
Trees Cannot Lie: Using Data Structures for
Forensics Purposes

Peter Kieseberg, Sebastian Schrittwieser, Martin Mulazzani, Markus Huber and Edgar Weippl
SBA-Research - Vienna, Austria

Email: sschrittwieser,pkieseberg,mmulazzani,mhuber,eweippl@sba-research.org

Abstract—Today’s forensic techniques for databases are pri-
marily focused on logging mechanisms and artifacts accessible
in the database management systems (DBMSs). While log files,
plan caches, cache clock hands, etc. can reveal past transactions,
a malicious administrator’s modifications might be much more
difficult to detect, because he can cover his tracks by also
manipulating the log files and flushing transient artifacts such
as caches. The internal structure of the data storage inside
databases, however, has not yet received much attention from the
digital forensic research community. In this paper, we want to
show that the diversity of B+-Trees, a widely used data structure
in today’s database storage engines, enables a deep insight of
the database’s history. Hidden manipulations such as predated
INSERT operations in a logging database can be revealed by our
approach. We introduce novel forensic techniques for B+-Trees
that are based on characteristics of the tree structure and show
how database management systems would have to be modified
to even better support tree forensic techniques.

Index Terms—database forensics, b+ tree, InnoDB

I. INTRODUCTION

Modern database systems have a very high traceability
of modifications because of intense logging mechanisms.
Database storage engines such as InnoDB for MySQL store
every single manipulation statement in their log files, thus
making hidden manipulation of database records a difficult
task. However, if tracks of manipulations are removed from log
files, traditional database forensic techniques are ineffective,
because they are limited to mainly data file and log file
analysis. A malicious database administrator, who has full
access to the database and the log files, can effectively cover
tracks of manipulations.

In this paper, we introduce a novel forensic technique on
the B+-Tree level of the database storage engine based on the
ideas described in [1]. The concept of our approach is a sanity
check for database content by comparing a stated insertion
sequence to the data stored in the tablespace, the transaction
logs and the B+-Tree structure of the indexes.

While a forensic analysis of a B+-Tree is not likely to
contain precise information on which data was modified at
what exact time, it can be used very effectively to prove
the violation of security and compliance policies. Compliance
in a database is usually ensured by access controls, stored
procedures, triggers, and audit logs. A database user might
only have permissions to insert into a table and not delete. In
addition, the user might not have permissions to insert directly
into the table but only to execute a stored procedure. This
procedure would create additional audit logs, ensure that only

increasing time stamps are used and enforce other integrity
constraints.

If the current B+-Tree cannot be derived from the insertion
sequence record in the log files or does not match the insertion
policy (e.g. strict ordered insert only), a manipulation of the
database is very likely. B+-Tree forensic cannot replace tra-
ditional database forensic methods, because evidential quality
varies greatly on a case-by-case basis. However, our approach
can substantiate evidence collected by other methods.

A second area for its application could be file system foren-
sics. Many of today’s files systems such as NFTS, ReiserFS,
and BtrFS use B+-Trees for their internal organization of
stored files. Previous forensic methods on file system layer [2],
[3], [4], [5], [6] do not analyze the structure of the underlying
B+-Tree, still Koruga et al. [7] reconstructed the B-Trees of
filesystems to recover deleted files.

Our main contributions are to show that the structure of a
database’s B+-Tree can be a very important characteristic of
the insert order of the table and to show that the analysis of
a B+-Tree allows to draw forensic conclusions to disprove an
input order extracted from log files.

II. BACKGROUND AND RELATED WORK

A. Traditional database forensics

Today’s database forensic is mainly based on data file and
log file consistency checking (e.g.[8]). A work by Frühwirt
et al. [9] describes the layout of InnoDB’s storage files. Log
files in InnoDB can recover every single data manipulation
statement submitted to a table, because the entire statement
is stored. So, an investigator can reconstruct not only older
versions of the database, but also manipulation statements that
were applied to the database. The data files of InnoDB can be
also used for digital forensics. Deleted records are not removed
from data files when a user deletes them from the database
management system. Instead, they are only flagged as deleted
and can be recovered as long as the database storage engine
has not overwritten the record with new data.

The InnoDB storage engine makes extensive use of check-
sums, thus data manipulations are difficult to perform. How-
ever, a malicious administrator has full access to log files and
therefore they can not be considered reliable.

B. B-Trees and B+-Trees

A B+-Tree, according to Bayer [10], is a balanced tree with
the following properties:

• Every non-root node contains between b
2 and b elements.

• The root node contains b elements at most.
• An inner node with x elements has got x+1 child nodes.
• All leaf nodes lie on the same level.
• All elements inside a leaf are sorted.
When an element is added to the B-Tree, the tree is searched

for the leaf the element should be placed in. In case this leaf
node contains less than b elements, the new element is simply
added. If the leaf node contains b elements, the leaf is split
into two leafs and the middle element is inserted as a new key
into the parent node. In case the parent node contains b + 1
keys after this operation, the parent node is split too. This is
done iteratively until either a parent node contains less than
b+1 elements, or a new root is formed. In case b/2 is an even
number, the element with number b/2+1 is propagated to the
parent node, thus both child nodes will contain b

2 elements.
A B+-Tree of order b is defined like a B-Tree of order b,

but all keys reside in the leaf nodes, i.e. all elements in inner
nodes are only for referencing purpose and the actual data is
stored in the leaf nodes. It has to be defined, if the parent
node contains the topping elements of the lower child nodes,
or the bottoming elements of the higher child nodes, i.e. it
has to be defined in case of splitting a node, whether a copy
of the highest element of the child node containing the lower
elements is propagated to become a key in the parent node, or
the lowest element of the node containing the higher elements.

C. Application in Databases

In databases fast access to data records is crucial. As I/O
operations are typically the slowest task in today’s computer
systems, decreasing required I/O is the primary aim. Modern
database storage engines maintain a so-called index that al-
lows fast lookup of records with a minimal amount of I/O
operations. In database storage engines such as InnoDB the
index builds up a B+-Trees. The index consists of one or
more columns of the table that should have high cardinality
for generating a highly structured tree. Compared to other
implementations of trees such as B-Trees, B+-Trees have
performance advantages by reducing expensive I/O operations
[11]. A high branching level (i.e. a high number of child nodes)
reduces the height of the tree and therefore the expensive read
operations on nodes.

III. DATABASE FORENSICS USING B+-TREES

A. Notation and general assumptions

The following notations and general assumptions are used
throughout this paper:
• b denotes the maximum number of keys in a node of a

given B+-Tree. We call b the order of the tree.
• All nodes of a B+-Tree except for the root node have a

keys with b b2c ≤ a ≤ b and (in case they are not leaf
nodes) a+ 1 child nodes.

• We always propagate the highest element of the lower
child to the parent node when splitting a node, i.e. when
splitting the root tree (e1, . . . , eb) because of adding
the element eb+1, a copy of the element with number

b b2c + 1 is propagated to become the new root node,
thus resulting in the two child nodes (e1, . . . , eb b2 c+1)

and (eb b2 c+2, . . . , eb).

B. Forensics on revision secure tables

The need for regulatory compliance (e.g. the US Sarbanes-
Oxley Act as well as the European Data Directive on Privacy
force companies to effectively protect the access to sensitive
business data and enable traceability of business processes)
drives the demand for databases that conform to strict
limitations on the kinds of operations that are allowed. So,
many companies limit access to certain databases to a strict
insert-only policy, thus prohibiting deletion and updates on
a technical basis. This scenario is the starting point for the
forensic approach specified in this section.

The following prerequisites were taken into account:
• Only INSERT, but no UPDATE and DELETE statements

are allowed.
• The considered table has a primary key that is constantly

incrementing (e.g. timestamp in milliseconds). This key
is also used for structuring the B+-Tree as it creates the
index inside the non-leaf nodes.

The following theorem gives us a statement on the structure
of the emerging trees:

Theorem III.1. Let B be a B+-Tree with n > b elements
which are added in ascending order. Then it holds true that
the partition of the leafs of B has the following structure:

n =

k∑
i=1

ai, with ai =
b

2
+ 1,∀i 6= k and ak ≥

b

2
.

Proof: We start by inserting b elements into an empty
root, thus when inserting the next element we have to split
the root and generate a new one with two leafs. The only
possibility is to propagate the middle element to the root and
split the leafs in one containing b

2 +1, the other containing b
2

elements (else one of the prerequisites for B+-Trees would be
violated. Iteratively when we add elements, it is always added
to the rightmost leaf, thus resulting in three cases:

1) The leaf contains less than b elements ⇒ the new
element is added to the rightmost leaf.

2) The leaf contains b elements. The leaf is split into two
leafs, the first (according to the assumption made above
that we always propagate the highest element of the
lower leafs into the parent node) containing b

2 + 1, the
second b/2 elements. This can result in two cases:

a) The parent node is full ⇒ it is split itself into two
parent nodes containing b/2 elements and b/2 + 1
child-nodes each and propagating the middle el-
ement into the next level. Eventually this could
result in the generation of a new root containing
only one single element. Still, no element will be
put into leafs that are left of the current leaf.

b) The parent node has enough space, in this case
nothing else happens.

Thus, it is impossible for the tree to add further elements
into leafs except the rightmost. Again, from this the proposed
partitioning follows quite easily.

...

...

1
2
b 1

2
b bb

2

...

Forged record

Fig. 1. A B+-Tree resulting from ascending ordered inserts only.

The main argument for our forensic approach lies in the
fact that even with full insert rights, normally, in a database
application, a database administrator is not able to change the
data at B+-Tree-level, since this is solely managed by the
DBMS itself. Thus at this level, a malicious administrator will
not be able to fake evidence.

We will assume that the database does not rearrange the tree
elements (e.g. for reasons of performance) and we are able to
directly read the structure of the B-Tree (e.g. in InnoDB).

In a B+-Tree that was built by sorted inserts, non-sorted
insert can be detected by analyzing the fill rate of the leaf
nodes. If data is inserted in a strictly sorted order (e.g. a
logging table with a timestamp as primary key), the fill rate
of all leafs except the rightmost one is, according to theorem
III.1 exactly b b2c+ 1 elements.

In case a malicious administrator inserts an additional record
with a forged, namely pre-dated timestamp, this record may
be added to a leaf node that is not the rightmost one. This
happens, if there are already at least b + 1 elements with a
higher keys (i.e. timestamps) in the table (in case there are less
than b+1 higher keys in the table, the forged record would be
added to the rightmost leaf. On an eventual split, this record
would then reside in the correct leaf and additionally this leaf
would only contain b b2c+ 1 elements).

When analyzing the fill rate of leaf nodes in this tree, the
pre-dated record is located in a node that has a too high fill
rate for strictly sorted inserts (i.e. > b b2c+ 1 elements). This
hidden modification can be detected, because the resulting B+-
Tree does not correspond to the insert policy of the database.
Since the elements inside a leaf node are sorted by default,
only the leaf containing the forged record can be detected, the
identification of the element itself is not possible.

Be aware that not all inserts of this form can be detected
by this approach, since with a combination of different forged
records, the structure can be fixed again by adding enough
(i.e. b

2 + 1) records (see Figure 2) Actually, in real life tree-
sizes, this would result in the insertion of many forged records,
which should be detectable by other means (comparisons,
sanity checks). Furthermore, these insertions also affect at least
the parent node, since a new leaf is generated.

1
2
b 1

2
b

1
2
b

b

...... ...

......

1
2
b

1b

......

Split at b/2

1
2
b 1

2
b

......

2
b

1
2
b 1

2
b

......

1
2
b

Add forged
record

Add forged records

Add forged record

Split due to overfull leaf

Fig. 2. Forging many records to thwart forensic analysis.

With this approach, Deleted records can be detected in a
very similar way. When a malicious administrator deletes one
record from a leaf that is not the rightmost, the fill rate of
this leaf node falls to b b2c elements, which again is detectable.
In case more than one element is removed from the same
leaf, the number of elements falls below b b2c, thus violating
the lower B+-Tree-boundary for the leaf-size. The following
re-balancing will again result in a B+-Tree-structure, that
identifies the manipulation (the merged leafs will result in a
leaf of size > b

2 + 1).

C. Limitations of the approach

The most interesting idea regarding this approach towards
database forensics would lie in its generalization to be suitable
for all kinds of operations, no matter what order they are
applied. Unfortunately we can prove that this is impossible
since the B+-Tree does not give us enough information for
this in general. More precisely, the main limitation of our
approach lies in the fact that in general the operation of
inserting an element into a B+-Tree is not bijective since the
inverse operation is not injective, i.e. even with knowledge
on the inserted elements, it can be impossible to recalculate
the original tree (or an intermediate state), even though the
resulting tree and a log of all operations is available.

Example The example given in Figure 3 illustrates how
adding the same element to two B+-Trees A and A′ with
different structures generates the same tree B.

Thus the order of insertion (like specified in the revision
secure case) is very important for our approach.

D. Towards a forensic-aware database

This section evaluates how today’s database management
systems have to be modified to provide better forensic evi-
dence. For performance reasons, database management sys-
tems tend to generate wide trees with a small number of
levels. Our evaluation showed that even with 450,000 records
in an InnoDB table, the tree’s height did not exceed a value

1 2 3 1 2 37 84 6

3 6

1 2 3 7 84 5

3 6

6

3

4 6 7 8

1 2 3 7 84 5

3 6

6

1 2 3

3

4 5 6 7 8

1 2 3

3

4 5 6 7 8

5

5

Split leaf

A

B

Fig. 3. B+-Tree resulting from two different B+-Trees.

of 3. Thus, the B+-Tree does not have much structure to
analyze and the extraction of forensic evidence is difficult.
We evaluated, based on a modified version of InnoDB how a
more structured tree can be generated and what implications
these modifications have on performance.

In InnoDB, both leaf and non-leaf nodes have a fixed size
of 16 kilobytes. As non-leaf nodes of B+-Trees only store
keys that have a typical length of a few bytes, there is enough
space for adding thousands of keys to a node before it has
to be split into two nodes. Thus, a typical non-leaf node in
InnoDB has a huge number of children and the resulting tree
mostly grows in width but not in height. To increase forensic
value of a database tree, we considered two approaches that
add structure to an InnoDB tree.

We first modified the fixed size of nodes in the source
code of InnoDB. While node sizes other than 16 kilobytes
are not officially supported, it is still possible to decrease it
to a minimum value of 4 kilobytes. If we assume an integer
primary key of 4 bytes, a non-leaf node in the original InnoDB
storage engine can store up to 4,000 keys. We can reduce the
value to 1,000 by defining a fixed node size of 4 kilobytes in
the source code of InnoDB. This value, however, is still far
too large for the generation of forensic-aware database trees.
In a second evaluation, we increased the size of the primary
keys in order to limit the number of keys that can be stored in
one node. We defined a varchar primary key with a length
of 767, which represents the maximum length of a key in
InnoDB. Using the 450,000 test records from the previous
evaluation, the resulting tree now has a branching level of 21,
i.e., each node has up to 21 child nodes and the height of the
tree raises to 7, which makes it more valuable for forensic
investigations.

We compared performance of two InnoDB tables, one with
a tree height of 3 (small primary key) and one with a height of
7 (large primary key). All experiments were performed with
MySQL 5.1.44 on a machine equipped with an Intel Core
i7 2.66 GHz CPU and 8GB of available system memory.
The results (Table I) show that queries to the forensic-aware
database are about twice as slow as to the database with the
wide tree. While the performance losses are quite big, we

argue that there exist cases (e.g. SOX compliant accounting)
where security outranks performance.

TABLE I
PRACTICAL EVALUATION OF RUNTIME IMPACT.

Statement tree height = 3 tree height = 7
Simple full table scan 0.0003s 0.0007s
Full table scan for single value 0.0055s 0.0115s
Update one column in entire table 0.1066s 0.2387s

IV. CONCLUSION AND FUTURE RESEARCH

In this work we outlined, how the intrinsic nature of a
database’s underlying B+-Tree can be utilized to thwart tam-
pering by administrative personal able to forge the commonly
used log mechanisms. Additionally, we discussed a special
class of table-policies that can be used for developing audit
tables that comply with regulations like the US Sarabanes-
Oxley Act. For tables using this policy we are able to give
strong forensic evidence for many cases of retroactive manip-
ulation, thus providing the investigator with a new tool.

Regarding our future research concerning database-
forensics, we aim at identifying other special subclasses of
tables, for which strong forensic evidence can be provided
by utilizing the B+-Tree-structure. Furthermore, we want to
identify all forms of B+-Trees, for which strong forensic
evidence can be provided. Additionally, we want to focus on
the development of a practical tool that can be used by forensic
investigators to compare database log files together with the
B+-Tree of an old InnoDB-database-backup to the B+-Tree
of the current database image.

V. ACKNOWLEDGEMENTS

This work has been supported by the Austrian Research
Promotion Agency under grant 824709 (Kiras).

REFERENCES

[1] M. Mulazzani and E. Weippl, “Aktuelle Herausforderungen in der
Datenbankforensik.”

[2] B. Carrier, File system forensic analysis. Addison-Wesley Professional,
2005.

[3] C. Swenson, R. Phillips, and S. Shenoi, “File System Journal Forensics,”
Advances in Digital Forensics III, pp. 231–244, 2007.

[4] A. Burghardt and A. Feldman, “Using the HFS+ journal for deleted file
recovery,” digital investigation, vol. 5, pp. S76–S82, 2008.

[5] K. Eckstein, “Forensics for advanced UNIX file systems,” in Information
Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE
SMC. IEEE, 2005, pp. 377–385.

[6] K. Eckstein and M. Jahnke, “Data hiding in journaling file systems,” in
Eingereicht beim Digital Forensic Research Workshop. Citeseer, 2005.

[7] P. Koruga and M. Bača, “Analysis of B-tree data structure and its usage
in computer forensics,” in Central European Conference on Information
and Intelligent Systems, 2010.

[8] K. Pavlou and R. Snodgrass, “Forensic analysis of database tampering,”
ACM Transactions on Database Systems (TODS), vol. 33, no. 4, pp.
1–47, 2008.

[9] P. Fruehwirt, M. Huber, M. Mulazzani, and E. Weippl, “InnoDB
Database Forensics,” in Advanced Information Networking and Appli-
cations (AINA), 2010 24th IEEE International Conference on. IEEE,
2010, pp. 1028–1036.

[10] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indexes,” Acta informatica, vol. 1, no. 3, pp. 173–189, 1972.

[11] B. Ooi and K. Tan, “B-trees: bearing fruits of all kinds,” in Proceedings
of the 13th Australasian database conference-Volume 5. Australian
Computer Society, Inc., 2002, pp. 13–20.

	Introduction
	Background and Related Work
	Traditional database forensics
	B-Trees and B+-Trees
	Application in Databases

	Database Forensics using B+-Trees
	Notation and general assumptions
	Forensics on revision secure tables
	Limitations of the approach
	Towards a forensic-aware database

	Conclusion and future research
	Acknowledgements
	References

