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Summary

Over the last decade, Computer Aided Engineering (CAE) tools have become essential in the assessment and
optimization of the acoustic characteristics of products and processes. The possibility of evaluating these
characteristics on virtual prototypes at almost any stage of the design process reduces the need for very
expensive and time consuming physical prototype testing. However, despite their steady improvements and
extensions, CAE techniques are still primarily used by analysis specialists. In order to turn them into easy-
to-use, versatile tools that are also easily accessible for designers, several bottlenecks have to be resolved. The
latter include, amongst others, the lack of efficient numerical techniques for solving system-level functional
performance models in a wide frequency range. This paper reviews the CAE modelling techniques which
can be used for the analysis of time-harmonic acoustic problems and focusses on techniques which have the
Trefftz approach as baseline methodology. The basic properties of the different methods are highlighted and
their strengths and limitations are discussed. Furthermore, an overview is given of the state-of-the-art of
the extensions and the enhancements which have been recently investigated to enlarge the application range
of the different techniques. Specific attention is paid to one very promising Trefftz-based technique, which
is the so-called wave based method. This method has all the necessary attributes for putting a next step in
the evolution towards truly virtual product design.

1 INTRODUCTION

This paper reviews the research efforts spent on the development of numerical methods
for the analysis of time-harmonic acoustics, with a specific focus on Trefftz-based methods.
Acoustics refers to the engineering field, which considers small pressure perturbations with
respect to a constant ambient pressure level. The small pressure perturbations, or acoustic
pressures, exhibit both a spatial and a temporal distribution. In many cases, the acoustic
processes of interest are stationary, i.e. they show a time-harmonic behaviour, for which the
description in the frequency domain, or in the wave number domain, is often more suitable
than in the time domain. At discrete frequencies, the linear (or linearized) Helmholtz
equation governs the spatial distribution of the acoustic pressures [1, 2].

Many deterministic methods exist for solving linear Helmholtz equations. Among those
methods, the finite element method (FEM) [3, 4] and the boundary element method (BEM)
[5, 6, 7] are probably the most well known. These methods perform satisfactory for the
low-frequency range, i.e. for those frequencies for which the corresponding characteris-
tic wavelengths are of the same order of magnitude as the dimensions of the bounded
domain. However, one of the major computational challenges nowadays is the treatise
of high-frequency or short-wave phenomena [8]. This topic is therefore investigated ex-
tensively, which is apparent through the large number of dedicated conference sessions
[9, 10, 11, 12, 13] and review papers [14, 15, 16].

A large diversity of computational methods for high-frequency problems in acoustics
coexist. Their number is too large to thoroughly discuss them all. Nevertheless, in this
paper an attempt is made to classify the methods roughly in some general categories. One
of these categories will be detailed further, namely the class of the Trefftz-based methods.
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The basic principles of these methods date back to 1926 when Trefftz [17] presented an
alternative for the Rayleigh-Ritz approach, on which for example the FEM is based. The
Trefftz-based approach has been unnoticed for a long time. Only in the 1970s, the quest
for more accurate FEMs drives the growing interest for the Trefftz-based method. In the
years that follow, the value of the Trefftz-based methods has been proven for applications
in elasticity and heat transfer, for plate bending and shell problems and for the Poisson
problem. For more details, the reader is referred to the review papers [18] and [19], both
published in the mid-1990s. Since the mid-1990s, the application of the Trefftz-based meth-
ods has been extended for time-harmonic problems in acoustics, structural mechanics and
electro-magnetics in order to meet the challenges of the high-frequency phenomena.

The objective of this paper is to give an overview of the state-of-the-art of the element
based and the Trefftz-based methods for the analysis of time-harmonic acoustic problems.
In addition, special attention is paid to a particular Trefftz-based method, namely the
so-called wave based method, on which the authors have provided a substantial scientific
contribution [20, 21, 22, 23, 24].

This paper is outlined as follows. The mathematical model for time-harmonic acoustic
problems is presented first. In order to illustrate the computational challenges with re-
spect to high-frequency phenomena, the basic features of the FEM are outlined including
a discussion on the numerical accuracy. This discussion clears the way for categorizing
the enhancements of the classical FEM, such as the stabilized approaches, the general-
ized methods, the multi-scale approaches, etcetera. In a comparable layout, a next section
discusses the BEM and its extensions and enhancements. Then, a detailed survey of the
Trefftz-based methods is provided. In particular the capabilities of the the WBM for simu-
lating high-frequency acoustic problems are discussed in detail and demonstrated for both
interior and exterior acoustic problems.

2 MATHEMATICAL MODEL

2.1 Boundary value problem

Figure 1 shows a bounded domain Ωi with the following acoustic properties: the ambient
density ρ and the speed of sound c. A point source at position rq, characterized by a source-
strength amplitude q, excites the acoustic domain. The excitation has a time-harmonic
behaviour ejωt with a radial frequency ω. The response consists of the acoustic pressure p
and the particle velocity v, which also show a time-harmonic behaviour with the frequency
ω. The following set of coupled partial differential equations governs the time-harmonic
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acoustic pressure p and the particle velocity v at position r [1, 2]

conservation of mass : ∇
Tv(r) +

jk

ρc
p(r) = q δ(r, rq), ∀ r ∈ Ωi, (1a)

equation of motion : ∇p(r) + jρω v(r) = 0, ∀ r ∈ Ωi. (1b)

In these equations, ∇ = [∂/∂x ∂/∂y ∂/∂z]T represents the gradient operator, where the
superscript T denotes the transpose, k = ω/c represents the wave number, j =

√
−1 the

unit imaginary number and δ a Dirac delta function. The conservation of mass and the
equation of motion are usually combined resulting in the linear Helmholtz equation

(
∆ + k2

)
p(r) = −jρω qδ(r, rq), ∀ r ∈ Ωi, (2)

where ∆ = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the Laplace operator. Since the Helmholtz equation
is a second-order partial differential equation, one boundary condition is required at each
boundary point in order for the acoustic problem to be well-posed. The following time-
harmonic, acoustic boundary conditions may be imposed at the problem boundary ∂Ωi =
Γp ∪ Γv ∪ ΓZ

p(r) = p̄(r), ∀ r ∈ Γp, (3a)

nTv(r) = v̄n(r), ∀ r ∈ Γv, (3b)

nTv(r) = p(r)/Z̄(r), ∀ r ∈ ΓZ . (3c)

In these relations, n is the outward normal vector at the problem boundary (see figure 1)
and p̄, v̄n and Z̄ are prescribed distributions for the pressure, the normal velocity and the
normal impedance along the corresponding parts of the problem boundary.

The above mathematical model is a boundary value problem for interior acoustics. The
modelling of exterior problems, e.g. sound radiation problems, follows the same principles.
Figure 2 shows an unbounded domain Ωe with the acoustic properties ρ and c. Again,
a point source q excites the acoustic domain and the Helmholtz equation (2) governs the
time-harmonic response. However, now the problem boundary ∂Ωe is composed of (i) a
finite part Γp ∪ Γv ∪ ΓZ , where the boundary conditions of equation (3) are imposed, and
of (ii) an unbounded part Γ∞, where the Sommerfeld radiation condition [25] is imposed
to model the far field correctly

lim
r→∞

r

(
∂p(r)

∂r
+ j k p(r)

)
= 0, with r = ‖r‖. (4)

A two-dimensional (2D) acoustic problem can be derived from the above full 3D represen-
tations if the following conditions are satisfied.

1. The dimension of the acoustic domain Ω{i/e} is infinite in the z-direction.

2. The boundary conditions do not vary in the z-direction.

3. A line source at position (xq, yq), characterized by a source-strength amplitude q
excites the acoustic system.

4. In case of an exterior acoustic problem, the 2D expression of the Sommerfeld radiation
condition is selected

lim
r→∞

√
r

(
∂p(r)

∂r
+ j k p(r)

)
= 0. (5)
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The 3D problem reduces to a 2D problem by omitting the z-dependency in the involved
linear operators.

The discussed boundary value problems can be solved numerically using the FEM, the
BEM or the Trefftz-based methods. The FEM and the Trefftz-based methods make direct
use of the governing differential equations. The BEM, on the other hand, requires that the
boundary value problem is described by boundary integral formulations. These methods
are reviewed next.

2.2 Boundary integral formulation

The following inhomogeneous integral equation of the second kind is applicable to describe
both interior and exterior acoustic problems

C(r) p(r) = g(r, rq, k) +

∫

Γf

(
p(rb)

∂g(r, rb, k)

∂n
+ jρω vn(rb) g(r, rb, k)

)
dΓ(rb). (6)

This boundary integral equation relates the pressure p at position r to the pressure distri-
bution p and normal velocity distribution vn along the finite part of the domain boundary
Γf = Γp ∪ Γv ∪ ΓZ . The equation is referred to as the direct boundary integral since the
involved boundary values are the acoustic quantities of interest. In equation (6), the vector
rb indicates the position of the boundary points. The ∂/∂n = nT

∇ operator represents
the gradient operator in the outward normal direction n. The free-field Green’s function
g(r, rq, k) takes the effect of the acoustic line source (2D) or of the acoustic point source
(3D) at position rq into account. The free-field Green’s function is a fundamental solution
of the inhomogeneous Helmholtz equation (2) given by

g(r, rq, k) =






−j
4
H(2)

o (k‖r − rq‖), (2D)

e−jk‖r−rq‖

4π‖r − rq‖
, (3D)

(7)

where H
(2)
o represents the zero-order Hankel function of the second kind. The free-field

Green’s function is also used as kernel function g(r, rb, k) in the boundary integral equa-
tion (6). The position dependent coefficient C(r) in this equation is given by

C(r) =






1, ∀ r ∈ {Ω\Γf},
1
2 , ∀ r ∈ Γf ,

0, ∀ r /∈ Ω.

(8)

Note that the value 1
2 holds for the boundary points rb where the normal vector n is

continuous. Otherwise the coefficient C(rb) takes a value between 0 and 1 depending on
the discontinuity or the jump of the normal vector [[n(rb)]]. The derivation of the direct
boundary integral equation is too lengthy to present here. The interested reader is referred
to [5, 6, 7, 26] for the details.

A second type of boundary integral formulation is based on the indirect boundary
integral equation given by

p(r) = g(r, rq, k) +

∫

Γf

(
−σ(rb) g(r, rb, k) + µ(rb)

∂g(r, rb, k)

∂n

)
dΓ(rb). (9)
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The term ’indirect’ refers to the boundary values σ(rb) and µ(rb), which are not the acoustic
variables of interest, i.e. p and vn. However, the boundary values represent the densities of
continuously distributed sources along the finite part of the boundary Γf .

Recall that g(r, rb, k) is the free-field pressure response for a point source at position
rb. In the indirect boundary integral equation (9), an infinite number of point sources are
distributed along the boundary Γ(rb) with the density σ(rb). The integration along the
boundary represents their combined effect on the pressure field and is usually referred to as
the single layer potential. Similarly, it is not difficult to see that ∂g(r, rb, k)/∂n represents
the free-field pressure response for a dipole source at position rb. The integration of an
infinite number of dipole sources with the density µ(rb) results in the double layer potential.

The indirect boundary integral formulation allows one also to consider combined in-
terior/exterior acoustic problems and acoustic problems with open boundaries. For these
types of problems, the single and double layer potential densities σ(rb) and µ(rb) are related
as follows to the acoustic variables

σ(rb) =
j

ρω
(vn(r+

b ) − vn(r−b )), (10a)

µ(rb) = p(r+
b ) − p(r−b ). (10b)

The r+
b vector indicates the boundary position rb at the positive side of the boundary, i.e.,

the side in which the normal vector n is directed. The r−b vector indicates the opposite,
negative side.

The solutions of the boundary integral equations in (6) and (9) satisfy the Sommerfeld
radiation condition a priori (although this is irrelevant for the bounded problems). These
solutions are obtained in two steps.

1. The boundary integrals are evaluated along the boundary Γf . This requires the sub-
stitution of the boundary conditions resulting in a boundary integral for the unknown
boundary values. For example, in case of the direct formulation with a prescribed
normal velocity distribution v̄n(rb), this integral becomes

1
2p(r) = g(r, rq, k)+

∫

Γf

(
p(rb)

∂g(r, rb, k)

∂n
+ jρω v̄n(rb) g(r, rb, k)

)
dΓ(rb), ∀r ∈ Γf . (11)

2. All boundary values are known from the previous step. The pressure at an arbitrary
position r follows from the evaluation of the considered boundary integral equation.

3 FINITE ELEMENT METHOD

3.1 Basic formulations

The finite element method (FEM) has proven to be one of the most suitable computational
methods for solving engineering problems, which consist of finding the spatial and possibly
temporal distribution of physical quantities in a continuous medium [3]. Its application for
acoustic problems is well developed [4]. This section outlines the basic formulation of the
method rather detailed. The reason for this is twofold. The numerical difficulties, which
arise in high-frequency acoustics, can be clearly illustrated and many methods nowadays
consist of enhancing the classical FEM.

Consider the interior acoustic problem, which is fully described by equations (1)–(3).
The exact solution of this problem is approximated by employing the following finite element
(FE) strategy:
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1. The bounded domain Ωi is subdivided in subdomains (Ωi = ∪ne

e=1Ω
e with Ωe ∩ Ωg = 0,

∀ e 6= g), i.e. the finite elements Ωe as shown in figure 3. The boundary of each
element ∂Ωe = Γe

p ∪ Γe
v ∪ Γe

Z ∪ Γe
i is composed of the intersections with the problem

boundary, e.g. Γe
p = ∂Ωe ∩ Γp, and the common interface Γe

i between two elements.

At the common interface Γi = Γe
i = Γg

i , the continuity of the field variables is imposed

pressure continuity : pe(r) = pi(r) = pg(r), ∀ r ∈ Γi, (12a)

velocity continuity : nT
e ve(r) = vni(r) = −nT

g vg(r), ∀ r ∈ Γi, (12b)

where the subscript e, g and i refer to the two adjacent elements Ωe and Ωg and their
common interface Γi, respectively.
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Figure 3: Finite element model for interior acoustic problem

2. Within each element Ωe, a linear combination of polynomial basis functions approxi-
mates the exact solution

p(r) ≈ p̂(r) =

na∑

a=1

Na(r) p
e
a = N(r)pe, ∀ r ∈ Ωe, (13a)

v(r) ≈ v̂(r) =
j

ρω
∇p̂(r) =

j

ρω
∇N(r)pe, ∀ r ∈ Ωe. (13b)

The contribution factors pe
a, stored in the element vector pe, form the unknown el-

ement degrees of freedom. These unknown degrees of freedom are generally nodal
pressure values. The corresponding basis functions Na are stored in the row vec-
tor N.

3. The approximation (p̂, v̂) satisfies the equation of motion (1b) and the pressure con-
tinuity in (12a) by definition. Furthermore, the prescribed pressure distribution
p̄(r) ∀r ∈ Γp is usually represented by piecewise (bi)linear functions, which can
exactly be described by the pressure approximation p̂. However, the approximation
does not satisfy the remaining equations, i.e. the conservation of mass (1a), the ve-
locity boundary condition in (3b), the impedance boundary condition in (3c) and the
velocity continuity in (12b). The involved residuals on these relations are enforced to
zero in some integral sense. This is achieved by either the weighted residual approach,
the principle of virtual work or a variational principle. All three approaches yield the
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following weak problem formulation on element level

−ω2

∫

Ωe

u
1

c2
p̂ dΩ + jω

∫

Γe
Z

u
ρ

Z̄
p̂ dΓ +

∫

Ωe

(∇u)T (∇p̂) dΩ = . . .

. . . = jω

∫

Ωe

u ρ qδ(r, rq) dΩ − jω

∫

Γe
v

u ρ v̄n dΓ − jω

∫

Γe
i

u ρ vni dΓ,

(14)

where u = u(r) represents an arbitrary test function, which is zero along Γe
p.

4. The above weak problem formulation is transformed into a set of na algebraic equa-
tions by following the Galerkin approach. Each basis function Na of the pressure
approximation p̂ in equation (13a) is selected as test function once. Together with
the substitution of the pressure approximation p̂, this approach yields the following
FE description

(
−ω2Me + jωCe + Ke

)
pe = jω(qe − ve − ve

i ). (15)

In this algebraic equation, Me, Ce and Ke represent the acoustic mass, damping
and stiffness matrix. The vectors qe, ve and ve

i are the acoustic loading vectors
associated with the point source q, the prescribed normal velocity v̄n and the interface
velocity vni.

5. Finally, the assembly of all element models results in the following FE model

(
−ω2M + jωC + K

)
p = jω(q − v) (16)

where the vector p is the solution vector. It collects all degrees of freedom, which are
nodal pressure values. The pressure boundary conditions are taken into account by
assigning the prescribed pressure values directly to the nodal degrees of freedom on
the boundary Γp, such that these degrees of freedom are no longer unknowns of the
FE model. Note that the ve

i contributions of two adjacent elements cancel out each
other, because the inter-element pressure continuity along their common interface Γe

i
is satisfied a priori (conforming elements).

3.2 Treatment of unbounded domains

A difficulty in the application of the FEM for exterior acoustic problems lies in the effective
treatment of unbounded domains, because these cannot be subdivided into a finite number
of elements. Therefore, an artificial boundary Γt is introduced in order to truncate the
unbounded domain [27]. This results in a bounded domain Ω̄e for the exterior acoustic
problem, which is subdivided using conventional finite elements (see figure 4). The artificial
truncation boundary Γt, however, requires some special treatment in order to prevent or
to reduce the spurious reflections of waves. The three most commonly used treatments are
[15, 16, 28]

1. the application of absorbing boundary conditions,

2. the explicit modelling of the unbounded domain using infinite elements or

3. the introduction of absorbing layers,

which are discussed briefly here.
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Figure 4: Finite element model for exterior acoustic problem
with artificial truncation boundary Γt

3.2.1 Absorbing boundary conditions

The absorbing boundary conditions are mathematical relations between the pressure p and
its derivatives at the truncation boundary Γt. A distinction is made between conditions
defined by a local scheme and those defined by a global scheme.

The local schemes retain the sparse and banded structure of the FE system matrices.
They are applicable to more generally shaped artificial boundaries and they usually guar-
antee the uniqueness of the solution. The low-order local schemes are easy to implement
but they tend to lose accuracy for the higher frequencies [29]. Furthermore, the artificial
boundary must be placed far enough from the radiating or scattering object to prevent spu-
rious reflections. The impedance boundary condition in equation (3c) is an example of the
most simple, first-order local boundary condition of this type. Higher-order local schemes
improve the accuracy but their implementation is more demanding due to the presence of
the high-order derivatives. Alternatively, the order of the absorbing boundary conditions
can be increased rather easily by the introduction of auxiliary variables which eliminate the
high-order derivatives at the expense of additional degrees of freedom [30].

Also in case of the global scheme, the order of boundary conditions can be increased eas-
ily to obtain the desired level of accuracy. However, the geometry of truncation boundary
Γt is limited to relatively simple shapes. Furthermore, all degrees of freedom on Γt are cou-
pled, which results in a significant reduction of the sparsity of the system and which requires
special procedures for implementation and parallelization. The Dirichlet-to-Neumann map-
ping is the most commonly used approach of this type [31, 32, 33]. The order of the series
expansion of the Dirichlet-to-Neumann boundary condition determines the accuracy of the
procedure. Despite the theoretical correctness of the approach, the fact of being a global
method degenerating the sparse structure of the FE system matrices is a major practical
disadvantage.

3.2.2 Infinite elements

The truncation boundary Γt is subdivided in a finite number of infinite elements [34]. These
elements explicitly model the unbounded domain outside bounded domain Ω̄e. They have
finite dimensions in the plane of the truncation boundary Γt, but they extend to infinity
in the outward normal direction n. The FE approximation in that direction consists of a
combination of a suitable amplitude decay and a wave-like radial variation for modelling the
outgoing travelling waves. The accuracy of the approximation improves for an increasing
radial order of the FE basis functions, but also the computational costs increase in that
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case.
Two leading approaches have emerged within the infinite element world [35], namely (i)

the unconjugated Burnett elements and (ii) the Astley-Leis wave envelope elements. The
unconjugated Burnett elements [36, 37] use the same basis functions for both the trial and
the test functions (Galerkin approach). This results in symmetric but frequency dependent
system matrices. Their condition number increases rapidly for an increasing radial order.
Furthermore, the model generation involves some tedious numerical integration. The un-
conjugated Burnett elements are believed to provide the best accuracy for the near-field
whereas the Astley-Leis wave envelope elements are most effective in the far-field [29]. In
the wave envelope elements [38, 39], the test functions are conjugates of the basis functions
in the FE approximation and a geometrical weighting factor is introduced. This results
in frequency independent system matrices which are no longer symmetric. Furthermore,
the numerical integration is less expensive than for the unconjugated elements and the
ill-conditioning can be avoided by the selection of a suitable radial basis. Unfortunately,
the performance of both the conjugated and unconjugated infinite elements deteriorates at
higher frequencies and for stretched truncation boundaries [40].

3.2.3 Absorbing layers

Berenger [41] introduces the perfectly matched layer concept for treating the truncation
boundary in exterior electromagnetic wave problems. This concept is applicable for acoustic
radiation and scattering problems too [42]. The basic idea is to introduce an exterior
layer of finite thickness at the truncation boundary. The purpose of this additional layer
is to absorb the outgoing waves. The reflection of plane waves with arbitrary angles of
incidence can be eliminated theoretically by splitting a scalar field and by selecting the
proper perfectly matched layer coefficients. Perfect absorbance can be reached for increasing
layer thickness. All in all, the practical implementation involves several parameters, such
as the layer thickness, the number of divisions of the perfectly matched layers and the
variation and the limits of their coefficients. Current research focuses on the optimization
of these parameters.

3.3 Accuracy at high frequencies

The convergence of the FEM is guaranteed if the approximation solution satisfies the fol-
lowing convergence criteria [3].

1. A ’rigid’ body mode, i.e. a constant pressure distribution, does not result in a con-
tribution to the particle velocity field.

2. The approximation solution must be able to describe a constant particle velocity field.
This criterion is commonly referred to as the criterion of completeness.

3. The particle velocity approximation must be finite at the element boundaries, which
implies the imposition of C0 continuity conditions for the pressure approximation.
This criterion is commonly referred to as the compatibility condition.

The above criteria are satisfied if the ‘serendipity’ family of 2D rectangular and 3D brick
elements is used or the family of 2D triangular and 3D tetrahedral elements. These elements
may be distorted in order to mesh the bounded acoustic domain Ωi or Ω̄e with an irregu-
larly shaped boundary Γf (∪Γt) using less elements. In those cases, the application of the
isoparametric mapping procedure ensures that the convergence criteria are still satisfied.

In case of elliptic problems, such as the Poisson problem, the FEM provides an accurate
approximation irrespective of the applied mesh size h. However, the linear Helmholtz
equation is indefinite. The FEM, applied to indefinite problems, converges only if the mesh
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size h is smaller than a critical mesh size hcr. The solution of a time-harmonic acoustic
problem contains harmonic components with wavelengths of λ = 2π/k = 2π c/ω. At least
two elements are required per wavelength. Consequently, the critical mesh size would be
hcr = π/k = π c/ω.

In order to describe the spatial variation of the harmonic component with a certain level
of accuracy, often the ‘rule of thumb’ is applied, which states that at least 6 to 10 linear
elements should be used per wavelength λ. Thus, the maximal mesh size according to this
rule would be hmax = 1/k = c/ω (≈ 6 elements per λ). The ‘rule of thumb’ controls the
approximation error well for low frequencies or small wave numbers, where the approxima-
tion error is governed mainly by the interpolation error. The latter error is the difference
between the exact solution and the approximation solution, which is based on the linear
combination of basis functions weighted by the exact nodal solutions. However, for higher
frequencies or increasing wave numbers, the interpolation error gets polluted. That is, the
approximation error is no longer governed by the interpolation error only, but the so-called
pollution effect gains importance. The FE approximation introduces artificial dispersion,
which causes this pollution effect.

Figure 5: 1D acoustic problem: tube

The consideration of a 1D acoustic problem helps to clarify the distinction between
the two sources of error. Figure 5 depicts the 1D acoustic problem consisting of a tube of
length L filled with air (ρ = 1.225kg/m3, c = 340m/s). A unit normal velocity excites the
acoustic system at left end. At the right end, an absorbing boundary condition is imposed,
such that the pressure response consists of a propagating wave. The mathematical model
is reformulated in the following non-dimensional variables

x̃ =
x

L
, k̃ = kL and h̃ =

h

L
. (17)

This allows one to distinguish between the low wave number range (k̃ ≪ 1) and the high

wave number range (k̃ > 1). Figure 6 shows the pressure distribution for the ‘rule of

thumb’ with kh = k̃h̃ = 1 for the high wave number of k̃ = 10. The approximation shows a
wave that propagates with a larger wavelength than the exact solution. In other words, the
numerical wave number k̃n is smaller than the physical wave number k̃, which corresponds to
the dispersion-free propagating wave. The erroneous approximation of the relation between
the radial frequency ω and the wave number k̃ is referred to as the dispersion error. The
dispersion error causes the pollution effect, which can be defined as the difference between
the approximation solution p̂intp, obtained by interpolation of the exact solution p, and the
FE approximation p̂FE as clarified in figure 6. In case of a regular mesh, the dispersion
error can be predicted. Consider the patch of elements surrounding node a in a 1D mesh as
shown in figure 7. A FE discretization is made of the 1D homogeneous Helmholtz equation
based on the linear elements in the patch with the basis functions Na−1, Na and Na+1.
This results in the following algebraic equation for node a

A1 pa−1 + 2A0 pa +A1 pa+1 = 0 with A0 = 1 − 1
3(k̃h̃)2

and A1 =−1 − 1
6(k̃h̃)2

(18)
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Figure 6: Pressure distribution in the tube at k̃h̃ = 1 (– – p, N–. p̂intp, �— p̂FE)

Figure 7: Element patch in regular finite element meshes for dispersion analyses

where pa represent the nodal pressure at position x̃a = ah̃. The solution of this equation is
a propagating wave

pa = p̂(x̃a) = ejk̃nx̃a (19)

with the numerical wave number k̃n. The substitution of this solution in the homogeneous
differential equation (18) and some further mathematical operations result in the following

explicit dispersion relation for the numerical wave number k̃n multiplied by the mesh size
h̃

k̃nh̃ = arccos(−A0/A1) ≈ k̃h̃− 1
24(k̃h̃)3 + O

(
(k̃h̃)5

)
(Taylor expansion). (20)

This relation shows (i) that the numerical wave number k̃n is smaller than the physical

wave number k̃ and (ii) that keeping k̃h̃ = kh constant, as in case of the ‘rule of thumb’,
does not control the dispersion error.

The pollution effect, caused by the dispersion error, is kept within acceptable limits by
the following rule

k̃3h̃2 = constant. (21)

This rule follows from an a priori error estimation discussed by Ihlenburg [4].
A similar dispersion analysis as presented above can be performed for a regular 2D

mesh. Consider the patch of elements surrounding the node at position (x̃a, ỹb) = (ah̃, bh̃)
in a 2D mesh as shown in figure 7. The FE discretization, based on bilinear elements with
the basis functions N•⋆, of the 2D homogeneous Helmholtz equation results in the following
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algebraic equation

A2 pa−1,b−1 +A1 pa,b−1 +A2 pa+1,b−1 + . . .

. . .+A1 pa−1,b +A0 pa,b +A1 pa+1,b + . . .

. . .+A2 pa−1,b+1 +A1 pa,b+1 +A2 pa+1,b+1 = 0

with






A0 = 8
3 − 16

36(k̃h̃)2,

A1 =−1
3 − 4

36(k̃h̃)2,

A2 =−1
3 − 1

36(k̃h̃)2,

(22)

where pa,b represents the nodal pressure at position (x̃a, ỹb). The solution of this equation
is formed by the set of all propagating waves given by

pa,b = p̂(x̃a, ỹb) = ejk̃n(x̃a cos(θ)+ỹb sin(θ)) (23)

where θ represents the direction of the propagating wave. The substitution of this solution in
the homogeneous differential equation (22) and some further mathematical operations result

in the following implicit dispersion relation for the numerical wave number k̃n multiplied
by the mesh size h̃

A0 + 2A1(cos(ξ̃1) + cos(ξ̃2)) + 4A2(cos(ξ̃1) cos(ξ̃2)) = 0 with ξ̃1 = k̃nh̃ cos(θ)

and ξ̃2 = k̃nh̃ sin(θ).
(24)

Figure 8 visualizes this relation for the ‘rule of thumb’ with k̃h̃ = 1. The numerical wave
number k̃n is clearly direction dependent and smaller than the physical wave number k̃ for
each direction θ. The largest differences occur for waves propagating along the grid lines,
which equals the difference between the numerical wave number k̃n and the physical k̃ in
the 1D case. Therefore, rule (21), where k̃3h̃2 is kept constant, will control the pollution
effect for the 2D case too. The extension to the 3D case is straightforward and, therefore,
it is not considered here.

Figure 8: Dispersion curve for k̃h̃ = 1 (– – k̃,— k̃n)

The simple dispersion analyses presented here illustrate the challenge in high-frequency
acoustics. The convergence of the FEM applied to time-harmonic acoustics is mesh size
dependent. A ’rule of thumb’ (k hmax = (ω/c)hmax = 1) states that at least 6 to 10 lin-
ear elements should be used per wavelength λ to control the interpolation errors. Since
the wavelength λ = 2π c/ω is inversely proportional to the radial frequency ω, the number
of elements needs to grow for increasing frequencies in order to comply with the ’rule of
thumb’. Moreover, at high frequencies, the FE approximation shows artificial dispersion
which pollutes the interpolation errors. The more stringent rule (21) is necessary to control
these pollution effects resulting in a further increase of the number of degrees of freedom.
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Both the mesh size dependent convergence and the numerically introduced dispersion com-
plicate the application of the classical FEM for high-frequency acoustics. Therefore, in
order to meet this computational challenge, the enhancements and the extensions of the
FEM focus on reducing these two main drawbacks. However, the 2D dispersion analysis
shows already that this will not be easy due to the direction dependency of the numerically
introduced dispersion.

More details on the numerical dispersion analysis and on the error estimation in the
FEM applied to linear acoustics can be found in [4]. This reference also considers the p-
version of the FEM, which uses higher order polynomial basis functions and thereby suffers
less from numerical dispersion.

3.4 Enhancements and extensions

Several enhancements and extensions of the FEM coexist which try to improve the accuracy
at high frequencies. Their number is too large to discuss them all in detail. Nevertheless,
this paper tries to capture most of them in five categories, which are

1. the process optimization methods,

2. the domain decomposition methods,

3. the stabilized methods,

4. the generalized methods and

5. the multi-scale methods.

The remaining part of this chapter gives a brief overview of the state-of-the-art per category.

3.4.1 Process optimization methods

Several FE processes can be optimized. The computational resources, which come available
in this way, are used to fulfil the mesh size criteria at higher frequencies. The most obvious
optimization techniques are the r-, h- and p-refinement and their combinations (see a.o.
[43, 44, 45, 46, 47]). They usually require a posteriori error estimators for which Ainsworth
and Oden [48] and Zienkiewicz [49] give general overviews. Oden et al. [50] focus more
on their application in acoustics. An adaptive approach improves the efficiency further by
refining the regions with largest errors more.

Another process, which can be optimized, is the FE model generation. This process
includes a large number of integral evaluations, which are usually performed numerically.
A reduced numerical integration scheme obviously results in a cost reduction. However,
this cost reduction is only marginal since the FE model generation is responsible for only a
small part of the overall computational costs. The major advantage of reduced integration
is its positive influence on the numerical dispersion. Thompson and Kunthong [51] and
Guddati and Yue [52], for example, have recognized this effect and they make even a more
efficient use of it by selecting non-conventional integration point positions.

Solving the system of algebraic equations consumes most of the computing time. These
systems consist of huge but sparsely populated matrices due to the mesh requirements
at high frequencies. The classical Gaussian elimination and factorization schemes are not
applicable anymore. The use of skyline solvers is inevitable. Direct skyline solvers are
available [53], but the sparse iterative solvers become more and more standard in large
scale numerical analyses [54]. These iterative solvers are computational more efficient,
but they lack robustness and their performance is highly problem dependent. However,
the mathematical community continuously improves the iterative solvers and makes them
generally applicable.
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3.4.2 Domain decomposition methods

Despite the continuous growth of the available computational capacity and despite the
improvement of the sparse iterative solvers, the FE models may still be too large for real-
life acoustic problems in e.g. automotive or aerospace engineering. Domain decomposition
methods allow one to tackle these problems based on a divide and conquer principle. That
is, it is more efficient to solve a large number of small problems than to solve a single
huge problem. An additional advantage of this strategy is that it is well suited for parallel
implementation.

The component mode synthesis [55] is a well established tool in the field of structural
dynamics. It consist of subdividing a structure into several components. The component FE
models are reduced using a small basis of Ritz vectors. The reduced models are assembled
and solved for the overall reduced set of degrees of freedom. The Craig-Bampton method is
probably the most popular component mode synthesis method. It requires a.o. a Ritz vector
for each FE node on the common interface between components. This is disadvantageous
for the acoustic problems considered here because (i) the interfaces are not discrete coupling
points but lines (2D) or surfaces (3D) and (ii) the number of interface nodes grows with
frequency in order to satisfy the mesh requirements.

This drawback of the component mode synthesis is overcome by the automated multi-
level substructuring method [56, 57]. It follows a procedure which automatically subdivides
the FE model (i) in a large number of substructures (ii) on multiple levels (iii) based on
the sparsity of the model matrices. A large number of small eigenvalues needs to be solved
in this way. Consequently, this multi-level method is computational far more efficient than
the component mode synthesis and it is inherently better suited for parallelization. Kropp
and Heiserer [58] and Stryczek et al. [59] have applied this method successfully for solving
real-life structural-acoustic problems in automotive engineering.

Schwartz alternating procedures incorporate the domain decomposition principles di-
rectly in the sparse iterative solvers [54, 60, 61]. The problem domain is subdivided into
(non-)overlapping subdomains. Schwartz alternating procedures follow a two-level strategy
to solve the corresponding subproblems. On the local level, each subproblem is solved us-
ing the intermediate pressure solutions of neighbouring subdomains as essential boundary
conditions. On the global level, a reduced problem is solved iteratively for the unknown
interface degrees of freedom.

The Schwartz alternating procedures have been applied successfully in many engineering
disciplines, but the indefiniteness of the Helmholtz equation poses serious challenges on their
performance [62]. Instead of enforcing essential boundary conditions on the local level,
Farhat and Roux [63] propose the use of the Lagrange multiplier technique to interconnect
the non-overlapping subdomains. This results in the so-called finite element tearing and
interconnecting method. The overall problem is described by the reduced set of Lagrange
multipliers and solved iteratively on the global level. The method has proven to provide
reliable results if (i) proper Lagrange multipliers are selected, which regularize the local
problems, and if (ii) the global problem is preconditioned properly. The finite element
tearing and interconnecting method has been applied successfully a.o. in acoustics [62, 64,
65, 66] and in structural-acoustics [67].

3.4.3 Stabilized methods

The stabilized FE methods belong to the first class of methods which aim at reducing the
artificial dispersion. They modify the weak problem formulation for that purpose such that
it becomes unconditionally stable [68]. This is achieved by including additional residual
terms in the bilinear part a(u, p̂) of the weak problem formulation in equation (14), which
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is given by

a(u, p̂) = −ω2

∫

Ωe

u
1

c2
p̂ dΩ + jω

∫

Γe
Z

u
ρ

Z̄
p̂ dΓ +

∫

Ωe

(∇u)T (∇p̂) dΩ. (25)

For example, the Galerkin least-squares (GLS) method [69, 70] includes the residual on the
Helmholtz equation in this way and the Galerkin gradient least-squares (G∇LS) method
[71, 72] the gradient of this residual

aGLS(u, p̂) = a(u, p̂) +

∫

Ωe

(∆u− k2u) τ (∆p̂+ k2p̂+ j ρω qδ(r, rq)) dΩ, (26a)

aG∇LS(u, p̂) = a(u, p̂) +

∫

Ωe

(∇(∆u− k2u))T τ ∇(∆p̂+ k2p̂+ j ρω qδ(r, rq)) dΩ, (26b)

where τ represents an algebraic design parameter. These additional residual terms result in
a modification of the model matrix (−ω2M + jωC + K) of the FE model in equation (16).
The optimal design parameter τopt follows from a dispersion analysis. The selection of
τopt eliminates the dispersion error completely in the 1D case. Unfortunately, this is not
the case for higher-dimensional problems. The selection of τopt can only eliminate the
dispersion error in certain preferred directions. If the exact solution does not include large
contributions of wave components in those preferred directions, then the application of this
type of stabilization scheme has less influence on the overall accuracy.

The quasi-stabilized method [73, 74], on the other hand, minimizes the dispersion error
over all directions. This is achieved by modifying the coefficients of the dispersion relation,
i.e. A0, A1 and A2 in equations (18) and (22). Numerical experiments on the 2D Helmholtz
equation with a regular FE mesh illustrate that the quasi-stabilized method outperforms
the Galerkin least-squares method.

The local mesh-dependent augmented Galerkin method [75] is even more enhanced in
the sense that it considers the numerical dispersion as a position dependent acoustic prop-
erty. An artificial anisotropic dispersion is introduced to suppress the numerical dispersion
and thereby restoring the exact propagation characteristics. The method outperforms the
Galerkin least-squares method applied to 2D acoustic problems with non-uniform rectan-
gular meshes. However, further research is needed to extend the method for arbitrarily
distorted meshes.

3.4.4 Generalized methods

The generalized methods are based on the partition-of-unity method [76, 77]. They aim at
reducing the artificial dispersion by incorporating a priori knowledge about the global, short-
wavelength behaviour in the local approximation field. The application of these new ap-
proximations in the FE framework results in a modified model matrix (−ω2M + jωC + K)
of the FE model in equation (16).

In case of the partition-of-unity FEM [78, 79, 80, 81], a priori knowledge is incorporated
by replacing the local approximation in equation (13a) by a linear combination of free-space
solutions Φb(r) multiplied by the conventional polynomial basis functions Na(r)

p̂(r) =

na∑

a=1

Na(r) p
e
a → p̂(r) =

na∑

a=1

Na(r)

nb(a)∑

b=1

Φb(r)q
e
ba ∀ r ∈ Ω, (27)

where qe
ba represent the unknown degrees of freedom, which are generally not nodal pressure

values. The use of the basis functionsNa(r) localizes the global, short-wavelength behaviour
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and it guarantees the inter-element pressure continuity. The free-space solutions, which
describe the short-wavelength behaviour, have been selected from the set of

generalized harmonic polynomials: e±j nθJn(kr), n = 0, 1, 2, . . . (28a)

and plane wave functions: ej kr cos(θ−θn), n = 1, 2, . . .

θn ∈ [0, 2π].

(28b)

In these relations, r = (r, θ) represents the polar coordinate and Jn the Bessel functions of
the first kind. The application of the latter set of plane wave functions for the 2D Helmholtz
equation with a regular FE mesh shows an improved computational efficiency compared
with the stabilized methods. However, the treatise of essential boundary conditions and the
numerical integration require special attention. Furthermore, the set of algebraic equations
becomes ill-conditioned for a large number of free-space solutions Φb(r). These computa-
tional issues hold generally for all partition-of-unity based methods.

Another member of this class is the element-free Galerkin method [82, 83, 84, 85]. It is
based on the moving least-squares method [86] and, therefore, it forms a specific instance of
the partition-of-unity [77]. A weighted sum of a number of free-space solutions approximates
the pressure in the neighbourhood of the node at position ri

p̂(r) =

nb∑

b=1

Φb(r)αb(r), ∀ ‖r − ri‖ ≤ Di. (29)

Di represents the domain of influence of node i, which is a measure for the size of the
neighbourhood surrounding node i. The coefficients αb(r) are position dependent too. They
are obtained by a least-squares fit of the pressure approximation p̂ for all ni nodes, which
are scattered over the acoustic domain Ω. The pressure approximation can be expressed as

p̂(r) =

ni∑

i=1

Ψi(r) pi, ∀ r ∈ Ω (30)

where Ψi(r) represents the globally defined basis function associated with node i, which
contains knowledge about the short-wavelength behaviour, and pi is the corresponding
nodal degree of freedom. Numerical experiments show that the level of artificial dispersion
obtained with the element-free Galerkin method is comparable with the levels obtained
with the quasi-stabilized method.

3.4.5 Multi-scale methods

The multi-scale or multi-grid methods aim at reducing the artificial dispersion by incorpo-
rating a priori knowledge about the short-wavelength behaviour in the local approximation
field similar to the generalized methods. However, the multi-scale methods follow an addi-
tive approach rather than the multiplicative approach to do so. References [87, 88] provide a
general framework for the multi-scale methods, which is the variational multi-scale method
detailed below.

The basic assumption of the variational multi-scale method is that the exact solution
of the acoustic problem described by equations (2) and (3) is given by

p(r) = p̂(r) + p′(r), ∀ r ∈ Ω. (31)

This relation represents the direct sum of the coarse-scale solution p̂(r), for which the
classical FE solution of equation (13a) is chosen, and the fine-scale solution p′(r), which
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is solved analytically. The fine-scale solution p′(r) describes the global, short-wavelength
behaviour. It is defined for element interiors only, i.e. it vanishes on the element boundaries
∪ne

e=1∂Ωe. The weak form of the acoustic problem is decomposed into the following two
subproblems

coarse-scale problem: a(u , p̂) + a(u , p′) = b(u ) (32a)

fine-scale problem: a(u′, p̂) + a(u′, p′) = b(u′) (32b)

where a(v, p) and b(v) represent the bilinear and the linear operator, which are given by
the following relations in case of the acoustic problem

a(v, p) =−ω2

∫

Ω
v

1

c2
p dΩ + jω

∫

ΓZ

v
ρ

Z̄
p dΓ +

∫

Ω
(∇v)T (∇p) dΩ, (33a)

b(v) = jω

∫

Ω
v ρ qδ(r, rq) dΩ − jω

∫

Γv

v ρ v̄n dΓ. (33b)

Furthermore, the arbitrary test function u′ = u′(r) in equation (32b) belongs to the same
solution space as the fine-scale solution p′(r). The fine-scale problem is solved analytically,
which results in an expression for the fine-scale solution as function of the coarse-scale
residuals R(p̂) on the Helmholtz equation and the boundary conditions

p′ = M ′(R(p̂) ), (34)

where M ′ is a non-local integral operator. The substitution of the fine-scale solution in the
coarse problem results in the following weak problem formulation for the coarse scales

a(u, p̂) + a(u, M ′(R(p̂) ) ) = b(u) (35)

which exactly accounts for the non-local effect of the short-wavelength behaviour. Recall
that the underlying fine-scale solution vanishes on the element boundaries. Consequently,
the weak problem in equation (35) can be expressed on element level resulting in an ex-
pression which resembles the weak problem formulation of the stabilized methods. This
indicates that the two classes of methods are related.

In general, it is difficult to obtain a closed-form expression for the non-local operator
M ′. Therefore, several multi-scale methods have been proposed, which differ in the way
they approximate the non-local operator, i.e. how they approximate the fine-scale solution
p′(r) in equation (32b). In the residual-free bubble method [89, 90], the fine-scale solution
consists of a weighted sum of residual-free bubble functions. These bubble functions are
solutions of the fine-scale problem associated with the basis functions Na(r) of the FE
approximation on the coarse scales.

Since the set of bubble functions needs to be computed for each element, the residual-
free bubble methods is computationally demanding. The computational costs are reduced
substantially if a set of alternative bubble functions is used, which is computed only once per
frequency of interest for a single parent element [91]. These alternative bubble functions are
not exact solutions of the fine-scale problem, but they form merely a hierarchical extension
of the coarse-scale approximation space. Numerical experiments show that the same level
of accuracy is reaches as the FEM but for frequencies which are three times higher.

Oberai and Pinsky [92] solve the fine-scale problem (32b) approximately by application
of Green’s functions. The derived multi-scale method shows a super convergent behaviour
in the 1D case. However, for a 2D problem with a plane wave as exact solution, the accuracy
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depends on the direction of the wave propagation. This deficiency holds for all multi-scale
methods based on a fine-scale solution, which vanishes on the element boundaries.

In the discontinuous enrichment method [93, 94], the above restriction on the fine-scale
solution is somewhat relaxed. This allows the use of a free-field solution of the Helmholtz
equation Φb(r) as fine-scale basis functions, similar to the ones used by the generalized
methods, which do not vanish on the element boundaries. Consequently, the direct sum
of the FE approximation p̂(r) and the fine-scale solution p′(r) may violate the pressure
continuity across element boundaries (non-conforming elements). The application of the
Lagrange multiplier technique enforces the pressure continuity weakly. Numerical experi-
ments show that the discontinuous enrichment methods suffers less from pollution errors
than the classical FEM. Furthermore, the involved models are not as ill-conditioned as
partition-of-unity FE models of comparable numerical accuracy.

4 BOUNDARY ELEMENT METHOD

4.1 Basic formulations

The boundary element method (BEM) is a numerical prediction method which is often
applied for solving engineering problems [5]. Amongst others, the method is also well
established for the solution of acoustic problems [6, 7]. Unlike the FEM, which makes direct
use of the Helmholtz differential equation (2), the BEM starts from a boundary integral
formulation for constructing a numerical model. Depending on the choice of the integral
formulation, (6) or (9), a direct boundary element (BE) or an indirect BE formulation is
obtained. This section outlines the basic formulation of the both approaches.

4.1.1 Direct boundary element method

The direct BEM is based on the direct boundary integral (6) and, hence, can be used for the
solution of interior acoustic problems or exterior acoustic problems with a closed boundary
surface Γf . The method follows a two-step procedure.

In the first step the pressure and normal velocity distributions on the closed boundary
surface Γf are determined. In a similar way as in the FEM, the closed boundary surface Γf

is discretized into a number of small subsurfaces Γe such that Γf = ∪ne

e=1Γ
e with Γe∩Γg = 0,

∀ e 6= g). These subsurfaces are referred to as boundary elements. Within each boundary
element, the distributions of the pressure p(r) and normal velocity vn(r) are approximated
by a linear combination of polynomial basis functions

p(r) ≈ p̂(r) =

na∑

a=1

N e
a(r) pe

a, ∀ r ∈ Γe, (36a)

vn(r) ≈ v̂n(r) =

na∑

a=1

N e
a(r) ve

na, ∀ r ∈ Γe. (36b)

With na the number of nodes associated with boundary element Γe. Based on the element
shape functions N e

a , which are locally defined within one boundary element Γe, some global
shape functions Na may be constructed, which are defined in the entire boundary surface
Γf . In this way, global boundary variable expansions may be defined as

p(r) ≈ p̂(r) = N(r)p, ∀ r ∈ Γf , (37a)

vn(r) ≈ v̂n(r) = N(r)vn, ∀ r ∈ Γf . (37b)

The contribution factors pe
a and ve

na, stored in the (nb × 1) column vectors p and vn,
respectively, with nb the total number of boundary surface nodes, form the unknown degrees
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of freedom. The corresponding global basis functions Na are stored in the (1 × nb) row
vector N. Note that, although this is assumed in equation (36), the shape functions for the
expansion of the boundary surface pressure and the boundary surface normal velocity do
not have to be the same.

The determination of the unknown degrees of freedom is commonly based on a collo-
cational scheme. In this scheme, the direct boundary integral formulation (6), using the
boundary variable expansions (36), is evaluated for positions r, which correspond to the lo-
cations of the nb nodes in the boundary surface discretization. This results in the following
matrix equation

Ap = jρωBvn, (38)

with matrices A and B the (nb × nb) direct BEM system matrices. This linear system of
equations has twice as many unknowns as it has equations. Since the boundary conditions
(3) impose either a prescribed pressure, a prescribed normal velocity or a prescribed normal
impedance relation between both boundary variables, at each node either the pressure value
pe

a or the normal velocity value ve
na or their normal impedance relation is known a priori.

Hence, the number of unknowns reduces with nb, and the remaining nb unknown boundary
variables may be determined by solution of the system.

In the second, post-processing step, the pressure in any point of the interior or exterior
acoustic domain is obtained from the direct boundary integral formulation (6), using the
surface results from the first step. In this way, the approximation for the pressure at a
certain point r ∈ Ω{i/e}\Γf is

p(r) = Cp + Dvn. (39)

4.1.2 Indirect boundary element method

The indirect BEM is based on the indirect boundary integral (9) and, hence, can be used for
the solution of combined interior/exterior acoustic problems or exterior acoustic problems
with an open boundary surface Γf . Identical the direct BEM, the indirect BEM follows a
two-step procedure.

In the first step, the boundary surface variables, being the single and double layer
potentials (10), are determined. In a similar way as in the direct BEM, the closed boundary
surface Γf is discretized into a number of boundary elements. Within each boundary
element, the single and double layer potential σ(r) and µ(r) are approximated by a linear
combination of locally defined polynomial basis functions. The construction of global shape
functions allows to define the following global boundary variable expansions

σ(r) ≈ σ̂(r) = N(r) σ, ∀ r ∈ Γf , (40a)

µ(r) ≈ µ̂(r) = N(r) µ, ∀ r ∈ Γf . (40b)

With σ and µ two (nb × 1) column vectors, storing the unknown shape function contribu-
tions. The (1 × nb) row vector N stores the corresponding global shape functions. Note
that, although this is assumed in equation (40), the shape functions for the expansion of
the single and double layer potential do not have to be the same.

The use of a collocational approach to determine the unknown degrees of freedom,
as selected in the direct BEM, becomes much more difficult, since the evaluation of the
indirect boundary formulation (9) for discrete positions r on the boundary Γf requires the
numerical evaluation of Hadamard finite part integrals [26]. Therefore, another solution
technique is used, which relies on a variational formulation and which leads to regular
integrals. Minimization of the functional involved with the variational formulation results
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in the following matrix equation

[
B C

CT D

]{
σ
µ

}
=

{
fσ
fµ

}
, (41)

with matrices B, C and D the (nb ×nb) indirect BEM system matrices and with fσ and fµ
the (nb × 1) right-hand side vectors. Since, from the imposed boundary conditions (3), at
each node either the single layer potential, the double layer potential or a relation between
both boundary variables can be derived a priori, the number of unknowns reduces to nb

boundary variables, which may be determined by solution of the system.
In the second, post-processing step, the pressure in any point of the interior or exterior

acoustic domain is obtained from the indirect boundary integral formulation (9), using the
surface results from the first step. In this way, the approximation for the pressure at a
certain point r ∈ Ω{i/e}\Γf is

p(r) = Aσ σ + Aµ µ. (42)

4.2 Comparison with the finite element method

Since the BEM and the FEM are based on a completely different modelling approach, both
methods yield numerical models with very different characteristics. Due to the application
of a boundary integral formulation, a BE approach only discretizes the boundary of the
considered problem such that the numerical BE models are smaller than corresponding
FE models. However, the BE system matrices are fully populated with complex and fre-
quency dependent coefficients and result from more complicated numerical integrations, as
compared to the sparsely populated FE system matrices which can be decomposed into a
number of frequency independent submatrices whose coefficients result from simple inte-
grations of polynomial functions. Since the boundary integral formulations, applied in the
BEM, are available as analytical expressions, there is no additional accuracy decrease for
derived acoustic variables, unlike with the FEM, where the polynomial shape functions,
which approximate the fundamental acoustic field (most commonly the acoustic pressure),
result in polynomial functions of lower order to approximate the higher order derived vari-
ables. Furthermore, in contrast with the FEM, the BEM can easily handle problems with
unbounded acoustic domains, since the Sommerfeld radiation condition is inherently satis-
fied. Finally, like the FEM (see section 3.3), the BEM also suffers from numerical pollution.
As a result, the BE discretization also needs to be refined with increasing frequency [95].

It is clear that assembly of a BE model is more time consuming as compared to the fast
assembly of a FE model. Whereas in a FE analysis, the bulk part of the computational
efforts is spent in solving the system of equations, a major part of the computational efforts
in a BE analysis is needed for constructing the model. Depending on the size of the models,
it is possible that the solution time for a densely populated BE model is lower that the
solution time of an associated, but much larger, sparsely populated FE model. However,
despite the possibly lower solution time, the BEM cannot counterbalance the increase in
construction time. In conclusion, the BEM can hardly compete with the FEM for solving
interior acoustic problems [96]. However, the BEM does become an efficient alternative for
tackling problems in unbounded domains. Nevertheless, the practical use of both the FEM
and the BEM is restricted to low-frequency applications.

4.3 Enhancements and extensions

A major disadvantage of the BEM is the associated fully populated system matrix. This
section briefly discusses some enhancements and extensions of the BEM which pursue de-
creasing of the density of the matrices, retaining a sparse structure, allowing a faster calcu-
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lation of the coefficients and faster solution of the model. The enhancements and extensions
are captured in three categories:

1. the process optimization methods,

2. the generalized methods and

3. the multipole methods.

4.3.1 Process optimization methods

In conventional direct BEM, the pressure response is governed by an integral equation, re-
lating the pressure anywhere in the domain to a pressure and normal velocity distribution
on the boundary. As a result, the obtained system matrix is fully populated. For acoustic
radiation problems the velocity distribution over the boundary is a priori known. Rayleigh
methods [97, 98] consider the vibrating boundary as a collection of independently vibrating
rigid pistons, whose amplitude of vibration is determined by the applied boundary condi-
tions. As a result the pressure in a point located in the acoustic problem domain can be
determined as a single integral over the boundary of the piston velocity and an appropriate
(singular) source formulation

p(r) =

∫

Γf

vn(ξ)Υ(r, ξ)dΓ(ξ) (43)

with vn(ξ) the piston velocity and Υ(r, ξ) the source formulation. Depending on the applied
approximation, Υ can be the free-field solution of a point source (7), the solution of a point
source in a semi-infinite environment, a collection of free-field solutions taking into account
reflections, etcetera. In this way, no large numerical matrix equation is constructed or needs
to be solved. However, Rayleigh methods lose accuracy at low frequencies and close to the
boundary.

The high-frequency BEM [97] is an alternative approximating method which assumes
the radiation impedance at the boundary surface to be approximately the same as the ρ c
characteristic impedance of the medium. For response points where kr becomes very large,
with k the wave number and r the distance to the boundary, the high-frequency BEM
develops into a Rayleigh method.

The lumped parameter BEM [99, 100] is a BEM which offers significant gains both in
assembly and solution speed. The concept of the method is to approximate the domain
boundary conditions in a special way. Both the normal velocity field and the pressure field
are characterized by a single lumped parameter for each discrete boundary element. The
physical basis for this approach is given by Fahnline and Koopman [101]. The lumped
parameter BEM applies a dual set of shape functions, namely higher-order functions to
describe the geometry and constant functions to approximate the boundary variables.

4.3.2 Generalized methods

Generalized BEMs incorporate a priori known information into the formulation, comparable
to the generalized FEMs (see section 3.4.4).

Perrey-Debain et al. [102] and Perrey-Debain et al. [103] developed an extension to the
conventional direct BEM which is called the wave boundary element method. Using ideas
arising from the partition-of-unity FEM, the underlying wave behaviour of the solution is
incorporated into the formulation of the boundary elements. As a result each element may
span a larger area of the boundary than a conventional BE. The wave boundary element
method reduces the size of the system matrices rather than attempting to introduce sparsity.
The basic idea is that the conventional polynomial BE shape functions are multiplied with
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plane wave functions. The number of plane waves and their direction may be chosen freely.
Evenly distributed directions are most commonly applied, but they may be irregularly
distributed if some knowledge about a prevailing wave direction is available. Just like
with the partition-of-unity FEM and other methods that apply plane wave functions, the
presence of a large number of plane waves causes the conditioning of the system to degrade.

A recently developed class of boundary element methods is the so-called wave number
independent methods. These methods try to adapt the conventional BEM so that the pre-
diction accuracy obtained with a given discretization becomes independent of frequency,
or at least that the computational costs grow with frequency at a sublinear, namely log-
arithmic, rate. The idea is to enrich the BE shape functions by incorporating the known
asymptotic behaviour of the solution at high frequencies. The integrands involved with the
new BE approaches may be decomposed into a highly oscillating factor and a smooth fac-
tor. Depending on the numerical scheme applied to incorporate the boundary conditions,
single or double integrals have to be solved. Chandler-Wilde et al. [104] apply a weighted
residual formulation and end up with highly oscillatory double integrals. Arden et al. [105]
describe a similar method, adapting a collocational scheme and having the advantage that
only highly oscillatory single integrals have to be evaluated. In this respect, the work of
Huybrechs and Vandewalle [106] is mentioned as a cost efficient method for evaluation of
single integrals and Huybrechs and Vandewalle [107] for the efficient evaluation of multi-
dimensional highly oscillatory integrals. Evaluation of both the weighted residual approach
and the collocational approach on 2D scattering problems by convex polygons, shows that
both methods indeed exhibit only a logarithmic increase in computational cost as frequency
increases. Huybrechs and Vandewalle [108] and Huybrechs [109] extend the collocational
method by introduction of very effective quadrature rules for the oscillatory integrals and
obtain a sparse discretization matrix for the problem. It is found that matrix entries are
non-zero only if at least one quadrature point exists that lies in the support of the basis
function. Therefore, the number of non-zero points depends on the size of the supports of
the basis functions. If all basis functions are local, then the structure of the matrix will
be sparse. At the moment, the wave number independent BE methods are restricted to
convex obstacle scattering problems. For non-convex obstacles, the asymptotic behaviour
at high frequencies is not available in an applicable form.

4.3.3 Multipole methods

The key idea of the fast multipole BEM [110, 111, 112, 113, 114, 115, 116] is to utilize two
formulations for the fundamental Green’s kernel solution, one in the near-field and one in
the far-field. The effect of sources far away from a field point apply a grouped multipole
expansion, whereas for nearby sources standard BEM evaluations are used. A multi-level
approach is applied in that the discretized boundary surface is fitted to a binary cluster
tree. A cluster is a collection of boundary elements which are located within a tolerance
range from the cluster’s centre. The basic idea is that only neighbouring clusters are
considered to be in the considered cluster’s near-field. These contributions are computed
directly by standard BEM evaluations. The children of the considered cluster’s parent
cluster are added to a so-called ’interaction’ set and appropriate multipole evaluations are
performed. This procedure is repeated upwards until the top of the tree is reached, after
which the determined contributions are passed downwards until they reach the lowest level.
On the lowest level, the results are recovered for each cluster. In this way, the multipole
BEM algorithm solves the problem with a computational cost that depends quasi linearly
on the number of unknowns, i.e. a complexity of N logN is obtained instead of N2 with
conventional BEM.

It is stated by various authors that the developments from the generalized methods may
be combined with a multi-level multipole approach, even further optimizing the modelling
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procedure.

5 TREFFTZ-BASED METHOD

5.1 Basic formulations

5.1.1 Origin

The discussion of the enhancements and extensions of both the FEM and the BEM has
revealed that the introduction of a priori knowledge of the exact solution improves the com-
putational efficiency of these methods substantially. Already in 1926, Trefftz [17] proposes
the use of this a priori knowledge in the definition of approximate solutions. His approxi-
mate solutions satisfy the governing domain equations but violate the boundary conditions.
Originally, Trefftz has introduced his approach as a counterpart for the Rayleigh-Ritz ap-
proach in order to obtain an error bound on the Rayleigh-Ritz prediction for a potential
problem. Only half a century later, researchers have picked up the idea of Trefftz again as
they recognize its potential advantages in numerical prediction methods. This has led to a
class of numerical methods which are generally called Trefftz-based methods. The reader
is referred to Jirousek and Wróblewski [18] for a historical overview of the development of
the Trefftz-based methods, while Kita and Kamiya [19] provide a detailed overview of most
accepted Trefftz-based methods.

In the mid-1990s, the Trefftz-based methods have made their entry in the field of com-
putational acoustics. One of the first attempts to apply this method to the homogeneous
Helmholtz equation has been reported by Cheung et al. [117]. The original approach of Tr-
efftz is detailed in that publication for the calculation of wave forces on offshore structures
and is reformulated here for acoustics. The purpose of this outline is merely to illustrate
the basics of the Trefftz-based method. Subsequent sections provide a more detailed survey
of different Trefftz-based methods.

5.1.2 Indirect formulation

Cheung et al. [117] consider the Helmholtz problem for an unbounded domain. The Som-
merfeld radiation condition in equation (4) or (5) applies in order to model the far-field at
infinity Γ∞ correctly

2D: lim
r→∞

√
r

(
∂p(r)

∂r
+ j k p(r)

)
= 0,

3D: lim
r→∞

r

(
∂p(r)

∂r
+ j k p(r)

)
= 0.

Neumann boundary conditions have been specified on the remaining boundaries Γv. The
approximate solution p̂(k, r) is selected from the following set of complete solutions [118]

2D: p(k, r) = a0H
(1)
0 (kr)+

∞∑

m=1

(
amH(1)

m (kr) cos(mθ) + bmH(1)
m (kr) sin(mθ)

)
, (44a)

3D: p(k, r) =
∞∑

m=1

m∑

q=−m

(
amq h

(1)
m (kr)P q

m(cos θ)
)
, (44b)

which are defined in cylindrical coordinates r = (r, θ) for the 2D case and in spherical

coordinates r = (r, θ, ψ) for the 3D case. In equation (44), the functions H
(1)
m , h

(1)
m and P q

m

are the Hankel functions of the first kind, the spherical Hankel functions of the first kind
and the associated Legendre polynomials, respectively.
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The approximate solution p̂ is obtained by truncating the set of complete solutions in
equation (44). It can be expressed as follows

p̂(k, r) =

nb∑

b=1

Φb(k, r)αb = Φ(k, r) α, ∀ r ∈ Ω, (45)

where Φb(k, r) represent the wave functions selected from the complete set of solutions and
αb represent the unknown contribution factors. The wave functions Φb are collected in the
row matrix Φ and the corresponding contribution factors are stored in the vector α. An
auxiliary matrix Ψ is defined here, which simplifies the expressions for the Trefftz model
matrices and vectors to come

Ψ(rb, k) =
j

ρω

∂

∂n
Φ(rb, k), ∀ rb ∈ ∂Ω. (46)

The approximation p̂ satisfies the homogeneous Helmholtz equation and the Sommerfeld
radiation condition a priori. Only the violation of the Neumann boundary conditions needs
to be enforced to zero in an integral sense by application of the weighted residual approach

∫

Γv

u

(
j

ρω

∂p̂

∂n
− v̄n

)
dΓ = 0. (47)

A Galerkin approach is followed similar to the FEM, i.e. each basis function Φb is selected as
weighting function. Together with the substitution of the approximation in equation (47),
this results in a set of nb algebraic equations of the following Trefftz boundary integral
model

A(k) α = b(k) (48a)

with the Trefftz system matrix: A(k)=

∫

Γv

Φ(k, r)TΨ(k, r) dΓ (48b)

and the Trefftz boundary vector: b(k) =

∫

Γv

Φ(k, r)T v̄n dΓ. (48c)

The outlined method is according to the original idea of Trefftz. The unknown degrees of
freedom in the solution vector α do not represent physical field quantities. Therefore, this
version is a member of the family of the indirect Trefftz-based methods.

5.1.3 Direct formulation

In addition to the indirect Trefftz-based methods, a direct version of the method exists
where the unknown degrees of freedom do represent physical boundary field quantities.
Cheung et al. [117] have applied the direct Trefftz-based method for the same unbounded
Helmholtz problem. This method is also explained briefly here for acoustics. The main
difference with the indirect version is that the approximate solution p̂ is not selected from
the set of complete solutions. Therefore, this approximation violates the homogeneous
Helmholtz equation in the unbounded domain Ω, the Sommerfeld radiation condition at
infinity Γ∞ and the Neumann boundary condition on Γv. The equation of motion (1b) is
however satisfied. The following weighted residual formulation enforces the involved errors
to zero in an integral sense

∫

Ω
u (∆p̂+ k2p̂) dΩ +

∫

Γ∞

j ρω u

(
j

ρω

∂p̂

∂n
− p̂

ρc

)
dΓ +

∫

Γv

j ρω u

(
j

ρω

∂p̂

∂n
− v̄n

)
dΓ = 0. (49)
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This relation can be rewritten as follows using the Green’s second identity formula

∫

Ω
p̂ (∆u+ k2u) dΩ +

∫

Γ∞

j ρω p̂

(
j

ρω

∂u

∂n
− u

ρc

)
dΓ −

∫

Γv

(
p̂
∂u

∂n
+ j ρω u v̄n

)
dΓ = 0. (50)

The first two terms in this relation vanish for the following choice of the weighting function

u(k, r) =

nb∑

b=1

Φb(k, r)βb = Φ(k, r) β, ∀r ∈ Ω, (51)

where Φb(k, r) represent wave functions selected from the complete set of solutions in equa-
tion (44) and βb represent arbitrary contributions stored in the vector β. Note that the
approximate solution p̂ = p̂(k, r) needs only to be defined on the boundary Γv similar to
the direct BEM for which the following FE approximation is well suited

p̂(r) = p̂(rb) = N(rb)p, ∀ rb ∈ Γv. (52)

The substitution of u and p̂ in equation (50) and the requirement that the resulting relation
should hold for all possible contribution vectors β results in the direct Trefftz boundary
integral model

A(k)p = b(k) (53a)

with the direct Trefftz system matrix: A(k)=

∫

Γv

Ψ(k, r)T N(rb) dΓ (53b)

and the direct Trefftz boundary vector: b(k) =

∫

Γv

Φ(k, r)T v̄n dΓ. (53c)

This boundary integral model is solved for the unknown degrees of freedom in the solution
vector p, which, contrary to the indirect version, represent physically meaningful quan-
tities, namely nodal boundary pressure values. Notice that the direct Trefftz model in
equation (53) is very similar to the direct boundary element model. The discriminating
feature is the use of a set of complete functions instead of the use of fundamental solutions
as kernel functions in the BEM.

The direct Trefftz-based method is not as popular as the indirect version for acoustic
applications. Apart from Cheung et al. [117], Masson et al. [119] and Sladek et al. [120],
further use of the direct method in acoustics is limited. Therefore, the remainder of this
review paper considers only indirect methods. These are referred to as the Trefftz-based
methods from here onward.

To conclude this outline of the basics of the Trefftz-based method, the duality of this
method is emphasized [121]. On the one hand, the Trefftz-based method is a boundary
integral method similar to the BEM, however with the advantage that it does not require
the evaluation of singular integrals. On the other hand, it is based on a similar weighted
residual formulation with trial and test functions as the FEM.

5.2 Survey of Trefftz-based methods

5.2.1 Classification

The classification of the Trefftz-based methods for time-harmonic acoustics is not a straight-
forward task. The reason for this originates mainly from its duality. Researchers with
different backgrounds have embraced the method and have focused on a specific feature.
Researchers with a FEM background consider more often interior acoustic problems or
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near-field acoustic radiation problems. The boundary of the acoustic domain can have a
rather complex shape which causes numerical difficulties. The number nb of Trefftz basis
functions Φb in equation (45) must increase for accuracy reasons but at the same time the
model becomes ill-conditioned [122]. The numerical condition is kept under control by sub-
dividing the problem domain in smaller simply shaped subdomains similar to the FEM. This
subdivision principle characterizes the development of Trefftz-elements [18, 19, 123, 124].

Researchers with a BEM background, on the other hand, are often interested in exterior
acoustic problems such as scattering or radiation problems. They are more familiar with
the use of fundamental free-field solutions and potential layers as kernel functions. These
functions can be considered as continuously distributed acoustic sources along the finite
part of the problem boundary Γf = Γp ∪ Γv ∪ ΓZ . Based on these ideas, the numerical
condition of the Trefftz-based model can also be kept under control by combining different
sets of complete functions rather than by following a domain subdivision procedure. The
different sets of complete functions correspond to multiple acoustic sources in this case,
which are distributed near the scatterer or radiator. The use of multiple source solutions
characterizes the class of source simulation methods [125].

The Trefftz-based methods can also be classified by the way the boundary conditions are
enforced. Three well-known strategies are used based on either (i) a collocation scheme, (ii)
a least-squares formulation or (iii) a Galerkin approach. Furthermore, two large classes of
Trefftz-elements exist based on the treatment of the continuity conditions between elements,
namely the hybrid Trefftz-elements and the frameless Trefftz-elements [18]. The wave based
method, which is detailed further on, belongs to the class of the frameless Trefftz-elements.
Actually, a third approach is available to enforce the continuity conditions along subdomain
interfaces, namely the ultra-weak variational formulation [126]. This technique is unique in
its kind and it cannot be categorized by the other two classes of Trefftz-elements.

Finally, some meshless methods have been developed which are strongly related to the
indirect Trefftz-based method. They are not based on the moving least-squares method [86]
such as the element-free Galerkin method (see section 3.4.4) but they are based on radial
basis functions [127].

Based on the above discussion, the Trefftz-based methods are arranged in five categories,
which are

1. the hybrid Trefftz finite element methods,

2. the frameless Trefftz finite element methods,

3. the ultra-weak variational formulation,

4. the source simulation methods and

5. the radial basis function methods.

The remaining part of this chapter reviews the stat-of-the-art in these categories.

5.2.2 Hybrid Trefftz finite element method

The hybrid Trefftz FEM is the first method in the class of the Trefftz-element methods. It
incorporates the indirect Trefftz-based method in the FEM as the name already suggests.
The characteristic feature of the hybrid Trefftz FEM is that the inter-element continuity is
enforced by application of the Langrange multiplier technique. The followed FE strategy
is summarized below for an interior acoustic problem with Neumann boundary conditions
[128].

1. The acoustic domain Ωi is subdivided in elements (Ωi = ∪ne

e=1Ω
e) and an auxiliary

frame is placed along inter-element interfaces Γe
i (see figure 9).
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2. Within each element Ωe, a truncated set of complete functions approximates the exact
solution and a simple FE interpolation approximates the unknown frame variable λ

p(r, k) ≈ p̂(r, k) = Φ(r, k) αe, ∀ r ∈ Ωe, (54a)

λ(rb) ≈ λ̂(rb) = N(rb) λe, ∀ rb ∈ Γe
i , (54b)

where the vectors αe and λe contain the Trefftz and frame degrees of freedom.

3. The following weighted residual formulation enforces the errors on the boundary con-
ditions and the continuity conditions to zero

∫

Γe
v

u

(
j

ρω

∂p̂

∂n
− v̄n

)
dΓ +

∫

Γe
i

u

(
j

ρω

∂p̂

∂n
− λ̂

)
dΓ = 0, (55a)

−
∫

Γe
i

µ (p̂− pi) dΓ = 0, (55b)

where u and µ represent arbitrary test functions and pi is the pressure on the frame.
The frame pressure pi is not considered further since its contribution vanishes during
the assembly (conforming Trefftz-element).

4. The application of the Galerkin approach together with the substitution of the pres-
sure and frame approximation results in the hybrid Trefftz-element

[
A CT

C 0

]{
αe

λe

}
=

{
b
0

}
with C(k) = −

∫

Γe
i

N(rb)
TΦ(r, k) dΓ (56)

and with A and b similar to the definition in equation (48).

5. The assembly of all elements results in the hybrid Trefftz FE model.

The hybrid Trefftz FEM outlined here is a so-called hybrid Trefftz traction FEM [18]. The
term ’traction’ refers to the equivalent mechanical quantity for the normal velocity, which is
selected as Lagrange multiplier. Several methods with other Lagrange multipliers have been
developed for other engineering disciplines, but this choice is one of few reported in literature
[129, 130]. Farhat et al. [129] derive this method, which is named the discontinuous Galerkin
method, from the discontinuous enrichment method (see section 3.4.5) by omitting the
coarse scale FE approximation p̂ from the solution.

i

e

e

e

e

: auxiliary frame with
Lagrange multiplier

: Trefftz-based
approximation

Figure 9: Hybrid Trefftz finite element
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5.2.3 Frameless Trefftz finite element method

Frameless Trefftz-elements impose the inter-element continuity conditions without the use
of an auxiliary frame. A general FE framework is followed which is again summarized for
an interior acoustic problem with Neumann boundary conditions.

1. The acoustic domain Ωi is subdivided in elements (Ωi = ∪ne

e=1Ω
e).

2. The Trefftz-based approximation in equation (54a) is used (p̂(r, k) = Φ(r, k) αe).

3. The application of a method dependent integral formulation enforces the errors on the
boundary conditions and the continuity conditions to zero in an average way. This is
detailed below for three frameless Trefftz-elements.

4. The substitution of the Trefftz-based approximation and, if necessary, of the test
functions results in the general expression for the frameless Trefftz-element

Aeαe + Cegαg = be. (57)

The model matrices and vector are method dependent. They are detailed below.

5. The assembly of all elements results in the frameless Trefftz FE model.

The first method of this type is the Trefftz least-squares FEM introduced by Jirousek and
Wróblewski [131] for a static mechanical problem and it has been applied successfully to
the Helmholtz problem [132, 133, 134]. The method uses a least-squares formulation to
impose the boundary conditions and the continuity conditions. The integral formulation
in step 3 above results from the minimization of an error functional F with the following
general format

F =

∫

Γe
v

βv

∣∣∣∣
j

ρω

∂p̂e

∂n
− v̄n

∣∣∣∣
2

dΓ +

∫

Γe
i

(
βp |p̂e − p̂g|2 + βv

∣∣∣∣
j

ρω

∂p̂e

∂n
− j

ρω

∂p̂g

∂n

∣∣∣∣
2
)

dΓ, (58)

where the parameters βp and βv restore the the homogeneity of the physical dimensions.
The general expressions for the model matrices in equation (57) are given by

Ae =

∫

Γe
i

βp(Φ
e)HΦe dΓ +

∫

Γe

βv(Ψ
e)HΨe dΓ, (59a)

be =

∫

Γe
v

βv(Ψ
e)H v̄n dΓ, (59b)

Ceg =

∫

Γe
i

(
−βp(Φ

e)HΦg + βv(Ψ
e)HΨg

)
dΓ, (59c)

where •H denotes the conjugate transpose operator. Notice that the auxiliary matrix Ψg

is defined for the outward normal vector n of the adjacent element Ωe.
A second frameless Trefftz method is the variational theory of complex rays [135], which

is a dedicated numerical method for the prediction of mid-frequency vibrations which is
able to yield numerical predictions with the same level of accuracy in the mid-frequency
range as the FEM, however with substantially less computational efforts. The considered
problem structure must lend itself to partitioning into homogeneous substructures. The first
characteristic of the approach is the use of a variational formulation of the problem which
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enables application of a priori independent approximations within each substructure. In
other words, it is not necessary for the approximations to satisfy a priori the compatibility
and the equilibrium conditions at the interfaces between substructures. Instead, these
conditions are incorporated into the variational formulation. The second characteristic of
the variational theory of complex rays is the introduction within each substructure of two-
scale approximations, having a strong mechanical meaning. The solution is assumed to be
well-described as the superposition of an infinite number of local vibration modes. These
basic modes (which can be interior modes, boundary modes or corner modes and which
represent wave solutions of various forms) satisfy the equations of motion. In this way,
the method is a Trefftz method. The modes constitute two-scale approximations with a
slowly varying scale and a rapidly varying scale. Only the slowly varying scale, i.e. the
polynomial part of the solution, is discretized, while the rapidly varying scale, i.e. the
oscillating part of the solution, is taken into account analytically. The unknowns are the
discretized amplitudes of the slowly varying parts. As a result, no fine discretization is
needed and the approximate solution is obtained from a small, computationally efficient
numerical model, as compared to the large conventional FE models.

A third frameless Trefftz method is the Wave Based Method (WBM) [136]. The WBM
is similar to the Trefftz least-squares FEM in that it also applies a direct coupling of non-
conforming fields used to describe the dynamic response variables within (large) Trefftz
elements. Two essential differences distinct both methods. First, there is the selection of
the applied functions. In the Trefftz least-squares FEM, plane wave functions [133] or Bessel
functions [134] are applied. In the WBM a combination of propagating and evanescent waves
is applied. A second difference is the treatment of the boundary and continuity conditions.
The WBM adopts a weighted residual approach to enforce the boundary and continuity
residuals to zero. Unlike the Trefftz least-squares FEM, where both pressure and (normal)
velocity continuity are enforced for all subdomains associated with an interface, the WBM
only enforces one relation for each subdomain adjacent to the interface. The WBM has
been successfully applied for many time-harmonic interior acoustic problems [137], interior
vibro-acoustic problems [20] and exterior vibro-acoustic problems [23]. It is shown that the
WBM exhibits an enhanced computational efficiency as compared to conventional FEMs.
As a result the WBM is able to tackle problems at higher frequencies than the FEM. In
order to fully benefit from the WBM’s computational efficiency, the considered subdomains
should have a relatively moderate geometrical complexity. This has triggered investigations
for a hybrid finite element-wave based method [128, 138] in order to tackle problems with
more complex geometrical descriptions. In coupling the FE domains with the WB domains,
two strategies can be followed. Either a direct coupling approach is applied, like is used
in the WBM itself, or an indirect coupling approach is used, requiring the introduction of
auxiliary frames like with the hybrid Trefftz methods. The hybrid finite element-wave based
method has proven to be successful for several interior acoustic problems [139] and interior
vibro-acoustic problems with an acoustic-acoustic coupling [24] and an acoustic-structural
coupling [140].

Sections 6 and 7 will elaborate on the basic formulations of the WBM for 2D time-
harmonic acoustic problems and will illustrate the method’s enhanced computational per-
formance, as compared to conventional element based methods, for both interior and exte-
rior acoustic problems.

5.2.4 Ultra-weak variational formulation

The ultra weak variational formulation [126] is based on a discretization of the problem
domain into elements. A boundary variable is introduced at the element boundaries satis-
fying an alternative variational formulation, namely the ultra weak variational formulation.
It is shown that, if the boundary variable satisfies the ultra weak variational formulation,
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the associated field variable, representing the dynamic pressure, satisfies the Helmholtz
equation. The field variable is approximated by a set of plane wave functions. Application
of the Galerkin approach yields the ultra weak variational formulation matrix equation.
Interelement continuity is taken directly into account in the weak variational formulation.
In this way the ultra weak variational formulation is comparable to the Trefftz least-squares
FEM. Similar to the finite element tearing and interconnecting approach, the ultra weak
variational formulation applies alternative coupling conditions based on equivalent normal
velocities in order to overcome the ill-posedness of the conventional pressure and normal
velocity continuity [141]. Once the boundary variable is identified from solution of the
system of equations, the associated field variable may be recovered. Preconditioning of
the system of equations may be useful when large-scale problems are solved using iterative
methods. Although the ultra weak variational formulation promises to solve wave problems
at reduced computational cost, it may suffer from numerical instability.

5.2.5 Source simulation method

Regardless of the various names given to this class of methods (e.g. superposition method,
source simulation technique, equivalent source method, full-field method, null-field method,
equivalent sphere method, energy source simulation method, etcetera) they all apply the
same modelling principle. An interior/exterior acoustic boundary value problem is solved
by positioning a number of sources exterior/interior to the problem boundary (see figure
10). Enforcement of the boundary conditions yields a numerical model, which can be solved
to obtain the source strengths of the applied sources. As all Trefftz methods, these methods
yield ill-conditioned matrices.

interior acoustic problem

� exterior acoustic problem
source location

Figure 10: Application of the equivalent source method for interior and exterior problems

Koopmann et al. [142] discuss the basic approach of putting a number of sources inside
a radiating boundary and enforcing the boundary conditions at the boundary via a collo-
cational scheme to determine their source strengths. Enforcing the boundary conditions
via a Galerkin weighted residual formulation yields the so-called null-field equation method
[143], enforcement via a least-square formulations yields the L2 method [144]. Ochmann
[125] gives a comprehensive overview of the different ways to incorporate the boundary con-
ditions. Inside the radiating boundary, either few source locations are chosen, but at every
source location a large number of sources with increasing order is used, or a lot of simple
(monopole) sources are employed at various locations. The latter is often denoted as the
superposition method or the equivalent source method. However, no general rules exists for
the determination of the number of sources, their locations and their orders, which turns out
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to be very problem dependent. Ochmann [125] mentions that for the one-point multipole
method the convergence to the true solution can be shown if the surface is assumed to be a
Lyapunov surface, which has the essential property that the normal vector to the surface is
uniquely defined at each point, i.e. a smooth surface. Furthermore, numerical instabilities
can occur with some variants of the source simulation technique. Ochmann [145] develops
a new stabilized variant of the source simulation technique, called the full-field method, by
using the exterior instead of the interior Helmholtz integral equation. When unconjugated
weighting functions are applied, the method is denoted the full-field method of the first
kind, while the full-field method of the second kind applies complex conjugate weighting
functions. The method is more stable since the resulting matrix becomes more diagonally
dominant. Recently, Ochmann [146] applied the equivalent source method for the sound
propagation over an infinite impedance plane.

In order to determine rules for positioning the sources, Pavic [147] determined a greedy
algorithm for optimal selection of the monopole source positions for 2D problems. The
strategy does not yield a strict mathematical optimum, but gives nonetheless very satisfac-
tory results when compared to random or uniform positioning. Pavic [148] optimizes the
approach so that also multipole sources can be incorporated. Simulations are limited to 2D
problems. Application for 3D problems may turn out to be too time consuming.

Bouchet et al. [149] propose a method which uses an equivalent sphere instead of a mul-
tipole point source. The number of unknowns is equal to the number of radiation modes of
the sphere. The unknown radiation mode contribution factors are obtained from a quadratic
residual minimization procedure. This approach has two advantageous features. The first
is that the modes of the spheres may be normalized, having a stabilizing effect. Secondly,
if each point of the boundary structure corresponds to a point of the sphere, the vibrating
field at the surface of the sphere may be deduced from that of the boundary structure by
geometric mapping. For simple 3D problems, a significant reduction in calculation time
compared to the BEM is obtained.

Reboul et al. [150] apply an equivalent source method, using acoustical energy sources
instead of pressure sources. Validation calculations on the radiation of a ribbed plate
yield favourable results. Herrin et al. [151] developed a similar technique to determine the
sound energy density called the energy source simulation method. A specified intensity
boundary condition on the surface of a vibrating body is approximated by a combination of
energy density sources located outside the acoustic domain by application of a least-square
minimization procedure. In most cases, the method gives reliable results.

5.2.6 Radial basis function methods

The boundary knot method [152] is a method that uses Bessel functions to solve the
Helmholtz equation. However, the method stems from the methods based on the so-called
Radial Basis Functions (RBFs) [127]. Kansa’s method, also called the radial basis func-
tions collocation method, applies globally defined RBF interpolation functions and a col-
locational formulation to obtain the solution of partial differential equations. These RBFs
may be considered as source terms and are distributed inside the domain. The RBFs are
no exact solutions of the differential equations and therefore, collocation points are not
only required at the boundary, but also inside the domain, which distinguishes RBF based
methods from true Trefftz methods. Kansa’s method yields very ill-conditioned matrices
and, in a way, its modelling approach is comparable to that from the element free Galerkin
method. The method of fundamental solutions is a modified form of Kansa’s method, in
that it applies singular functions that exactly satisfy the governing differential equation.
The method of fundamental solutions is comparable to the Trefftz equivalent source meth-
ods since also sources are positioned outside the problem domain while the source strengths
are determined by enforcing the boundary conditions at the boundary in a collocational
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way [153, 154]. No collocation points are needed inside the domain. However, the method
of fundamental solutions does not apply T-complete functions, distinguishing it from the
genuine Trefftz methods. Also a weighted residual [155] or a least-squares [156] approach
may be applied to incorporate the boundary conditions. In the dual reciprocity method of
fundamental solutions [157] the solution field is cast into a homogeneous and a particular
solution. First, the particular solution is solved regardless of the boundary conditions using
global interpolation of the field in terms of RBFs. When the particular solution is known,
the homogenous solution can be tackled with the method of fundamental solutions. The
boundary knot method is a dual reciprocity method of fundamental solutions based on a
collocational scheme, yielding severely ill-conditioned matrices. A major distinctive fea-
ture of the boundary knot method is that it applies non-singular functions to approximate
the homogeneous solution. As a result the sources may be located on the boundary and
no artificial surface collecting the sources outside the problem domain is required. Since
not all applied approximation functions are exact solutions of the governing differential
equation, i.e. the RBFs applied for the approximation of the particular solution, also collo-
cation points inside the domain are required. The applied fundamental solutions are Bessel
functions. However, they do not form a T-complete set of functions.

6 WAVE BASED METHOD

6.1 Basic formulations

The wave based method (WBM) is a frameless Trefftz-based prediction technique (see
section 5.2.3) which is applicable for time-harmonic acoustic problems. As a result, the
method is based on an indirect Trefftz approach and follows a mathematical formulations
related to the one discussed in section 5.1.2. In general, five major steps are distinguished
in a WB modelling procedure:

1. partitioning into a number of convex subdomains,

2. selection of a sets of wave functions,

3. construction of the WB system matrices,

4. solution of the wave model,

5. and postprocessing.

6.1.1 Partitioning into convex subdomains

A sufficient condition for the WB approximations to converge towards the exact solution, is
convexity of the considered problem domain [136]. In a general acoustic problem, see figures
1 and 2, the acoustic problem domain Ω may be non-convex so that a partitioning into a
number of convex subdomains is required. If the WBM is applied for unbounded problems,
an initial partitioning of the unbounded domain into a bounded and an unbounded region
precedes the partitioning into convex subdomains. Figure 11 illustrates the principle. The
unbounded acoustic problem domain Ω is divided into two non-overlapping regions by a
truncation curve Γt. The bounded region, enclosed by the truncation curve and the problem
boundary Γp ∪ Γv ∪ ΓZ is partitioned into a number of NΩ non-overlapping, convex subdo-

mains Ω(α). The unbounded region exterior to Γt is considered as one acoustic subdomain
Ω(NΩ+1). As a result, the acoustic problem domain is partitioned into NΩ + 1 subdomains:
Ω =

⋃NΩ+1
α=1 Ω(α).

Since the bulk part of the computational efforts is spent in the creation of the WB
system matrices, and since these efforts are linked to the total interface length, it can be
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seen from figure 11 that the efficiency of the WBM is primarily exploited for problems of
moderate geometrical complexity. For problems with a more complex boundary description,
a hybrid finite element-wave based approach is more suited [128, 138].
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Figure 11: WB partitioning of an exterior acoustic problem

The boundary of a bounded acoustic subdomain Ω(α) is denoted as ∂Ω(α). It consists of
four mutually exclusive parts,

∂Ω(α) = Γ(α)
p ∪ Γ(α)

v ∪ Γ
(α)
Z ∪ Γ

(α)
I , (60)

on which the following conditions apply:

• Γ
(α)
p = Γp ∩ ∂Ω(α) indicates the part of the boundary of subdomain Ω(α) on which

pressure boundary conditions (3a) are prescribed.

• Γ
(α)
v = Γv ∩ ∂Ω(α) indicates the part of the boundary of subdomain Ω(α) on which

normal velocity boundary conditions (3b) are prescribed.

• Γ
(α)
Z = ΓZ ∩ ∂Ω(α) indicates the part of the boundary of subdomain Ω(α) on which

normal impedance boundary conditions (3c) are prescribed.

• Γ
(α,β)
I = Γ

(β,α)
I = ∂Ω(α) ∩ ∂Ω(β) indicates the common interface between subdomain

Ω(α) and subdomain Ω(β). The continuity conditions which need to be applied on this
interface are discussed in the following paragraphs. The collection of all subdomain

interfaces in which subdomain Ω(α) is involved is denoted as Γ
(α)
I =

⋃NΩ+1
β=1,β 6=α Γ

(α,β)
I

The boundary of the unbounded acoustic subdomain Ω(NΩ+1) consists of the collection of

acoustic interfaces Γ
(NΩ+1)
I , coinciding with the truncation curve Γt, and the boundary at

infinity Γ∞.

To ensure continuity over the acoustic interfaces Γ
(α,β)
I between the acoustic subdomains

Ω(α) and Ω(β), continuity conditions must be applied. Two types of continuity conditions
are considered in the WB methodology.

Pressure and velocity continuity
Both pressure and normal velocity continuity are imposed at the interfaces:

pressure continuity: r ∈ Γ
(α,β)
I : p(α)(r) = p(β)(r), (61a)

normal velocity continuity: r ∈ Γ
(α,β)
I : L(α)

v (p(α)(r)) = −L(β)
v (p(β)(r)), (61b)
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with L(α)
v the velocity operator applied in subdomain Ω(α)

L(α)
v =

j

ρω

∂

∂n(α)
. (62)

The WBM adopts a direct coupling approach in order to couple the two subdomains.
This implies that the continuity conditions (61a) and (61b) are directly enforced on the
acoustic quantities of the considered subdomains, without introduction of auxiliary inter-
face variables. In order for the problem to be well-posed, one continuity condition is imposed

on each subdomain. This means that, on the interface Γ
(α,β)
I between the acoustic subdo-

mains Ω(α) and Ω(β), the pressure p(β)(r) is enforced as a pressure boundary condition on

subdomain Ω(α) along Γ
(α,β)
Ip = Γ

(α,β)
I and the normal velocity −L(α)

v (p(α)(r)) is applied as a

normal velocity boundary condition on subdomain Ω(β) along Γ
(β,α)
Iv = Γ

(β,α)
I , or vice versa.

As a result

if Γ
(α,β)
Ip 6= ∅ then






Γ
(β,α)
Ip = ∅

Γ
(α,β)
Iv = ∅

Γ
(β,α)
Iv 6= ∅

or if Γ
(α,β)
Iv 6= ∅ then






Γ
(β,α)
Iv = ∅

Γ
(α,β)
Ip = ∅

Γ
(β,α)
Ip 6= ∅

with ∅ the empty set. Furthermore the following notations are introduced

Γ
(α)
Ip =

NΩ+1⋃

β=1,β 6=α

Ω
(α,β)
Ip and Γ

(α)
Iv =

NΩ+1⋃

β=1,β 6=α

Ω
(α,β)
Iv .

Equivalent normal velocity continuity
By taking a linear combination of the two conditions (61) and by the introduction of a
pressure scaling factor Z̄int, two new continuity conditions can be formulated:

r ∈ Γ
(α,β)
I : L(α)

v (p(α)(r)) − 1

Z̄int
p(α)(r) = −L(β)

v (p(β)(r)) − 1

Z̄int
p(β)(r), (63a)

r ∈ Γ
(α,β)
I : L(β)

v (p(β)(r)) − 1

Z̄int
p(β)(r) = −L(α)

v (p(α)(r)) − 1

Z̄int
p(α)(r). (63b)

The impedance coupling factor Z̄int is actually a relative weighting factor. For a large
value, the normal velocity component predominates the continuity conditions (63), while
for a small value the pressure component predominates. This kind of coupling is referred
to as impedance or equivalent normal velocity coupling with Z̄int being the impedance
coupling value. The term equivalent normal velocity results from the fact that relations
(63) actually express continuity of an equivalent acoustic velocity quantity. The equivalent
velocity operators are defined as

L(α)
eq+ =

j

ρω

∂

∂n(α)
− 1

Z̄int
, (64a)

L(α)
eq− = − j

ρω

∂

∂n(α)
− 1

Z̄int
. (64b)
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With the operators (64), equations (63) can be reformulated as

r ∈ Γ
(α,β)
I : L(α)

eq+(p(α)(r)) = L(β)
eq−(p(β)(r)), (65a)

r ∈ Γ
(α,β)
I : L(β)

eq+(p(β)(r)) = L(α)
eq−(p(α)(r)). (65b)

In order for the partitioned problem to be well-posed, condition (65a) is enforced as a normal

velocity boundary condition on subdomain Ω(α) along Γ
(α,β)
Iz = Γ

(α,β)
I and the associated

condition (65b) is enforced as a normal velocity boundary condition on subdomain Ω(β)

along Γ
(β,α)
Iz = Γ

(β,α)
I .

The following notation is introduced

Γ
(α)
Iz =

NΩ+1⋃

β=1,β 6=α

Ω
(α,β)
Iz . (66)

This impedance coupling approach is designed to be more stable, as compared to the
pressure and velocity coupling approach, due to the introduction of artificial damping into
the numerical system [141]. The approach is inspired by the finite element tearing and
interconnecting method [64] and the ultra weak variational formulation [126], which apply a
similar coupling approach. Pluymers [138] shows that choosing Z̄int to be the characteristic
fluid impedance ρc is beneficial for the convergence rate.

6.1.2 Wave function selection

The time-harmonic acoustic pressure field p(α)(r) in an acoustic subdomain Ω(α) is approx-

imated as solution expansion p̂(α)(r)

p(α)(r) ≃ p̂(α)(r) =

n
(α)
w∑

w=1

pw
(α)Φ(α)

w (r) + p̂(α)
q (r) = Φ(α)(r) p

(α)
w + p̂(α)

q (r). (67)

The wave function contributions p
(α)
w are the weighting factors for each of the selected

wave functions Φ
(α)
w . Together they form the vector of degrees of freedom p

(α)
w . The

corresponding a priori defined wave functions are collected in the row vector Φ(α). The set

of all nW =
∑NΩ+1

α=1 n
(α)
w acoustic wave function contributions pw is collected in the column

vector pw, while the row vector Φ contains all nW wave functions.

In (67) p̂
(α)
q represents a particular solution resulting from the acoustic source term q(α)

in the inhomogeneous Helmholtz equation (2). It is the free-field solution of a cylindrical
source

p̂(α)
q (x, y) =

ρωQ(α)

4
H2

0

(
kr(α)

q

)
(68)

with Q(α) the source strength

Q(α) =

∫

Ω(α)

q(α)dΩ (69)

with
r(α)
q = ‖r − r

(α)
q ‖ (70)

and with H2
0 the zero-order Hankel function of the second kind.
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The definition of the wave functions Φ
(α)
w (r) in (67) depends on the topology of the

associated subdomain Ω(α). Abstraction is made from the transformations between the
local subdomain coordinate systems, in which the wave functions are defined, and the

global coordinate system. As a result, Φ
(α)
w (r) corresponds to the evaluation of the wave

function in position r but transformed to the correct subdomain coordinate system.

Wave functions within a bounded subdomain
Each acoustic wave function Φ

(α)
w (r) satisfies exactly the homogeneous Helmholtz equation

(2). Two types of wave functions are distinguished, the r- and the s-set

n
(α)
w∑

w=1

pw
(α)Φ(α)

w (r) =

n
(α)
wr∑

wr=1

pwr

(α)Φ(α)
wr

(r) +

n
(α)
ws∑

ws=1

pws

(α)Φ(α)
ws

(r), (71)

with n
(α)
w = n

(α)
wr + n

(α)
ws . The wave functions are defined as

Φ(α)
w (r (x, y)) =





Φ

(α)
wr (x,y) = cos(k

(α)
xwrx) e

−jk
(α)
ywr y

Φ
(α)
ws (x,y) = e−jk

(α)
xwsx cos(k

(α)
ywsy)

. (72)

The only requirement for the wave functions (72) to be exact solutions of (2) is

(
k(α)

xwr

)2
+
(
k(α)

ywr

)2
=
(
k(α)

xws

)2
+
(
k(α)

yws

)2
= k2. (73)

As a result, an infinite number of wave functions (72) can be defined for expansion (67).
Desmet [136] proposes to select the following wave number components

(
k(α)

xwr
, k(α)

ywr

)
=

(
w

(α)
1 π

L
(α)
x

,±
√
k2 −

(
k

(α)
xwr

)2
)
, (74)

(
k(α)

xws
, k(α)

yws

)
=

(
±
√
k2 −

(
k

(α)
yws

)2
,
w

(α)
2 π

L
(α)
y

)
. (75)

with w
(α)
1 and w

(α)
2 = 0, 1, 2, · · · . The dimensions L

(α)
x and L

(α)
y represent the dimensions

of the (smallest) bounding rectangle, circumscribing the considered subdomain.
In order to allow the WBM to be implemented in a computer code, the number na of

Trefftz basis functions Φa needs to truncated by assigning finite values to the truncation
numbers n•. These values may depend for example as follows on the physical wave number
k and the dimensions of the bounding rectangle

nr

Lx
≈ ns

Ly
≥ T

k

π
, (76)

where T represents a truncation parameter, which is user defined. Desmet [136] selects
T = 2, which states that the wavelength λmin of the highest oscillating wave function in
the set of basis functions Φa is not larger than half the characteristic wavelength λ = 2π/k
of the acoustic problem (λmin ≤ 1

2λ).

Wave functions within the unbounded subdomain
Ihlenburg [4] and Herrera [118] show that the following expansion, exterior to a circular
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truncation curve with radius R, converges for nu → ∞.

pe(r, θ) ≃ p̂e(r, θ) = pe,c0H
(2)
0 (kr) +

nu∑

n=1

pe,cnH
(2)
n (kr)cos(nθ) + pe,snH

(2)
n (kr)sin(nθ), (77)

with r and θ polar coordinates. H
(2)
n is the n-th order Hankel function of the second kind.

The contributions pe,c0, pe,cn and pe,sn are the unknowns.
The applied wave functions correspond to the analytical solution of a Neumann problem

for the exterior pressure field of an infinitely long cylinder of radius R.

6.1.3 Construction of the wave model

With the use of the proposed pressure expansions (71) and (77), the Helmholtz equation
(2) and the Sommerfeld radiation condition (4) are always exactly satisfied, irrespective
of the values of the unknown wave function contributions. These contributions are merely
determined by the acoustic boundary and continuity conditions.

Due to the partitioning of the acoustic problem domain Ω into NΩ + 1 acoustic subdo-

mains Ω(α), continuity conditions (61) or (65) along the subdomain interfaces Γ
(α,β)
I must

be taken into account, in addition to the problem boundary conditions (3). The unknown
wave function contribution factors are merely determined by these boundary and continuity
conditions.

Since both the boundary conditions and the continuity conditions are defined at an in-
finite number of boundary positions, while only finite sized prediction models are amenable
to numerical implementation, the boundary and the continuity conditions are, for each
subdomain, transformed into a weighted residual formulation. The residual error functions
are defined as

• residual error functions of the boundary conditions

r ∈ Γ
(α)
v : R

(α)
v (r) = L(α)

v (p̂(α)(r)) − v̄n(r)

r ∈ Γ
(α)
Z : R

(α)
Z (r) = L(α)

v (p̂(α)(r)) − p̂(α)(r)/Z̄n(r)

r ∈ Γ
(α)
p : R

(α)
p (r) = p̂(α)(r) − p̄(r)

(78)

• residual error functions of the pressure and velocity continuity conditions

r ∈ Γ
(α,β)
Ip : R

(α,β)
Ip (r) = p̂(α)(r) − p̂(β)(r)

r ∈ Γ
(α,β)
Iv : R

(α,β)
Iv (r) = L(α)

v (p̂(α)(r)) + L(β)
v (p̂(β)(r))

(79)

• residual error functions of the impedance continuity conditions

r ∈ Γ
(α,β)
Iz : R

(α,β)
I (r) = L(α)

eq+(p̂(α)(r)) − L(β)
eq−(p̂(β)(r)) (80)

Similar error functions are derived for all NΩ+1 acoustic subdomains. For each subdomain,
the error functions are orthogonalized in a complementary way with respect to a weighting
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function p̃(α) or its derivative. The weighted residual formulation, applying the introduced
error functions, is expressed as

∫

Γ
(α)
v

p̃(α)(r) R(α)
v (r)dΓ +

∫

Γ
(α)
Z

p̃(α)(r) R
(α)
Z (r)dΓ −

∫

Γ
(α)
p

L(α)
v (p̃(α)(r)) R(α)

p (r)dΓ

−
NΩ+1∑

β=1,β 6=α

∫

Γ
(α)
Ip

L(α)
v (p̃(α)(r)) R

(α,β)
Ip (r)dΓ +

NΩ+1∑

β=1,β 6=α

∫

Γ
(α)
Iv

p̃(α)(r) R
(α,β)
Iv (r)dΓ

+

NΩ+1∑

β=1,β 6=α

∫

Γ
(α,β)
Iz

p̃(α)(r)R
(α,β)
Iz (r)dΓ = 0.

(81)

Like in the Galerkin weighting procedure, used in the FEM, the weighting functions p̃(α)

are expanded in terms of the same set of acoustic wave functions used in the pressure
expansions (67) and (77)

p̃(α)(r) =

n
(α)
a∑

a=1

p̃a
(α)Φ(α)

a (r) = Φ(α)(r) p̃
(α)
w . (82)

Substitution of the pressure expansions (67) and (77) and the weighting function expansion
(82) into the weighted residual formulation (81) and imposing that the formulation should

hold for any weighting function p̃(α), yields a set of n
(α)
w linear equations in the nW unknown

wave function contribution factors.
Expressing the weighted residual formulation (81) for each subdomain results in NΩ + 1

systems of equations. Combination of these equations yields the acoustic WB model, con-
sisting of nW algebraic equations in the nW unknown wave function contribution factors

Aaa pw = b. (83)

A full description of the WB system matrices is given in appendix A.

6.1.4 Solution of the wave based model

After partitioning into convex subdomains, selection of a converging set of wave functions
and construction of the WB model, the fourth step in the WB modelling process is solution
of the WB matrix equation (83) for the nW wave function contribution factors pw.

6.1.5 Postprocessing

The fifth and final step in the modelling process is backsubstitution of the resulting wave
function contribution factors into the pressure expansions (67), yielding an analytical de-

scription of the dynamic pressure field p̂ in all subdomains Ω(α). Evaluation of wave function
expansions in response points located inside the subdomains, yields the acoustic pressures
at those locations. Higher-order variables, such as acoustic velocities, intensities and power
distributions, can be easily obtained by derivation of the wave function expansions.

• The acoustic velocity vector field v̂ is determined proportional to the gradient of the
pressure field

v̂ =
j

ρω
(∇Φ pw + ∇p̂q) (84)
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• The active acoustic intensity vector field Î, representing the flow of acoustic energy,
is determined as

Î =
1

2
ℜ
(

(Φ pw + p̂q)

(
j

ρω
(∇Φ pw + ∇p̂q)

)∗)
(85)

with •∗ denoting the complex conjugate and ℜ the real part.

• The active acoustic power Ŵ through a surface S is determined as the integral of the
acoustic intensity through the considered surface and is calculated as

Ŵ =

∫∫

S

1

2
ℜ
(

(Φ pw + p̂q)

(
j

ρω
(∇Φ pw + ∇p̂q)

)∗)
ndS (86)

with n the normal vector on S.

Note that there is no loss of accuracy in the higher-order variables, since the derivatives of
wave functions, are wave functions themselves, with identical wavelengths as the primary
wave functions.

6.2 Model properties

This section discusses the properties of a WB model and compares them with those of
conventional element based models, i.e. the FEM and the BEM.

Degrees of freedom
The degrees of freedom (dofs) in a FE model are the nodal values, being acoustic pressures
most commonly. In an acoustic BE model, the dofs are either acoustic pressures and
velocities (direct BEM) or single and double layer potentials (indirect BEM). In the WB
methodology, the unknown wave function contributions pw form the dofs.

Problem discretization & approximation functions
The element based methods require a discretization of the problem domain (FEM) or of the
problem boundary (BEM) into small elements. Within these elements approximating shape
functions, mostly simple polynomials, are used to describe the dynamic response variables.
In order to yield prediction results with reasonable accuracy, element sizes have to decrease
with increasing frequency, because wavelengths shorten. Construction of a WB model does
not require a problem domain discretization into small elements. The only prerequisite is
a partitioning into convex subdomains. However, these subdomains can be large and their
sizes are independent of frequency, since the wave functions, which are used to describe
the dynamic response variables inside the subdomains, are exact solutions of the governing
dynamic equations. With increasing frequencies, the number of wave functions is increased.

Accuracy of derived variables
Due to the fact that the primary response variables (i.e. the pressure) in the FEM are
most commonly approximated with simple polynomial shape functions, the higher-order
derived quantities (i.e. the acoustic velocity, acoustic intensity and acoustic power) are less
accurate than the primary ones. In the BEM, a boundary integral formulation preserves
the same accuracy for both the primary and the derived variables, so there is no additional
loss of accuracy. Also for the WBM, there is no additional loss of accuracy because the
derivatives of the wave functions are wave functions as well, with identical wavelengths.

System matrix properties
The system matrices in the FEM are large and sparsely populated with real coefficients
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(except when complex model properties are introduced). They have a banded structure,
are symmetric and can be decomposed into frequency independent submatrices. All of
these properties allow computationally efficient storage and solution of the FE system of
equations. The BEM yields fully populated matrices with complex coefficients. These
matrices are smaller than the system matrices of FE models for comparable problems,
but the BE matrices are frequency dependent and non-symmetric for the direct BEM and
symmetric for the indirect BEM. The WB system matrices have similar properties as the
matrices in the direct BEM, in that they are fully populated with complex coefficients,
non-symmetric and frequency dependent. However, WB system matrices are smaller than
BE system matrices.

Problem geometric complexity
Because of the fine discretization of the element based methods, these methods have almost
no restrictions regarding the geometric complexity of the considered problem domains.
The only requirement regarding the problem domain geometry for the WBM to converge,
is convexity of the considered subdomains. However, since the WB subdomains are large
and have a relatively simple shape, problems with a complex geometry are hard to model,
unless a large number of subdomains are introduced. This would have a negative effect on
the method’s computational efficiency.

When unbounded domains come into play, like for instance for acoustic radiation cal-
culations, the fine discretization of the problem domain in the FE methodology prevents
the FEM to tackle this kind of problems. Work-arounds are the application of approxi-
mating impedance boundary conditions on a truncation surface or coupling of a truncated
FE model with infinite elements. Due to the specific shape of the Green functions applied
in the BEM, the method inherently satisfies the Sommerfeld radiation condition and can
therefore tackle problems involving unbounded domains. Through the appropriate selection
of wave functions which satisfy the Sommerfeld radiation condition, the WBM is able to
tackle unbounded problems.

Computational performance & frequency range applicability
Construction of the WB models results from tedious numerical integrations. Because the
WB method, like any Trefftz based method, yields ill-conditioned system matrices [122,
158], the numerical integrations must be performed carefully, making sure that a sufficiently
high accuracy in determining the matrix coefficients is obtained. As a result, construction
of the WB matrices is computationally more demanding than construction of FE matrices,
whose coefficients result from integrations of simple polynomial shape functions, and even
than construction of BE matrices. However, because of the large model, and resulting
matrix size, of the FE and BE models, as compared to the WB models, solution of the
element based models is computationally much more demanding than solution of the WB
models. Also the convergence rate of the WBM is higher than the convergence rate of the
element based methods.

The higher convergence rate, combined with the small model size, make it possible for
the WBM to tackle problems at higher frequencies than the element based methods, before
the same limitations regarding computational resources are encountered.

7 NUMERICAL VALIDATIONS OF THE WAVE BASED METHOD

This section applies the Trefftz-based WBM for the analysis of both an interior and an
exterior 2D acoustic problem. In both cases, the WBM shows to be computationally more
efficient than conventional element based methods.
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7.1 Interior acoustics: a car cavity

7.1.1 Problem description

Figure 12 shows a 2D car cavity with a fairly complex geometry, especially due to the
modelling of the front seat as a rigid object. The cavity is filled with air (ρa = 1.225 kg/m3,
c = 340 m/s) and it has the characteristic dimensions Lx ≈ 2.7 m and Ly ≈ 1.1 m. The
main part of the domain boundary is rigid (v̄n = 0m/s). An impedance boundary condition
is imposed at the roof with Z̄ = 2000 Pa.s/m, which introduces damping in the acoustic
system. A unit normal velocity distribution v̄n = 1 m/s at the fire wall excites the 2D car
cavity. This 2D example is used in several publications on enhanced deterministic methods
for interior acoustic problems, a.o. [43, 84, 159].

Figure 12: 2D acoustic car cavity

7.1.2 Numerical models

Van Hal [128] has shown that it is beneficial for the WBM’s convergence rate, if the subdo-
mains, which are created by the partitioning preceding the construction of the WB model,
are regularly shaped and rectangular. Clearly, a partitioning in only such regularly shaped
subdomains is not possible and thus an optimal balance between the number of subdo-
mains and their shape needs to be found. Either one selects a relatively small number
of irregularly shaped subdomains or one selects a large number of more regularly shaped
subdomains. Several domain partitions are applied in this numerical example. In all the
considered numerical WB models, pressure and velocity continuity conditions are applied
at the resulting interfaces.

Figure 13 shows five WB model configurations and one FE model. These WB model
configurations are listed below with an increasing level of regularity of the subdomain
geometries.

• WB model I contains a relatively small number of 18 subdomains, which are all
irregularly shaped having 3 to 7 edges. The area ratio between the largest and the
smallest subdomain is high.

• WB model II contains 26 subdomains with more regular geometries. Most sub-
domains have two parallel edges and corner points where edges intersect at (nearly)
90◦.

• WB model III is derived from WB model II. It contains 36 more regularly shaped
subdomains by splitting several subdomains such that most subdomains have 4 edges.

• WB model IV contains 30 subdomains which have (nearly) rectangular shapes. In
other words, most of these subdomains are more regularly shaped than the subdo-
mains in the WB models III and IV.
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Figure 13: Original FE model and various WB model configurations of 2D car cavity

• WB model V is derived from WB model IV. It contains 40 (nearly) rectangular
subdomains by splitting several subdomains such that most subdomains have 4 edges.

Two FE models, which are used in an FRF analysis, are derived from the original FE model
in figure 13.

• A coarse FE model of 1796 linear elements and 1007 DOFs results from subdividing
each triangular element of the original FE model in 4 triangular elements. It is
applicable up to fmax ≈ 270 Hz according to rule (21) with L = 2.7 m and h =
0.054 m.

• A fine FE model of 16164 2nd-order elements and 32982 DOFs results from subdividing
each triangular element of the original FE model in 36 triangular elements. This
model serves as reference model up to fmax ≈ 1900 Hz according to dispersion rule
for quadratic FE described by Ihlenburg [4] with L = 2.7 m and h = 0.018 m.

7.1.3 Evaluation of the performance of the WBM

Figure 14 shows the predictions of the pressure response p at position p1 indicated in figure
12. The first plot illustrates the effect of the pollution error on the FE pressure response
prediction p̂. The visual inspection on the current scale shows that the FE prediction starts
to deviate from the reference near 400 Hz. This is more in agreement with rule (21),
which provides fmax ≈ 270 Hz, than with the ’rule of thumb’ (k.h = 1), which provides
fmax ≈ 1000 Hz.

The WB results in figure 14 are obtained by using a truncation parameter of T = 2.
These results confirm that the WBM does not suffer from pollution errors. Even in the
upper part of the frequency range of interest, the WB predictions coincide with the reference
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Figure 14: Pressure response prediction for point p1 in figure 12

Figure 15: WB model sizes with truncation parameter T = 2
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solution more or less. However, this numerical validation example reveals two aspects of
the WB pressure response prediction p̂.

• Firstly, the influence of the domain subdivision can already be observed on the current
scale of the graphs.

• Secondly, below ≈ 600 Hz some WB results have not converged yet. Especially, the
results for WB model I show some deviation from the reference and, in less extent,
the results for WB models IV and V.

These phenomena are observed in an a posteriori error assessment too.
An a posteriori error assessment is performed at 215 Hz, 525 Hz and 955 Hz. Figure

16 shows the pressure distributions at those frequencies obtained with WB model I with
a truncation parameter T = 2. These pressure distributions do not show irregularities at
the interfaces between two subdomains on the current scale of the graphs. This indicates
that WB model I provides reliable results for the considered excitation frequencies with
a truncation parameter T = 2.

Figure 17 shows the averaged relative pressure 〈ǫ〉 defined as

〈ǫ〉 =

nrp∑

j=1

Ajǫj
A

with A =

nrp∑

j=1

Aj (87)

Figure 16: Pressure distributions obtained with WB model I
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which is based on the relative pressure error ǫ

ǫj =
‖p̂j − p̂ref,j‖

‖p̂ref,j‖
. (88)

where nrp represents the number of response points, Aj the area surrounding response point
j and A the area of the problem domain Ω, for the nrp = 279 response points indicated by
+ in figure 12. The following phenomena are observed.

• The computational efficiency depends on the frequency of interest.

– At the high frequency of 955 Hz, the WBM exhibits enhanced convergence
properties, especially compared with FEM based on linear elements.

– At 525 Hz, the computational efficiency of the WBM is not as pronounced as
at 955 Hz. However, the WBM is still more efficient than the FEM based on
linear elements since, on average, the same accuracy is obtained with smaller
WB models.

Figure 17: Convergence
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– At the low frequency of 215 Hz, the computational efficiency of the WBM and
the FEM based on linear elements are comparable.

In case of interior acoustic problems with geometrically complex boundaries, the FEM
is best suited for low frequency applications whereas the WBM performs better at
higher frequencies.

• The WBM convergence curves show an oscillatory behaviour which differs for each
WB model configuration. Especially at 215 Hz and 525 Hz, severe oscillations in
the convergence occur for WB models I, IV and V. Apparently, WB models II
and III are most robust for the considered frequencies. This suggest that the optimal
balance between the number of subdomains and their shape is obtained by

– minimizing the number of subdomains

– while avoiding the occurrence of highly irregularly subdomains.

In order to improve the low-frequency results, a minimal value for the truncation num-
bers nr and ns in (76) can be imposed [128].

7.2 Exterior acoustics: a bass-reflex loudspeaker

7.2.1 Problem definition

In order to illustrate the ability of the WBM to analyze more complex 2D unbounded
problems, a bass-reflex loudspeaker, as shown in figure 18, is considered. A unit normal
line force F is applied at the centre of the loudspeaker membrane (E = 70.109 N/m2,
ρs = 700 kg/m3, ν = 0.3, t = 3 mm). The membrane edges are clamped. The loudspeaker
is surrounded with air (c = 340 m/s, ρ = 1.225 kg/m3).

7.2.2 Numerical models

To compare the performances of the WBM and the existing element based techniques,
several coupled FE/indirect BE and FE/(8th order conjugated) IE models of the considered
problem have been solved using LMS/Sysnoise Rev5.5. The structural FE meshes consist of
third-order 2-noded plate elements, the acoustic BE meshes of 2-noded linear fluid elements
and the acoustic FE meshes of 3- and 4-noded linear fluid elements. Tables 1 and 2 show
the number of elements used to model the considered loudspeaker problem.
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Figure 18: Dimensions (in mm) of a bass-reflex loudspeaker

For the WB models a circular truncation curve with radius R = 0.5 m is applied. Figure
19 shows the partitioning into 11 convex subdomains of the region interior to the trunca-
tion curve. Equivalent normal velocity continuity conditions are applied at the resulting



Trefftz-based methods for time-harmonic acoustics 47

interfaces with a coupling factor Z̄int = ρc. Table 3 lists the WB model information at
5000 Hz.

♯ acoustic FE ♯ acoustic FE ♯ structural ♯ IE total
inside cavity outside cavity FE ♯ dofs

2835 7786 34 312 14567
4832 15973 68 394 25031
9492 26525 136 524 42552

Table 1: FE/IE model information
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Figure 19: WB partitioning

♯ ac. BE ♯ str. BE tot. ♯ dofs
472 34 593
944 68 1167
1888 136 2315
3776 272 4611

Table 2: BE model information

♯ ac. WB dofs ♯ str. WB dofs tot. ♯ WB dofs
131 4 135
195 4 199
327 4 331
587 4 591
853 4 857

Table 3: WB model information



48 B. Pluymers, B. van Hal, D. Vandepitte and W. Desmet

7.2.3 Evaluation of the performance of the WBM

Figures 20 and 21 show the calculated pressure field and the calculated active intensity
field at 120 Hz. These results are obtained with a wave model which consists of 495
wave functions. The pressure contour plots show that the rigid boundary conditions are
correctly taken into account by the WBM since the pressure contour lines are perpendicular
to the rigid walls. Also, no pressure field discontinuities are observed, which indicates that
the continuity conditions at the subdomain interfaces and the infinite domain interfaces
are correctly taken into account. Figure 21 shows that active intensity flows from both
the membrane and the reflex-channel towards infinity which clearly illustrates the working
principle of a bass-reflex channel. For the given loudspeaker dimensions, the considered
frequency of 120 Hz indeed corresponds to the reflex-frequency of the loudspeaker.

40

10

2

6

50

2

47

8

Figure 20: Contour plot of the pressure amplitudes at 120 Hz [10−4 Pa]

Figure 21: Vector plot of the active intensity at 120 Hz

Figure 22 plots the relative prediction error for the radiated sound power W at 5000 Hz
against the CPU time needed for a direct response calculation at one frequency on an Intel
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Pentium 4 computer system (1.8 GHz, 1 Gb RAM) running a Windows XP-Professional
operating system. The indicated CPU times for the WBM and the FE/BE models include
both the times for construction of the model and for solution of the resulting matrix equa-
tion since the matrices are frequency dependent. This is in contrast with the frequency
independent FE/conjugated IE models where only the solution time is taken into account.
The WBM exhibits a beneficial convergence rate, compared with the element based tech-
niques.
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Figure 22: Power convergence curves at 5000 Hz

To increase the accuracy of the FE/IE models, a finer element discretization is required.
However, since the artificial boundary, which truncates the unbounded domain, was chosen
to be a circle, the greater part of the acoustic finite elements are needed to model the
enclosed area between the artificial truncation boundary surface and the cavity, which is
not very efficient and which leads to prohibitively large calculations. A more efficient way
of modelling the problem would be to use a more close-fitting truncation boundary, such as
for instance an elliptical boundary, so that the area between the truncation boundary and
the problem boundary becomes much smaller.

8 CONCLUSIONS

This paper gives an overview of element based and Trefftz-based modelling methods for the
analysis of time-harmonic acoustic problems. Element based techniques, such as the FEM
and the BEM, are commonly applied. These methods discretize the considered problem
domain or its boundary into small elements and make use of locally defined, approximating
shape functions to describe the dynamic response. Due to the approximating nature of the
applied shape functions, the numerical solution suffers from numerical dispersion. For a
fixed element discretization, the associated dispersion errors grow with increasing frequency.
In order to maintain a reasonable prediction accuracy at higher frequencies, the element
discretization needs to be refined. This results in (prohibitively) large matrix equations and
associated computational resources, such that the practical use of the FEM and the BEM
is restricted to low-frequency applications.

A vast amount of research is on-going in the development of extensions and enhance-
ments of the FEM and the BEM, to enlarge their practical applicability towards problems
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at higher frequencies. Some extensions focus on the optimization of the numerical processes,
while others try to reduce the dispersion error by means of a modified integral problem for-
mulation. Other classes of extended methods deal with the application of novel or enriched
sets of approximation functions. In spite of these numerous attempts to develop methods
applicable for tackling problems at higher frequencies, no mature method has emerged yet,
which is applicable for real-life engineering applications. Most of the novel methods have
been applied so far on academic cases only.

In parallel with the investigations regarding the element based methods, an alternative
family of numerical methods, based on a Trefftz approach, is researched. Trefftz-based
methods apply approximation functions which exactly satisfy the governing differential
equations, resulting in small, computationally efficient numerical models. Although most
of the Trefftz-based methods also have characteristics limiting their practical application
range, one of these methods has proven to be robust and applicable for the analysis of
general acoustic problems. This so-called WBM shows high potential for tackling real-life
problems in at high frequencies.

The basic formulations of the WBM for 2D acoustic problems are discussed and the
application of the method is illustrated by means of an interior and an exterior numerical
validation case. It is shown that the method provides accurate predictions and that it
outperformes the conventional element based methods, especially when going to higher
frequencies.

It is also shown that, in order to fully exploit the computational efficiency of the WBM,
the considered problem geometry should be one of moderate complexity. This observation
has initiated the development of a hybrid finite element-wave based modelling approach, in
which the ability of the FEM to model any problem, regardless of the geometric complexity,
and the computational efficiency of the WBM are combined into one single method. Van
Hal [128] and Pluymers [138] have shown the potential of such a hybrid modelling procedure
for the analysis of real-life engineering problems with a complex geometrical description.

ACKNOWLEDGEMENTS

The research work of Bert Pluymers and Bas Van Hal is financed by a scholarship of the
Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT).

APPENDIX A

This appendix gives a detailed description of the WBM system matrices and their deriva-
tion.

Substitution of the pressure expansions (67) and (77) and the weighting function ex-
pansion (82) into the weighted residual formulation (81) yields

p̃
(α)T
w

[
C

(α,1)
aa p

(1)
w + . . .+ C

(α,α−1)
aa p

(α−1)
w + A

(α)
aa p

(α)
w

+C
(α,α+1)
aa p

(α+1)
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(NΩ+1)
w (89)
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a − . . .− f
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w × n

(α)
w ) matrix A

(α)
aa is

A
(α)
aa = A

(α)
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(α)
Iz (90)

with

A
(α)
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∫

Γ
(α)
v

j

ρω
Φ(α)T n(α)T B(α)dΩ (91)
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with B(α) defined as a (2×n
(α)
w ) matrix collecting the gradient components of the acoustic

wave functions Φ(α)

B(α) = ∇ Φ(α). (97)

The (n
(α)
w × n

(β)
a ) matrix C
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aa is defined as
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and is a non-zero matrix only if Γ
(α,β)
I 6= ∅. In other words, there is only a non-zero coupling

matrix C(α,β) if acoustic subdomain Ω(α) is adjacent with acoustic subdomain Ω(β).
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(α)
w × 1) vector f
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The (n
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a × 1) vector f
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and is a non-zero vector only if Γ
(α,β)
I 6= ∅.

Since the weighted residual formulation (81) should hold for any weighting function p̃(α),
the expressions between the square brackets in equation (89) must be zero. This yields a

set of n
(α)
w linear equations in the nW unknown wave function contribution factors
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One such matrix equation is obtained for each subdomain. Combination of the NΩ + 1
systems yields the acoustic WB model, consisting of nW algebraic equations in the nW

unknown wave function contribution factors
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(108)

with

b(α) = f
(α)
a +

NΩ+1∑

β=1,β 6=α

f
(α,β)
a . (109)

The WB matrix equation is denoted in a condensed form as

Aaa pw = b. (110)
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