
TREES, LATTICES, ORDER, AND BETWEENNESS1

MARLOW SHOLANDER

In this paper we consider postulates expressed in terms of "seg-

ments," "medians," and "betweenness." Characterizations are ob-

tained for trees, lattices, and partially ordered sets. In general a char-

acterization is given by a system of three postulates. These systems

fall in pairs; systems of a pair have two postulates in common. An

algebra which has both lattices and trees as special cases is given in

the final section.

1. Segments. Consider a set S of elements a, b, c, • • ■ such that

to each pair a, b, of elements in 5 there corresponds a unique subset

of 5 denoted by (a, b) and called the segment from a to b. By as-

sumption, these segments have as properties:

(S) To each set of three elements a, b, and c, there corresponds an

element d such that (a, b)f~\(b, c) = (¿>, d).

(T)  (a, b)C(a, c) implies (a, ¿>)Pi(&, c) = {&}.

The segments of Duthie [l]2 are segments in this sense (see §3).

Paths in a tree are also segments in this sense (see §2).

Setting a = b=c in (T) we have

(1.1) {a}  = (a, a).

From this, and from (T) with b=c, we have

(1.2) be(a,b).

(1.3) ae(a,b).

Proof. From (S), we may choose d so that (a, a)C\(a, b) = (a, d).

By (1.1) and (1.2), d(£(a, d)C.(a, a) = {a}. Hence d = a and a£(a, d)
C(a, b).

(1.4) (a, b) = (b,a).

Proof. From (S), we may choose d so that (a, b)f\(b, a) = (&, d).

By (1.2) and (1.3), aE(b, d). By (T), (b, d)C\{d, a)={d}. Hence
a£_{d}, a = d, and (b, a) = {b, d)Q{a, b). By symmetry, (a, b)C(b, a).

(1.5) b G (a, c) if and only if (a, b) C (a, c).
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Proof. The sufficiency proof is trivial. To prove necessity choose d

so that (b, a)r\(a, c) = (c, d). Clearly 6 G (a, d). From (1.4) and (T),

(a, d)i\(d, b) = \d}. Hence b£{d}, b=d, and (a, b) = (a, d)C(fl, c).

From (1.5) and (T) we have

(1.6) b G (a, c) implies (a, 6) H (6, c) =  {&}.

(1.7) b G (o, c) and c G (a, è) imply b = c.

Thus if (a, &) = (a, c) we have b = c.

Proof. By (1.5), (a, b)Q(a, c)Q(a, b). Hence these segments are

equal. From (1.4) and (1.6), {b} =(a,b)C\(b,c) =(a, c)C\(c,b) = {c}.

As a corollary of (1.7) we have

(1.8) The element d of (S) is unique.

(1.9) 6G(o, c) if and only if (a, b)\J(b, c)C(fl, c).

Proof. The condition is necessary by (1.4) and (1.5). It is sufficient

by (1.2) and (1.3).

(1.10) (a, b) n (b, c) = (b, d) implies (a, d) C\ (d, c) =  [d\.

Proof. We note ¿G(a, b) and ¿G(6, c). From (1.9), (a, b)Z)(a, d)
\J(d, b) and (6, c)D(ô, d)\J(d, c). Taking set intersections we obtain

(b, d)Z)(b, d)KJ[(a, d)C\(d, c)]. From this and from (1.6), (a, d)

r\(d, c) = (a, d)C\(d, c)r\(b, d) = {d}r\(d, c) = {d}.

2. Tree segments. The word tree is probably most often used in

mathematics to denote a finite connected linear graph which contains

no cycles [2, p. 47]. However a connected acyclic union of closed

Jordan arcs is sometimes called a tree and in Lattice theory [3, p. 47]

we find the word used in still a third sense. Seeking characteristics

common to the several types of objects known as trees we arrive at

the definition below. (Birkhoff's trees can be imbedded in our trees.

Trees in our sense which are finite are trees in Kónig's sense.)

A tree is defined as a set of elements which satisfies (S), (T), and:

(Uj) (a, b)r\(b,c) = {b] implies (a, b)VJ(b, c) = (a, c).

From this definition, (1.9), and (1.6) we have

(2.1) bG(a, c), (a, b)r\(b, c) = {b}, and (a, b)VJ(b, c) = (a, c) are

equivalent conditions.

(2.2) (a, b)r\(b, c) = (b, d) if and only if {d} = (a, b)C\(b, c)r\(c, a).

Hence the last term always represents a set containing a single point.

Proof. If (a, b)C\(b, c) = (b, d), we have by (1.10) that (a, d)

C\(d, c) = {d}. Using (2.1) and the distributive law, we have (a, b)
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C\(b, c)r\(c, a) = (b, d)n(c, a) = (b, d)n[(a, d)\J(d, c)] = {d\\J{d]
— {d}. The sufficiency of the condition follows from (S) and the

necessity of the condition.

Definition. The unique element given by (a, b)C\(b, c)C\(c, a)

is called the median of a, b, and c and is denoted by (a, b, c). Prop-

erties of this ternary operation are derived in §5.

(2.3) For all a, b, and c, (a, b)Q(a, c)\J(c, b).

Proof. Let d = (a, b, c). From (2.1), (a, b) = (a, d)^J(d, b). From

(1.5), (a, d)C(a, c) and (d, b)C(c, b).
Definition. We say b is between a and c and write abc if and only

if ¿>G(a, c).

As a consequence of (1.1) we have

(2.4) aba if and only if a=b.

As a consequence of (2.2) we have

(2.5) To elements a, b, and c there corresponds a unique element d

such that adb, bdc, and cda.

(2.6) If we have both abc and bde, then we have either cbd or

eba, perhaps both.

Proof. Let ôG(a, c) and ¿G(&, e). By (2.3), if oG(a> «) then

bG(e, c). Again, if ¿>G(c, d) then b£_(d, e). But from (1.7) we have

in this case the contradiction b=d£z(c, d).

3. Lattice segments. Consider a set S satisfying (S), (T), and:

(U2)   There are elements 0 and I in S such that if (0, f)A(0, s)

C(0, a)r\(0, b) and (7, r)H(7, s)C(I, a)i~\(I, b), then (a, b)C(r, s).

(3.1) r G (0, a) if and only if a G (r, I).

Proof. Let b=s = I in (U2) to prove necessity. The proof of suffi-

ciency is dual.

Letting r = 0 in (3.1), we have

(3.2) For alia, aG(0,/).

(3.3) If (0, a)H(0, ô) = (0, r) and (I, o)n(7, o) = (7, s) then
(a,6)-(r,î).

Proof. From 5G (7, a)H(7, &) and from (3.1) we have that a and

&G(0, 5). Hence (0, r) = (0, a)H(0, &)C(0, 5). By (3.1), (7, s)C(7, r).
A double application of (U2) gives (a, b)C(r, s) and (r, s)C(a, b).

Definition. We write r = ab if and only if (0, r) = (0, a)C\(0, b).
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We write s = a + b if and only if (7, s) = (I, a)r\(I, b).

(3.4) 5 is a lattice with bounds 0 and 7.

Proof. The commutative, associative, and idempotent laws are

easily derived. Properties of 0 and 7 follow easily from (3.2). In prov-

ing an absorption law, we let a + b = c and ac = d. From (7, c) = (I,a)

H(7, ô) and (3.1), we have a in (0, c). Hence (0, a) = (0, a)C\(0, c)

= (0, d). By (1.7), a=d. The other absorption law follows dually.

(3.5) x G (a, b) if and only if ab í§ x g a + b.

Proof. By (3.3), xG(r, s) where r = ab and s = a+b. As in the

proof of (3.3), (0, r)C(0, s). By (1.5), (r, s)C(0, s). By (3.1), sG(7,x).
Hence (7, s)C(7, x) and x+s=s. Dually, xr=r. To prove the in-

equality sufficient, we note xr=r implies (0, r)C(0, x). Similarly,

(7, s)C(7, x). Hence (0, a)Pi(0, b)C(0, a)H(0, x) and (7, a)C\(I, b)

C(7, a)n(7, x). By (U2), (a, x)C(a, b) and xG(a, b).

(3.6) Postulates S, T, and U2 characterize distributive lattices

with 0 and 7.

Proof. That these postulates give a distributive lattice with 0 and

7 follows from (3.4), (3.5), (1.6), and a theorem of Duthie [l]. Con-

versely, if in such a distributive lattice we define (a, b) as the set of

all x such that ab^x^a+b, the three postulates are easily derived.

4. Betweenness. We now consider a set S of elements a, b, c, • • •

in which, for each ordered set of three elements a, b, and c, there

holds or fails to hold a relation denoted by abc and read "b is between

a and c." This relation satisfies the following postulates:

(B) aba<-*a = b.

(C) abc-bde—*(cbd or eba).

For the interpretation of the notation in (C) see (2.6). We proceed to

derive consequences of these two postulates.

(4.1) aab —» baa.

Proof. By (C), aab—>aabaab^>(baa or baa)-+baa.

(4.2) abc —* aab.

Proof. If a = c, abc^>aba—>a = b. But by (B) we have aaa, and now

aaa—>aab. If a^c, from aaaabc—*(aab or caa), we have either aab

or caa■ abc^>(aab or cac)—>aab.

(4.3) abc —> cba.
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Proof. If a = b, this follows from (4.1). If aj±b, we note by (4.2)

and (4.1) that abc—^baa and we then have that abc-baa^>(cba or aba)

—*cba.

(4.4) Each of the relations aab, abb, bba, and baa implies the other

three.

Proof. By (4.1), aab^>baa and bba—>abb. By (4.2), baa—^bba and

abb—>aab.

Definition. We say a is comparable with b and write ab if and

only if aab holds. It follows that aa holds for all a in S, that ab^>ba,

and that ab is equivalent to each of the betweenness relations of

(4.4). It is unlikely that this notation will be confused with the

product notation of §3.

(4.5) abc —» ab-be- ca.

Proof. By (4.2) and (4.3), abc-^ab and abc^>cba-*cb. If a = b,

cb—>ca. If a^b, by (4.2) and (C), we have abc^>aab-abc—>(bab or caa)

—>caa—*ca.

Definition. We say a\, a2, • • • , an form a chain and denote this

by 0102 ■ • ■ a„ if and only if o.-Oj-at holds for l^i^j^k^n. We note

the definition is consistent with our previous notation when w = 2, 3.

Clearly, axa2 ■ ■ ■ an implies both aBan_i ■ • • d and «¿oî+i • • • a¡ for

1 g i g 7 ̂  m. Moreover when a¡ = a¡ we have a,- = aí+i = • • • = ö,_i = a¡.

(4.6) aôc • bed b ^ c —» a6cd.

Proof. When ô^c we have abcbcd—*(cbc or dba)—*abd. Similarly,

deb ■ cba—>acd.

(4.7) abc ■ acd —> aècd.

Proof. If a = e, abc—>aba—*a = b and the implication holds. If

a^c, acdcba-^(dcb or aca)—>dcb. If è = c, acd—*abd. Finally we have

o¿>¿ when &^c by (4.6).

An easy induction proof establishes the following generalization

of (4.6) and (4.7).

a\a2 • • • an-a\anb —> a\a2 ■ • ■ anb,

(4.8)
aia2 • ■ • an-a„-ianb-an-i ^ an —» ata2 ■ • • a„b,

and for 1 ̂ i^n—i,

öiö2 • • • an-aibai+i —> a\a2 ■ ■ ■ afiai+i • • • oB.

Finally, we may easily prove
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(4.9) abc ■ acb —» b = c.

(4.10) abc-bd —» (abd or cbd).

It may be noted that we have made no attempt to use the inten-

sive survey of betweenness made by Pitcher and Smiley [4] because

of their initial assumption that every pair of elements is comparable.

(This follows from their Postulate ß.) It is interesting, however, that

(B) and (C) imply, in addition to Postulate « and (1) and (2), 40 of

the 43 transitivities given in Part I of their paper.3 The three transi-

tivities not implied are their T4, T7, and Ti0. Transitivity Ti0 holds,

however, in order betweenness (see (6.1)), and T4 and T7 hold in

tree betweenness (see (8.10) and (8.11)). That T4 and T7 do not hold

in order betweenness (without the restriction a^b) exposes a minor

error in a comment by Pitcher and Smiley [4, footnote 4].

5. Tree betweenness. Consider a set 5 which satisfies (B), (C),

and:
(Di) Given a, b, and c, there exists an x such that axb-bxc-cxa.

We show in (5.8) that 5 is a tree.

First, from (Di) and (4.5), it follows that every pair of elements

is comparable.

(5.1) For a, b in S, ab holds.

(5-2) axbayb —* (axyb or ayxb).

Proof. From (5.1), xy holds. From (4.10), axb■ xy—>(axy or bxy).

Assume, say, axy holds. By (4.7), axyb holds.

(5.3) The element x in (Di) is unique.

Proof. Assume y has the same property. From axb-ayb and (5.2)

we have, say, axyb and hence axy-xyb. By (4.7), we have axyccxyb.

From xyc, cxy, and (4.9), x=y.

Definitions. The element x of (Di) is called the median of a, b,

and c and is denoted by (a, b, c). The set of all x such that axb holds

is called the segment from a tob and is denoted by (a, b).

(5.4) (a, b) C (a, c) implies (a, b) f\ (b, c) = {b}.

Proof. We have given axb—^axc. We are to show y = b if and only

if ayb-byc. Necessity of the condition follows from (5.1). Conversely,

noting ab holds and using (4.8), we have abb—=>abc^>aybyc^>y = b.

(5.5) (a, b) r\ (b,c) = {b} implies b G (a, c).

3 The stronger pair of postulates, (C) and their (j3), imply 42 of the 43 transi-

tivities, all except T]0.
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•Proof. We are to show that if axbbxc^>x = b, then abc holds.

This follows by choosing x = (a, b, c).

(5.6) (a, b) r\ (b,c) =  {b} implies (a, b) VJ (b, c) = (a, c).

Proof. Assume axbbxc-*x = b. To show aye holds if and only if

we have either ayb or bye. By (5.5), abc holds. The conclusion follows

from (4.7) and (5.2).

(5.7) If d - (a, b, c), then (a, b) Pi (b, c) = (b, d).

Proof. To show bxd holds if and only if axb ■ bxc. Necessity of the

condition is easily seen. Conversely, from (5.2),

axb —» (axdb or adxb) —» (axd or dxb),

bxc —» (bxdc or bdxc) —-> (bxd or dxc).

If bxd does not hold, we have from (4.8) the contradiction

adc-axd-dxc —* axdxc —> x = d.

(5.8) Trees are characterized as sets 5 satisfying Postulates B, C,

and Di.

Proof. This follows from (2.4), (2.5), (2.6), (5.4), (5.6), and (5.7).
For later use we derive properties of the median. As a consequence

of its definition, (a, b, c) is invariant under cyclic permutations of

a, b, and c. Hence from (4.3), we have the following.

(5.9) (a, b, c) is invariant under all permutations of a, b, and c.

As a consequence of (4.4) and (5.1) we have

(5.10) (a, x, b) =x if and only if axb holds. Thus (a, a, b) =a.

(5.11) ((x, a, b), c, x) = (x, a, c) or (x, b, c).

Proof. Let y = (x, a, b) and z = (y, c, x). By (4.7), xzy ■ xya^>xzya

-^>xza. Similarly, we have xzb. Since xzc holds, it remains to show

that either azc or bzc holds. If y = z, from (5.1) and (4.10) we have

azb-zc—>(azc or bzc). If y^z, we note xzya—*ayzand from (4.6) obtain

ayz • yzc-^ayzc—^azc.

(5.12) ((a, b, c), (a, b, d), e) = ((c, d, e), a, b).

Proof. Let x = (a, b, c), y = (a, b, d), r = (x, y, e), z = (c, d, e),

and s = (a, b, z). We are to prove r = s. From axb, ayb, and (5.2), we

have axyb or ayxb. Since these cases are handled similarly we assume:

(*) axyb holds.
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Case I. Xr¿r and r^y. «

We have from xry that x^y. Using (*), we have

èyx•bxc —*öyxc —»cxy,

axyayd —* axyd —» x;y¿,

cxy • xy¿ • xry —♦ cxry¿ —» eró",

cxry¿ • ery —> eryá —» era,

and

cxry¿ • erx —> cxre —* ere.

But cr¿-¿re ere implies r = (c, d, e) =z. Moreover, from (*) and xry, we

have arb. Hence from (5.10) we have r = (a, r, b) = (a, z, b) =s.

Case II. Xy¿r, r=y.

We omit the proof since it is similar to the proof of Case III.

Case III. x = r, r^y.

We may assume z^x for otherwise from axb we have r =x = (a, b, x)

—s. If czx holds we have czx-cxb^>zxb and, similarly, zxa. Then

axbbxzzxa imply r=x—(a, b, z)=s. It remains to show that to

assume czx does not hold leads to a contradiction. Thus

czd ■ zx —> (czx or ¿zx) —» dzx,

cze-zx —» (czx or ezx) —» ezx,

ezx ■ exy —» ezxy —> zxy,

and

¿zx • zxy ■ z t^ x —» dzxy —» ¿xy.

Finally, using (*), axy • ay¿—>xy¿. From dxy-xyd-X5¿y—>dxyd we

have the contradiction x=d=y.

Case IV. x = r =y.
To show x = (a, b, c) = (a, 6, d) and z = (c, ¿, e) imply x=(o, ô, z).

We note czd-zx^>(czx or ¿zx). The cases are similarly treated. As-

sume, say, that czx holds. Then czx-cxa—*zxa and czxcxb—>zxb.

Since axb holds, r = x = (a, b, z) =s.

6. Order betweenness. Consider a set S satisfying Postulates

B, C, and:
(D2) For odd n^3, öia2a2a3 ■ • • a„_ia„-anai implies either

a„_iaBöi, anaia2, or o,o1+iö,+2 for some i, í¿i^n — 2.

As a typical application of (D2) we sketch the proof of transitivity

T10 of Pitcher and Smiley [4].
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(6.1) abc ■ abd ■ xbc ■ a 9¿ bb j^c —» xZ>¿.

Proof. The hypotheses imply cx-xbbddaac. By (D2), we have

cxb, xbd, bda, dac, or acx. If cxb or bda holds, then b equals x or ¿

and x&¿ holds. If dac or acx holds, we easily derive as a contradiction

that b equals a or c.

In view of (B), (4.3), (4.2), (4.6), and (D2), it is clear that the

following theorem is a corollary of Altwegg's results [5, Sect. 2].

(6.2) Postulates B, C, and D2 characterize partially ordered sets to

within dual orderings of their connected subsets. Here abc is equiva-

lent to either a^b^c or c^b^a.

It is possible to characterize a lattice in terms of betweenness by

adding a fourth postulate to (B), (C), and (D2). Then abc holds if

and only if either a+b = bc or ab = b+c. This is, of course, not the

betweenness ordinarily called lattice betweenness. The latter, for

distributive lattices, has abc equivalent to the condition ac + b

= b(a + c).

7. Chain betweenness. A chain in the sense used here is often

called a completely ordered set or a linearly ordered set. An extensive

literature is devoted to discussion of chain betweenness.

Consider the postulate:

(D3) For a, b, and c in S either abc, bca, or cab holds.

(7.1) Chains are characterized by Postulates B, C, and D3 or

by Postulates B, C, Di, and D2.

Proof. The first statement follows from a result of Altwegg [5,

Sect. 4] and from (D3), (4.3), (B), (4.6), and (4.7). Since a chain is

clearly both a tree and a partially ordered set, it remains to be

proved only that (B), (C), (Di), and (D2) imply (D3). This follows

from (5.1) and (D2), since ab-bc-ca implies abc, bca, or cab.

8. Medians. Some of the work in this section is similar to previous

work (see, for example, [3, p. 137]). It has not, however, been previ-

ously shown that the results can be made independent of Postulate

02 below.

Consider a set S closed under a ternary operation (a, b, c), called

the median of a, b, and c, satisfying the following postulates:

(M)  (a, a, b)=a.

(N) ((a, b, c), (a, b, d), e) = ((c, ¿, e), a, b).

The following theorem is proved by setting c = ¿ in (N) and apply-

ing (M). We have (8.2) as a corollary.
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(8.1) (a, b, c) = (c,a,b).

(8.2) (b, a, a) = (a, b, a) = (a, a, b) = a.

The next theorem is used freely in the work to follow.

(8.3) The median (a, b, c) is invariant under permutations of a, b,

and c.

Proof. In view of (8.1), it is sufficient to show (a, b, c) = (b, a, c).

This follows from the equalities

(a, b, c) = ((b, a, a), (b, a, b), c) = ((a, b, c), b, a)

= ((a, b, c), (a, b, b), a) = ((c, b, a), a, b)

= ((b, a, c), a, b) = ((a, b, b), (a, b, a), c) = (b, a, c).

The next theorem is a direct consequence of (N) and (8.2).

(8.4) ((a, b, c), a, b) = (a, b, c).

(8.5) ((a, x, b), (b, x, c), (c, x, a)) = ((x, a, c), b, x).

Proof. By (N) and (8.4) both expressions equal ((a,c, (c,x,a)),b,x).

As a corollary we have

(8.6) ((x, a, c), b, x) is invariant under permutations of a, b, and c.

(8.7) ((a,b,c),(a,b,d),(a,b,e))=   ((c, d, e), a, b).

Proof. Using (N) and (8.6), we have

((a, b, c), (a, b, d), (a, b, e))

= (((a, b, d), (a, b, e), a), ((a, b, d), (a, b, e), b), c)

= (((d, e, a), a, b), ((d, e, b), a, b), c)

= (((d, b, a), a, e), ((d, a, b), e, b), c)

= ((a, b, c), (d, b, a), e) = ((c, ¿, e), a, b).

Definition. We say x is between a and b and write axb if and only

if x = (a, x, b). Extensions of this notation such as abed are made as in

§4.
The next two theorems are immediate.

(8.8) abc —» cba

(8.9) abc ■ acb *-* b = c.

Hence aab holds and aba*-*a=b.
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(8.10) abc ■ bed ■ ade —» bee.

Proof. We have (b, c, e) = ((a, b, c), (b, c, d), e) = ((a, d, e), b, c)

= (¿, b, c) =c.

(8.11) abeabdeed —> abe.

Proof. We have (a, b, e) = (a, b, (c, d, e)) = ((a, b, c), (a, b, d), e)

= (b,b,e)=b. _
The implications just established are found in [4] under the labels

«, ß, T4, and T7. We have from §6 of that paper the following as

consequence.

(8.12) abc ■ acd —> abed

(8.13) Given a, b, and c, there is a unique element x such that

axb ■ bxc ■ cxa.

Proof. From (8.4), (a, b, c) satisfies these betweenness relations.

If the relations hold for both x and y then x = (x, x, y) = ((a, x, b),

(a, x, c), y) = ((b, c, y), a, x) = (y, a, x) and, similarly, y = (y, a, x).

If we define (a, b) as the set of all x such that x = (a, x, b) it is not

difficult to prove the following.

(8.14) Postulates M and N imply Postulates S and T.

9. Tree medians. Consider Postulates M, N, and:

(Oi) ((x, a, b), c, x) = (x, a, c) or (x, b, c).

It is clear from (8.6) and (8.7) that this postulate can be restated

as follows. The elements (a, x, b), (b, x, c), and (c, x, a) are not

distinct.

We wish to show these postulates characterize trees. By (5.10),

(5.11), and (5.12), Postulates B, C, and Di imply Postulates M, N,

and Oi. Conversely, by (8.9) and (8.13), (M), (N), and (Oi) imply

(B) and (Di). To show (C) also holds let b = (a, b, c), d=(b, d, e), and

b^(c, b, d). By (8.2), b^d. By (Oi), b = (b, d, &) = ((&, c, a), d, b)
= (b, a, d). Hence b = ((b, a, d), e, b) = (b, a, e) or (b, d, e). To assume

the latter gives the contradiction b=d. Hence b = (b, a, e) and eba

holds. By (5.8), the following holds.

(9.1) Postulates M, N, and Oi characterize trees.

10. Lattice medians. Consider Postulates M, N, and:

(02) There are elements 0 and 7 in S such that for all a in S,

a = (0, a, I).

In view of (8.3), the following is a restatement of a known theorem

[3, p. 137].
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(10.1) Distributive lattices with bounds 0 and 7 are characterized

by Postulates M, N, and 02. This is achieved by use of the relations

ab = (a, 0, b), a + b = (a, I, b), and (a, b, c) =ab + bc+ca.

It is possible to characterize these lattices by means of only two

postulates based on medians (see [ó]).

11. Chain medians. Results in this section are similar to those in

§7. We consider the postulate

(03)  If (a, b, c) ?¿a or c, then for all x either (a, x, b) or (b, x, c) =b.

A simple four element example shows that the following cannot

replace (03) in (11.2). Postulates M, N, and 03 imply

(11.1) (a, b, c)=a, b, or c.

Proof. Let x in (03) be (a, b, c) and apply (8.4).

(11.2) Postulates M, N, and 03 characterize chains.

Proof. Assume (M), (N), and (03). Postulates B and D3 follow by

(8.9) and (11.1). By (7.1), we have a chain if Postulate C holds.

Assume abcbde. If eba, (C) holds. If bea, we have in turn bdea,

cbdea, cbd, and (C) holds. But if neither eba or bea holds, we have

by (03) either bac or cae. In the first case, bac-abc^>a=b—+eba, a

contradiction. In the second case, we have in turn eabc, ebc, edbc,

and dbc. Again, (C) holds. Conversely, since a chain is a tree it

satisfies Postulates M and N. It remains to show (03) holds. Assume

(a, b, c) j^a or c. By (D3) we have abc. If abx, (03) follows. If not,

a^b and, from (D3), either bxa or bax holds. In the first case,

abc ■ bxa—*(cbx or aba)—>cbx. In the second case, cba-bax-a^b-^cbax

-+cbx.

It is clear from the following that Postulates M, N, Oi, and 02

characterize bounded chains.

(11.3) Postulates M, N, Oi, and 02 imply Postulate 03.

Proof. Since (a, 0, b) = ((0, a, b), I, 0) = (0, a, I) or (0, b, I),

we have, say, (a, 0, b)=a. Then (a, b, c) = ((0, b, a), (0, b, b), c)

= ((a, b, c), 0, b) = (b, a, 0) or (b, c, 0). Hence (a, b, c)=a, b, or c.

If (a, b, c) =b, b = (b, x, b) = ((£>, a, c), x, b) = (&, a, x) or (b, c, x) and

(03) is established.

12. Median latticoids. It is interesting that trees and bounded

distributive lattices have an algebra with many properties in com-

mon. Assume Postulates M and N hold for a set of elements S.

Let 0 and 7 be elements arbitrarily chosen from S. Define a + b as

(a, I, b) and ab as (a, 0, b). S is closed under these operations and
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properties V and W are immediate. Properties X and Y follow respec-

tively from (8.6) and (N).

(V) The idempotent laws hold.

(W) The commutative laws hold.

(X) The associative laws hold.

(Y) The distributive laws hold and hence a+ab = a(a+b).

(Z) Elements 0 and 7 have the properties that, for all a and b in

S, a0 = 0, a+I = I, and a + 0 = Ia = I(a+ab).

Proof. All properties except the last are immediate. The last

follows from (7, 0, (a, I, (a, 0, b)))=(I, 0, (a, b, (a, 0, 7))) = ((7,

0, a), b, (I, 0, (a, 0, 7))) = ((7, 0, a), b, (a, 0, 7)) ==(7, 0, a).
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