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Treewidth of Circle Graphs 

T. Kloks * 
Department of Computer Science 

Utrecht University 
P.O.Box 80.089 

3508 TB Utrecht, The Netherlands 

Abstract 

In this paper we show that the treewidth of a circle graph can be com­
puted in polynomial time. A circle graph is a graph that is isomorphic to the 
intersection graph of a finite collection of chords of a circle. The TREEWIDTH 

problem can be viewed upon as the problem of finding a chordal embedding 
of the graph that minimizes the maximum clique size. Our algorithm to de­
termine the treewidth of a circle graph can be implemented to run in O(n3 ) 

time, where n is the number of vertices of the graph. 

1 Introduction 

Consider a set of n chords of a circle. Associate with this set an undirected graph 
as follows. The vertex set is the set of chords and two vertices are adjacent if and 
only if the corresponding chords intersect. Such a graph is called a circle graph and 
we call a set of chords representing the graph a circle model. In this paper we do 
not distinguish between a circle graph and the circle model, i.e., we assume that we 
have a circle model of the graph. If the circle model is not given, it can be found in 
O(n2 ) time [9, 15]' as reported in [6]. 

It is interesting to note that some important problems remain NP-complete 
when restricted to circle graphs. These problems include for example the CHRO­

MATIC NUMBER problem [12], the COCHROMATIC NUMBER problem [10, 19] and the 
ACHROMATIC NUMBER problem [2]. There exists a heuristic for coloring circle graphs 
with performance guarantee of O(1ogn) [18]. On the other hand, some NP-complete 
problems are solvable in polynomial time, when restricted to circle graphs, for exam­
ple the MAXIMUM INDEPENDENT SET, which can be solved in O(n2) time [17]. For 
more information on circle graphs and related classes of graphs we refer to [11, 6]. 

*This author is supported by the Foundation for Computer Science (S.I.O.N.) of the Netherlands 
Organization for Scientific Research (N.W.O.). Email: ton<Dcs.ruu.nl. 
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The treewidth of a graph is the minimum of the maximum cliquesize minus one 
over all chordal embeddings of a graph. Since so many problems become solvable 
in polynomial time when restricted to the class of graphs with bounded treewidth, 
it is of importance to find a chordal embedding of a graph with a small clique size. 
Since the problem is NP-complete in general it is of interest to find fast algorithms 
for special classes of graphs. The TREEWIDTH problem can be solved in polynomial 
time for example for cographs [5], permutation graphs [4, 13]' chordal bipartite 
graphs [14, 13], circular arc graphs [16], cotriangulated graphs [13] and for the class 
of graphs with bounded treewidth [3]. The treewidth problem remains NP-complete 
when restricted to bipartite and cobipartite graphs [1]. For more information on 
treewidth we refer to [13]. 

In this paper we give a simple and efficient algorithm to determine the treewidth 
of circle graphs. To illustrate the simplicity of the algorithm, and to whet the reader's 
appetite, we describe the algorithm here. Consider the circle model. Go around the 
circle in clockwise order and place a new vertex between every two consecutive end 
vertices of chords. Let Z be the set of these new vertices. Consider the polygon 
P with vertex set Z, and let T be a triangulation of this polygon. For a triangle 
in this triangulation define the weight as the number of chords in the circle model 
that cross the triangle. The weight of the triangulation T is the maximum weight of 
the triangles. The treewidth of the circle graph is the minimum weight minus one 
over all triangulations of the polygon P. It is not hard to see that, using dynamic 
programming, the treewidth can be computed in O(n3 ) time. 

Since the class of permutation graphs is properly contained in the class of circle 
graphs, our result generalizes some results of [4] where an O(nk2) algorithm is given 
for the treewidth (and pathwidth) of permutation graphs, where k is the treewidth 
of the graph. 

2 Preliminaries 

In this section we start with some necessary definitions and lemmas. 

Definition 2.1 A circle graph is a graph for which one can associate for each vertex 
a chord of a circle such that two vertices are adjacent if and only if the corresponding 
chords have a nonempty intersection. 

Without loss of generality we can assume that no two chords share an end vertex. 
A set of chords of a circle such that the graph is isomorphic with the intersection 
graph is called a circle model for the graph. Throughout this paper we identify a 
circle graph and a circle model of the graph, i.e., we assume that we have a circle 
model. 

Definition 2.2 A graph is chordal if it has no induced chord less cycle of length at 
least four. 
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Definition 2.3 A triangulation of a graph G is a graph H with the same vertex set 
as G such that G is a subgraph of H and such that H is chordal. 

There are two problems concerned with triangulations of graphs that have drawn 
much attention because of the large number of applications. One is called the 
MINIMUM FILL-IN problem. In this case one tries to find a triangulation of the 
graph with a minimum number of edges. The other problem is the TREEWIDTH 

problem. In this case the problem is to find a triangulation H such that the maximum 
number of vertices in a clique of H, w(H), is as small as possible. The treewidth is 
this number of vertices in the maximum clique of H minus one. Both problems are 
NP-complete [1, 20]. In this paper we concentrate on finding the treewidth of circle 
graphs. 

One of the main tools in this paper is a method to locate all minimal vertex 
separators in circle graphs quickly. 

Definition 2.4 Let G = (V, E) be a graph. A subset S ~ V of vertices is an 
Q, b-separator for non adjacent vertices Q and b if the removal of S separates Q and 
b in distinct connected components. If no proper subset of S is an Q, b-separator then 
S is a minimal Q, b-separator. A minimal separator S is a subset S of vertices for 
which there are nonadjacent vertices Q and b such that S is a minimal Q, b-separator. 

The following characterization of chordal graphs was found by Dirac [7]. 

Lemma 2.1 A graph G is chordal if and only if every minimal vertex separator 
induces a complete subgraph. 

If G = (V, E) is a graph and S is a subset of vertices then we write G[S] for the 
subgraph of G induced by S. We use the following theorem which appeared in [4, 13]. 

Theorem 2.1 Let G be a graph with treewidth k. There exists a triangulation of G 
into a chordal graph H such that the following three statements hold: 

1. w(H) = k+ 1. 

2. If Q and b are nonadjacent vertices in H then every minimal Q, b-separator in 
H is also a minimal Q, b-separator in G. 

3. If 5 is a minimal separator in Hand C is the vertex set of a connected com­
ponent in H [V - 5] then C induces also a connected component in G [V - 5]. 

Definition 2.5 We call a triangulation of which the existence is guaranteed by The­
orem 2.1 a minimal triangulation. 
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3 Scanlines 

As mentioned before, we assume that no two chords of the circle model share an 
end vertex. 

Definition 3.1 Place new points on the circle as follows. Go around the circle in 
clockwise order. Between every two consecutive end vertices of chords, place a new 
vertex. These new vertices are called scanline vertices. 

If n is the number of vertices in the circle graph then there are 2n scanline vertices. 
We denote the set of scanline vertices by Z. 

Definition 3.2 A scanline is a chord of the circle of which the end vertices are 
scanline vertices. 

Definition 3.3 Two scanlines cross if they have a nonempty intersection but no 
end vertex in common. 

Definition 3.4 Given two non crossing chords 51 and 52. A scanline 5 is between 
51 and 52 if every path from an end vertex of 51 to an end vertex of 52 along the 
circle passes through an end vertex of 5. 

If u and b are nonadjacent vertices of the circle graph then the corresponding chords 
in the circle model do not cross. Take a scanline 5 which is between the chords of 
u and b. Clearly, the set of vertices, corresponding to chords that cross s, is an 
u, b-separator. The following lemma is a generalization of a result in [4]. 

Lemma 3.1 Let G be a circle graph and let u and b be non adjacent vertices. For 
every minimal u, b-separator S there exists a scanline s between u and b such that 
the chords corresponding to vertices of S are exactly the chords crossing s. 

Proof. The proof is basically the same as in [4]. o 

Corollary 3.1 There are at most O(n2 ) minimal vertex separators in a circle graph. 

4 Components and realizers 

Let G = (V, E) be a circle graph. Consider a circle model for G with the set Z of 
scanline vertices. 

Definition 4.1 Let Y ~ Z be a set of scanline vertices with at least three elements. 
Consider the convex polygon P(Y) with vertex set Y. The component G(Y) is the 
subgraph of G induced by the set of vertices corresponding with chords in the circle 
model which have a non empty intersection with the interior region of P(Y). 
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Hence the edges of the polygon P(Y) are scanlines. Notice that if Y = Z then G(Y) 
is simply the graph G. 

Definition 4.2 Let Y be a set of at least three scanline vertices and consider the 
component G(Y). For each scanline that is an edge of the polygon P(Y), add edges 
between vertices of G(Y) of which the corresponding chords cross that scanline. In 
this way we obtain the realizer R(Y) of the component G(Y). 

Hence each component is a subgraph of its realizer. We mention here that if Y is a 
set of three scanline vertices then 

1. each chord corresponding with a vertex of G(Y) intersects exactly two edges 
of P(Y) and hence 

2. R(Y) is a clique. 

Lemma 4.1 If G(Y) is a component then the realizer R(Y) is a circle graph. 

Proof. Let S1, S2, ... ,St be the scanlines which are the edges of the polygon P(Y). 
Consider these scanlines one by one. 

Let C1, C2, ... ,Ce be the chords that cross some scanline Sk. Call the end vertices 
of Ci, Ui and bi. Choose Ui and b i such that, when going along the chord from Ui to b i 

first the scanline Sk is crossed before the interior region of P(Y) is entered. Rearrange 
the order of the vertices U1, ••• , Ue on the circle such that, afterwards, every pair of 
chords Ci and Cj cross. Notice that this only adds edges in the component between 
vertices with corresponding chords in {C1, ... ,ce}. 

In this way we obtain a circle model for the realizer. 0 

We identify the realizer R(Y) with a circle model for R(Y) obtained as in the proof 
of Lemma 4.1. 

Definition 4.3 Let G(Y) be a component with realizer R(Y). A scanline S in the 
circle model for R(Y) is Y -nice if the end vertices of S are elements of Y. 

We now state one of our main results. 

Lemma 4.2 Let R(Y) be a realizer of a component G(Y). Let U and b be two non 
adjacent vertices in R(Y) and let S be a minimal u, b-separator in R(Y). Then there 
is a Y -nice scanline S such that S consists of the vertices corresponding with the 
chords that cross s. 

Proof. Consider the circle model for R(Y). Since U and b are not adjacent we know 
that there is a scanline S (with end vertices in Z) between the chords of U and b 
such that the set of chords crossing S corresponds to S. Choose such a scanline S 

with a minimum number of end vertices that are not in Y. If both end vertices of S 

are elements of Y then S is Y -nice. Assume this is not the case. Then s crosses with 
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at least one scanline 5' which is an edge of the polygon P(Y). Let the end vertices 
of 5 be x and y chosen in such a way that, if we traverse 5 from x to y, then we first 
cross 5' before entering the region of P(Y). 

Let ex and /3 be the end vertices of 5' chosen such that ex is on the same side of 
5 as the chord a, and /3 is on the same side of 5 as the chord b. 

Let 5* be the scanline with end vertices y and ex and let 5** be the scanline with 
end vertices y and /3. 

Since a and b are non adjacent in R(Y) the corresponding chords of a and b do 
not both cross the scanline 5'. Assume that the chord of a does not cross with 5'. 

We now consider two cases. 

band 5' do not cross. Then 5* and 5** are both scanlines between a and b. Let 
S* and S** be the corresponding separators. We claim that either S* ~ S or 
S** ~ S. This can be seen as follows. Assume there is a chord p in the realizer 
crossing with 5* but not with 5 and a chord q in the realizer crossing with 
5** but not with 5. Then p and q must both cross with 5'. But this is a 
contradiction since p and q cannot cross without also crossing 5. 

band 5' do cross. In this case 5* is a scanline between a and b. We claim that 
S* ~ S. Assume there is a chord p in R(Y) that crosses with 5* but not with 
5. Then p and b cannot cross. But this is a contradiction, since both p and b 
cross with 5'. 

This shows that either 5* or 5** is a scanline between a and b of which the corre­
sponding separator is a subset of the separator of 5. But both 5* and 5** both have 
one more end vertex in Y. This proves the theorem. 0 

Definition 4.4 A component G(Y) is k-feasible if the realizer R(Y) has treewidth 
at most k. 

In other words, the component G(Y) is k-feasible if and only if there is a triangulation 
of the component such that each clique has at most k + 1 vertices and such that for 
every scanline which is an edge of P(Y) the set of vertices that cross that scanline 
induce a clique in the triangulation. 

Lemma 4.3 Let Y be a set of scanline vertices with at least three elements such that 
the component G(Y) has at least k + 2 vertices. Then the following two statements 
hold. 

1. If G(Y) is k-feasible then there is a Y -nice scanline, dividing the polygon P(Y) 
in two new polygons with vertex sets, say, Y1 and Yz, such that the components 
G(Y1) and G(Yl) both have less vertices than G(Y) and such that both G(Y1) 

and G(Y1) are k-feasible, and 
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2. if there is a Y -nice scanline, dividing the polygon P(Y) in two new smaller 
polygons with vertex sets Y 1 and Y z, such that the components G (Y 1) and G (Y z) 
are both k-feasible, then G(Y) is also k-feasible. 

Proof. Assume that G(Y) is k-feasible. Consider a minimal triangulation H of R(Y). 
Since the number of vertices is at least k + 2 there must be a pair of non adjacent 
vertices a and b in H. Consider a minimal a, b-separator S in H. By Theorem 2.1 
this is also a minimal a, b-separator in G. Since H is chordal S induces a clique in 
H. By Lemma 4.2 there is a Y -nice scanline 5 corresponding with S. 5 divides the 
polygon P(Y) into two new polygons. Let Y1 and Yz be the vertex sets of these two 
new polygons. 

We may assume that G(Y1) contains the chord corresponding with a and G(Yz) 
contains the chord corresponding with b. Let Ca and Cb be the vertex sets of G(Y1) 

and G(Yz) respectively. Then it follows that the induced subgraphs H[Ca ] and H[Cb ] 

are triangulations of R(Y1) and R(Yz), and hence G(Y1) and G(Yz) are k-feasible. 
Since a is not in G(Yz) and b not in G(Y1) it follows that both these components 
have less vertices than G(Y). 

Assume that there is a Y -nice scanline 5 dividing the polygon P(Y) in two new 
smaller polygons with vertex sets Y1 and Yz, such that the components G(Y1) and 
G(Yz) are both k-feasible. Consider triangulations Hl and Hz of R(Y1) and R(Yz) 
respectively. Let S be the set of vertices corresponding with chords that cross s. 
Since S induces a clique in Hl and in Hz, it follows that we can obtain a triangulation 
H of R(Y) by identifying the vertices of S is Hl and Hz. This shows that G(Y) is 
k-feasible. 0 

Definition 4.5 Let P be a polygon with m vertices. A triangulation ofP is a set of 
m - 3 non crossing diagonals in P that divide the interior of P in m - 2 triangles. 

Definition 4.6 Let Y be a set of at least three scanline vertices. Consider a tri­
angulation T of P(Y). The weight of a triangle is the number of chords in the 
circle model that have a non empty intersection with the triangle. The weight of the 
triangulation, weT), is the maximum weight of a triangle. 

We can now state our main result. 

Theorem 4.1 Let Y be a set of at least three scanline vertices. A component G(Y) 
is k-feasible if and only if there is a triangulation T with weight at most k + 1 . 

Proof. First assume that G(Y) is k-feasible. If G(Y) has at most k+ 1 vertices, then 
any triangulation of P(Y) has weight at most k + 1. We proceed with induction 
on the number of vertices of G(Y). Assume G(Y) has more than k + 1 vertices. 
By the first part of Lemma 4.3 there is a Y -nice scanline which divides the polygon 
P(Y) in two new polygons P(Y1) and P(Yz) such that the components G(Y1) and 
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G(Y2) both have less vertices than G(Y) and such that both G(Y,) and G(Y2) are 
k-feasible. By induction there are triangulations T, of P(Y,) and T2 of P(Y2) both 
with weight at most k + 1. Then, clearly, T = T1 U T2 is a triangulation of P(Y). 

Now assume T is a triangulation of P(Y) with weight at most k + 1. If Y has 
only three vertices, G(Y) has at most k + 1 vertices, and hence G(Y) is k-feasible. 
We now proceed with induction on the number of vertices of Y. Take any diagonal 
of T. This divides the polygon into two smaller polygons with vertex sets Y1 and Y2 

say. Since there are triangulations of P(Y 1) and of P(Y 2) with weight at most k + 1 
we may conclude that both G(Y,) and G(Y2) are k-feasible. But then by the second 
part of lemma 4.3 also G(Y) is k-feasible. 0 

5 Algorithm 

In this section we describe an algorithm to find the treewidth of a circle graph. 

Theorem 5.1 Given a circle graph G with n vertices. There exists an 0(n3 ) algo­
rithm to determine the treewidth of G. 

Proof. First compute a circle model for G. As mentioned earlier this step can be 
performed in 0(n2 ) time. We may assume that we can decide whether two chords 
cross in 0(1) time. 

Clearly we may assume that n > 1. Determine a set of scanline vertices Z. Since 
n > 1, Z has at least four vertices, and hence the polygon P( Z) is well defined. The 
algorithm we describe finds a triangulation with minimal weight for P(Z). 

First, for each of the scanlines compute the number of chords that cross the 
scanline. Since there are 0(n2) scanlines, and the test if a scanline and a chord 
cross can be performed in 0(1) time, this step costs 0(n3 ) time. 

Use dynamic programming to find an optimal triangulation for P(Z). Let the 
scanline vertices be 50,52, ... , 5e-, ordered clockwise. Let P(i, t) be the polygon 
defined by 5i,"" 5iH-1, where indices are to be taken modulo t We define w(i, t) 
as the minimum weight of a triangulation of the polygon P(i, t). Let c(i, j) be the 
number of chords crossing the scanline with end vertices 5i and 5j. Then w( i, t) can 
be determined in 0(n3) time using the following. Set all w(i, 2) equal to 0. For 
t = 3, ... ,£, compute for all i: 

w(i,t) 

where F( i, j) 

m~n (max(w(i,j), w(i+j -l,t-j + 1), F(i,j))) 
2::;)<t 

c(i,i+j -1) +c(i+j -1,i+t-1) +c(i,i+t-1) 
2 

Correctness follows from the fact that each chord crossing a triangle intersects ex­
actly two sides of the triangle. The treewidth of G is w(O, £) - 1. 0 
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In the rest of this section we show that it is also easy to find a triangulation of G 
with minimum clique size. Notice that the algorithm described above can be easily 
adapted to return a triangulation T of the polygon P(Z) with minimum weight. 
Define the graph H(T) with the same vertex set as G as follows. Two vertices are 
adjacent in H(T) if there is a triangle such that the chords corresponding with the 
vertices intersect this triangle. Notice that G is a subgraph of H(T). We show 
that H(T) has a perfect elimination scheme. Consider a vertex z of P(Z) which is 
not incident with a diagonal of T. This vertex is incident with exactly one triangle 
Q. Consider a vertex x of which the corresponding chord intersects Q but no other 
triangle. Then the neighborhood of x, N(x), is a clique, hence x is simplicial. Notice 
also that the number of vertices in N(x) is the weight of Q minus one, showing that 
the number of vertices in the clique {x} uN (x) is equal to the weight of Q. Remove 
x from the graph H(T) and the corresponding chord from the circle model. If there 
is no chord left in the circle model which intersects Q but no other triangle, then 
remove z from Z. Repeating this process gives a perfect elimination scheme, showing 
that H(T) is chordal. This also shows that the number of vertices in a maximum 
clique of H(T) is equal to the weight of the triangulation. 

6 Acknowledgements 

I like to thank M. de Berg, H. Bodlaender, A. Jacobs and H. Muller for valuable 
discussions. 

References 

[1] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embed­
dings in a k-tree, SIAM J. Alg. Disc. Meth. 8, (1987), pp. 277-284. 

[2] H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval 
graphs, Information Processing Letter 31, (1989), pp. 135-138. 

[3] H. Bodlaender, A linear time algorithm for finding tree-decompositions of small 
treewidth, Technical report RUU-CS-92-12, Department of Computer Science, 
Utrecht University, Utrecht, The Netherlands, (1992). To appear in: STOC'93. 

[4] H. Bodlaender, T. Kloks and D. Kratsch, Treewidth and pathwidth of permu­
tation graphs, To appear in: Proceedings of the 20th International Colloquium 
on Automata, Languages and Programming (1993). 

[5] H. Bodlaender and R.H. Mohring, The pathwidth and treewidth of cographs, 
In:Proceedings 2nd Scandinavian Workshop on Algorithm Theory, Springer Ver­
lag, Lecture Notes in Computer Science 447, (1990), pp. 301-309. To appear 
in: SIAM J. Discr. Math. 

9 



[6] A. Brandstadt, Special graph classes - a survey, Schriftenreihe des Fachbere­
ichs Mathematik, SM-DU-199 (1991) Universitat Duisburg Gesamthochschule. 

[7) G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25, 
(1961), pp. 71-76. 

[8) M. Farber and M. Keil, Domination in permutation graphs, J. Algorithms 6, 
(1985), pp. 309-321. 

[9] C. P. Gabor, W. L. Hsu and K. J. Supowit, Recognizing circle graphs in polyno­
mial time, 26th Annual IEEE Symposium on Foundations of Computer Science, 
(1985). 

[10) J. Gimbel, D. Kratsch and L. Stewart, On cocolourings and cochromatic num­
bers of graphs, to appear in: Disc. Appl. Math. 

[11) M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic 
Press, New York, 1980. 

[12] D. S. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms 
6, (1985), pp. 434-451. 

[13] T. Kloks, Treewidth, Ph. D. Thesis, Utrecht University, The Netherlands. To 
appear. 

[14) T. Kloks and D. Kratsch, Treewidth of chordal bipartite graphs, 10th Annual 
Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, Lec­
ture Notes in Computer Science 665, (1993), pp. 80-89. 

[15] W. Naji, Reconnaissance des graphes de cordes, Discrete Mathematics 54, 
(1985), pp. 329-337. 

[16) R. Sundaram, K. Sher Singh and C. Pandu Rangan, Treewidth of circular arc 
graphs, To appear in: SIAM J. Disc. Math. 

[17) K. J. Supowit, Finding a maximum planar subset of a set of nets in a channel, 
IEEE Trans. Computer Aided Design 6, (1987), pp. 93-94. 

[18] K. J. Supowit, Decomposing a set of points into chains, with applications to 
permutation and circle graphs, Information Processing Letters 21, (1985), pp. 
249-252. 

[19] K. Wagner, Monotonic coverings of finite sets, Journal of Information Process­
ing and Cybernetics, ElK, 20, (1984), pp. 633-639. 

[20) M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. 
Disc. Meth. 2, (1981), pp. 77-79. 

10 


