ 0 so that for any
g ∈ G, we have

dG(1, g)

K
− C ≤ d1(u, g · u) ≤ KdG(1, g) + C.

The upper bound follows from the fact that dG is quasiisometric to the word
metric, for which such an upper bound is an immediate consequence of the
triangle inequality. We assume that the constants K and C we choose for the
lower bound also suffice for the upper bound.

We proceed to the proof of the lower bound.
Let τ : S̃ → Hull(G) denote the closest point projection. This is a contrac-

tion. Moreover, a well–known fact in hyperbolic geometry is that there exists
an R > 0 so that if σ is any geodesic segment outside N1(Hull(G)) then τ(σ)
has length ℓ(τ(σ)) ≤ R.

Next, suppose that u′ is a simplex in C(S, z) and σ is a geodesic segment
contained in Hull(Γ(u′)). Since Hull(Γ(u′)) ∩ N1(Hull(G)) is convex, it cuts
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σ into at most three geodesic segments, at most one of which is contained in
Hull(Γ(u′)) ∩ N1(Hull(G)). It follows that

ℓ(τ(σ)) ≤ 2R + D,

where D is as in Proposition 6.2.
Now suppose that

n = d1(u, g · u)

and connect u to g · u by a geodesic edge path [u0, . . . , un]. It follows from
the π1(S)–equivariance of Hull ◦ Γ (see Corollary 3.6) that g(Hull(Γ(u))) =
Hull(Γ(g · u)). We construct a piecewise geodesic path

γ : [0, 2n + 1] → S̃

connecting x ∈ Hull(Γ(u)) to g(x) ∈ g(Hull(Γ(u))) = Hull(Γ(g · u)) as follows.
Consider the 2n + 1 simplices in the 1–skeleton of C(S, z)

w0 = {u0}, w1 = {u0, u1},
w2 = {u1}, w3 = {u1, u2},
w4 = {u2}, w5 = {u2, u3},

...
...

w2n−2 = {un−1}, w2n−1 = {un−1, un},
w2n = {un}

These have the property that

w2j , w2j+2 ⊂ w2j+1

for every j = 0, . . . , n − 1. Therefore, by Corollary 3.6 it follows that

Hull(Γ(w2j)), Hull(Γ(w2j+2)) ⊇ Hull(Γ(w2j+1))

for every j = 0, . . . , n − 1. The key consequence is that

Hull(Γ(wk)) ∩ Hull(Γ(wk+1)) 6= ∅

for every k = 0, . . . , 2n− 1.
From this it follows that we can define a path γ : [0, 2n + 1] → S̃ with the

following properties� γ(0) = x� γ(2n + 1) = g(x)� γ([k, k + 1]) ⊂ Hull(Γ(wk)) is a geodesic segment.
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To see this, note that we have a chain of 2n+1 convex sets, the first contain-
ing x and the last containing g(x). Consecutive sets in the chain nontrivially
intersect. We therefore take γ([0, 1]) to be the geodesic segment from x to
any point of the intersection Hull(Γ(w0)) ∩ Hull(Γ(w1)). Next take γ([1, 2]) to
be the geodesic segment connecting this point to any point of Hull(Γ(w1)) ∩
Hull(Γ(w2)), and so on. We continue in this way, ending with a geodesic seg-
ment γ([2n, 2n+1]) connecting the already determined point of Hull(Γ(w2n−1))∩
Hull(Γ(w2n)) to g(x). Convexity guarantees the last property required.

Since the geodesic segment γ([k, k + 1]) is contained in Hull(Γ(wk)), we see
that for every k = 0, . . . , 2n

ℓ(τ(γ([k, k + 1]))) ≤ 2R + D

Since γ connects x to g(x), so does τ(γ), and its length bounds the distance
from x to g(x). Therefore we obtain

dG(1, g) = dHull(G)(x, g(x)) ≤ ℓ(τ(γ)) ≤ (2n + 1)(2R + D)

Isolating n = d1(u, g · u) in this inequality, we have

d1(u, g · u) = n ≥
dG(1, g)

2(2R + D)
−

1

2

Taking any K ≥ 2(2R + D) and C ≥ 1/2 completes the proof.

7 Trees

Given a simplex v ∈ C∆(S), there is an associated action of π1(S) on a tree
Tv, namely, the Bass–Serre tree for the splitting of π1(S) determined by v. We
refer the reader to [19] for a general introduction to actions on trees associated
to codimension–1 submanifold.

In this section we prove

Theorem 7.1. The fiber of Π over a point x in the interior of a simplex v ⊂
C(S) is π1(S)–equivariantly homeomorphic to the tree Tv determined by v.

The fiber naturally inherits the structure of a metric simplicial tree from
the point x, and as we vary this point in the base, we vary the metric trees
continuously in the space of π1(S)–trees, see §7.2.1. Harer defined a section of

Π: Ĉ(S, z) → C(S), and the metric on the trees can be used to parameterize a
straight line deformation retraction to the image of the section. This allows us
to give an alternative proof of the following theorem.

Corollary 7.2 (Harer). If ξ(S) ≥ 1, then with respect to the polyhedral topolo-

gies, C(S) is homotopy equivalent to Ĉ(S, z).

Hatcher and Vogtmann have given a simplified proof of this corollary, see [11].
We begin with a discussion of the fibers of Π.
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7.1 Fibers

For any x ∈ C(S), the fiber Fx = Π−1(x) can be naturally given the structure of
a simplicial complex F∆

x so that each simplex is affinely embedded in a simplex

of Ĉ(S, z). Let v be the unique simplex of C∆(S) containing x in its interior and
let F∆

v = Π−1
∆ (v) endowed with the partial order obtained by restricting the

partial order on Ĉ∆(S, z) to F∆
v . We emphasize that Π−1

∆ (v) is not a simplicial

subcomplex of Ĉ∆(S, z) (unless v ∈ C0(S)), but simply the partially ordered set
of simplices sent by Π∆ to the simplex v.

Note that F∆
x is π1(S)–equivariantly order isomorphic to F∆

v : the isomor-
phism is given by sending a simplex of F∆

x to the smallest simplex of F∆
v con-

taining it.

7.2 The trees

We now recall one construction of the tree Tv by constructing its underlying
simplicial complex T ∆

v . The simplicial tree T ∆
v is the tree dual to the preimage

p−1([v]) ⊂ S̃. More precisely, the vertices of T ∆
v are in a one-to-one correspon-

dence with components of S̃ − p−1([v]) with two vertices joined by an edge if
the closures of the corresponding components nontrivially intersect.

The edge and vertex stabilizers of T ∆
v in π1(S) are precisely the stabilizers of

the components of p−1([v]) and of S̃\p−1([v]), respectively. By construction, the
quotients of these by their stabilizers inject as components of [v] and S \ [v]. It
follows from the discussion in Section 3.2 that these subgroups are all contained
in D (falling into the two first cases (i) and (ii)). Indeed, setting Dv to be the
set of all edge and vertex stabilizers of T ∆

v we have

Dv = {Γ(u) |Π(u) = v} ⊂ D.

The group π1(S) acts on Dv by conjugation (the restriction of the action on
D). Notice that the stabilizers of two distinct vertices are distinct, and similarly
for the edge stabilizers. Thus, the stabilizer determines the simplex of the tree.
Therefore, since (in this setting) the stabilizer of a vertex properly contains
the stabilizer of any edge having it as an endpoint, we see that the simplicial
complex T ∆

v is π1(S)–equivariantly reverse–order isomorphic to Dv. We record
this as a proposition.

Proposition 7.3. For any simplex v ∈ C∆(S), T ∆
v is π1(S)–equivariantly

reverse–order isomorphic to Dv.

The map Γ restricts to a map

Γv : F∆
v → Dv.

given by Γv = Γ|F∆
v

.

Proposition 7.4. For any simplex v ∈ C∆(S), Γv is a reverse–order bijection.
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The proof will require the following lemma.

Lemma 7.5. Suppose (Y, z), (Y ′, z) ⊂ (S, z) are compact π1–injective subsur-
faces with Y, Y ′ ≇ D2 and π1(Y, z) = π1(Y

′, z) < π1(S, z) proper. Then there is
an isotopy fixing z taking Y to Y ′.

It is easy to see that there is an isotopy taking Y to Y ′ if we do not require
such an isotopy to fix z. The proof of the lemma is an exercise in geometric
topology, which we sketch for completeness.

Sketch. With our chosen isomorphism π1(S) ∼= π1(S, z), we view π1(Y, z) =

π1(Y
′, z) as a subgroup G < π1(S) of the covering group of p : S̃ → S. First,

by an isotopy fixing z we may assume that Y and Y ′ meet transversely (equiva-
lently, their boundaries meet transversely). By further isotopy fixing z we may
assume that ∂Y meets ∂Y ′ in the fewest possible number of points. If these
boundaries are disjoint, then we easily find annuli disjoint from z which we can
use to produce an isotopy taking Y to Y ′.

Now suppose that the boundaries intersect. We describe how to find a bigon
not containing z bounded by arcs of ∂Y and ∂Y ′ which can be used to reduce the
number of intersection points, producing a contradiction. To this end, consider
Ỹ and Ỹ ′, the G–invariant components of p−1(Y ) and p−1(Y ′), respectively.

By assumption, Ỹ and Ỹ ′ contain exactly the same subset of p−1(z), namely
all G–translates of the chosen basepoint z̃ ∈ p−1(z) defining the isomorphism

π1(S) ∼= π1(S, z). The same is true for the translate of Ỹ and Ỹ ′ by any
element of π1(S). Said differently, p−1(∂Y ) and p−1(∂Y ′) define exactly the

same partition of p−1(z). An innermost bigon in S̃ bounded by arcs of p−1(∂Y )
and p−1(∂Y ′) projects to the desired bigon in S.

Proof of Proposition 7.4. As we have already noted, Γv is an order–reversing
surjection. We must show that Γv is injective.

To see this, we suppose Γ(u) = Γ(u′) with u, u′ ∈ F∆
v . We need to show

that u = u′. From the definition of Γ we have π1(Y (u), z) = π1(Y (u′), z) (recall
that we must realize u and u′ by multicurves to make sense of Y (u) and Y (u′)).
By Lemma 7.5 there is an isotopy fixing z taking Y (u) to Y (u′). This proves
that ∂0Y (u) = ∂0Y (u′).

Now let u0 ∈ u and u′
0 ∈ u′ be vertices not in ∂0Y (u) and ∂0Y (u′),

respectively, for which Π(u0) = Π(u′
0) (if there are no such vertices, then

u = ∂0Y (u) = ∂0Y (u′) = u′ and we are done). We must show that u0 = u′
0. This

is another argument in geometric topology. By an isotopy fixing Y (u) = Y (u′)
first assume u0 and u′

0 intersect transversely in the fewest possible number of
points (fewest among all curves isotopic by an isotopy fixing Y (u) = Y (u′)).
If u0 and u′

0 are disjoint, then because they become isotopic after forgetting
z, they must cobound an annulus in S. This annulus cannot possibly contain
Y (u) = Y (u′), so it may be used to produce an isotopy fixing Y (u) = Y (u′)
taking u0 to u′

0 as required. If they are not disjoint, then there is a bigon
in S bounded by arcs of these curves. Of course this bigon cannot contain
Y (u) = Y (u′), and so it can be used to produce an isotopy fixing Y (u) = Y (u′)
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and reducing the number of intersection points of u0 and u′
0, as required. There-

fore u0 = u′
0, so u = u′, and Γv is injective.

Proof of Theorem 7.1. Since Γv is a reverse–order bijection and since T ∆
v is

reverse–order isomorphic to Dv, it follows that we have an order–preserving
bijection from T ∆

v to F∆
x . Since these are both abstract 1–dimensional simplicial

complexes, they must be isomorphic.

7.2.1 Variation of metrics

The simplex v is naturally a space of transverse measures on its underlying 1–
manifold: namely, a point in v is a convex combination of the unit weights on
the components of this 1–manifold.

The tree Fx thus inherits a metric varying continuously in x by assigning to
each edge the weight of the dual curve in x to which it corresponds. This metric
is the same as the path metric induced by the inclusion of Fx into Ĉ(S, z).

7.3 Harer’s section and a deformation retraction

There are many ways to construct a section of the map Π: Ĉ(S, z) → C(S).
Harer describes one as follows. First, the union of the geodesic representatives

⋃

v∈C0(S)

[v]

has measure zero. We chose our basepoint z to be any point outside this union.
A section is then given by v 7→ [v]. This makes sense because [v] lies in S \ {z}
and geodesics minimize intersection between pairs of curves.

Let us denote the image of this section by C′(S). The map Π: Ĉ(S, z) → C(S)

composed with this section gives a map Π′ : Ĉ(S, z) → C′(S). The fibers of Π′

are precisely the fibers of Π and are therefore metric trees. The section provides
a preferred basepoint in each, the intersection with C′(S).

Any metric tree T with a preferred basepoint x admits a “straight line”
deformation retraction to the basepoint

H : T × [0, 1] → T

defined by setting H(y, t) to be the unique point of the geodesic segment [x, y]
for which d(x, H(y, t)) = (1 − t)d(x, y).

This determines a map

H : Ĉ(S, z) × [0, 1] → Ĉ(S, z)

defined on each of the pointed trees by the procedure just described.
This map is not continuous with respect to the metric topology on Ĉ(S, z).

The idea is that for a vertex u in Ĉ(S, z) and any 0 < ǫ < 1 one can find a point
x within ǫ of u for which H({x}× [0, 1− ǫ]) is always within ǫ of u, while H(u, t)

19



is making progress toward C′(S). In particular, one can construct sequences
{xn} with xn → u and H(xn, 1/2) → u but H(u, 1/2) far from u.

However, the polyhedral topology is more natural from the perspective of
algebraic topology, and here the map H is continuous.

Proposition 7.6. The map H is continuous with respect to the polyhedral
topologies, and hence is a deformation retraction.

Proof. With respect to the polyhedral topologies, it suffices to show that the
restriction of H to u × [0, 1] is continuous for each u ∈ Ĉ∆(S, z). The set

H(u × [0, 1])

is a finite subcomplex X ⊂ Ĉ(S, z): it is the union of paths in the fiber of Π′

from u to Π′(u), and there are only finitely many combinatorial types of these
paths, one for each face of Π′(u). Thus, the restriction becomes a map

H |u×[0,1] : u × [0, 1] → X

Since X is a finite simplicial complex, it is easy to check that H |u×[0,1] is con-
tinuous. Figure 2 gives a cartoon of the general situation where the euclidean
simplices have been distorted affinely.
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