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Trehalose is a non-reducing disaccharide found at high concentrations in

Aspergillus nidulans conidia and rapidly degraded upon induction of conidial

germination. Furthermore, trehalose is accumulated in response to a heat

shock or to an oxidative shock. The authors have characterized the A. nidulans

tpsA gene encoding trehalose-6-phosphate synthase, which catalyses the first

step in trehalose biosynthesis. Expression of tpsA in a Saccharomyces

cerevisiae tps1 mutant revealed that the tpsA gene product is a functional

equivalent of the yeast Tps1 trehalose-6-phosphate synthase. The A. nidulans

tpsA-null mutant does not produce trehalose during conidiation or in response

to various stress conditions. While germlings of the tpsA mutant show an

increased sensitivity to moderate stress conditions (growth at 45 SC or in the

presence of 2 mM H2O2), they display a response to severe stress (60 min at

50 SC or in the presence of 100 mM H2O2) similar to that of wild-type germlings.

Furthermore, conidia of the tpsA mutant show a rapid loss of viability upon

storage. These results are consistent with a role of trehalose in the acquisition

of stress tolerance. Inactivation of the tpsA gene also results in increased

steady-state levels of sugar phosphates but does not prevent growth on

rapidly metabolizable carbon sources (glucose, fructose) as seen in

Saccharomyces cerevisiae. This suggests that trehalose 6-phosphate is a

physiological inhibitor of hexokinase but that this control is not essential for

proper glycolytic flux in A. nidulans. Interestingly, tpsA transcription is not

induced in response to heat shock or during conidiation, indicating that

trehalose accumulation is probably due to a post-translational activation

process of the trehalose 6-phosphate synthase.

Keywords : trehalose 6-phosphate synthase, spore germination, glycolysis, heat stress,
oxidative stress, hexokinase

INTRODUCTION

Trehalose (α--glucopyranosyl-α--glucopyranoside) is
a non-reducing disaccharide found in a wide variety of
organisms (bacteria, fungi, protozoa, plants). In lower
eukaryotes, it constitutes up to 15% of the dry weight of

.................................................................................................................................................

Abbreviations: EST, expressed sequence tag; 5-FOA, 5-fluoro-orotic acid;

T6P, trehalose 6-phosphate; T6PP, trehalose-6-phosphate phosphatase;

T6PS, trehalose-6-phosphate synthase.

The GenBank accession number for the sequence reported in this paper is

AF043230.

stationary-phase cells or spores (Elbein, 1974). The
universal mobilization of trehalose during growth re-
sumption from resting stages supports a role as a storage
carbohydrate (Arguelles, 2000; Thevelein, 1984, 1996).
However, because of a number of physico-chemical
properties, including high hydrophilicity and chemical
stability, non-hygroscopic glass formation and the
absence of internal hydrogen bond formation, trehalose
is apparently able to serve a unique role as stress
metabolite (Arguelles, 2000; Thevelein, 1996).

In the yeast Saccharomyces cerevisiae, biosynthesis of
trehalose is mediated by a multi-protein complex that
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Fig. 1. Trehalose metabolism in fungi. ScTps1 and AnTpsA,
trehalose-6-phosphate synthase; ScTps2 and AnOrlA, trehalose-
6-phosphate phosphatase; ScNth1, ScNth2 and AnTreB, neutral
trehalase; Sc, S. cerevisiae ; An, A. nidulans.

contains a trehalose-6-phosphate synthase (T6PS; Fig.
1) encoded by TPS1 and a trehalose-6-phosphate phos-
phatase (T6PP; Fig. 1) encoded by TPS2 (Bell et al.,
1992, 1998; de Virgilio et al., 1993). This multi-protein
complex contains regulatory subunits, the products of
the redundant TSL1 and TPS3 genes, which share a
conserved amino-terminal domain with Tps1 and Tps2
(Bell et al., 1998; Reinders et al., 1997; Vuorio et al.,
1993). Mobilization of the trehalose pool in response to
various stimuli is mediated by a neutral trehalase
encoded by NTH1 (Kopp et al., 1993) while the role of
a second neutral trehalase encoded by NTH2 remains
uncertain (Nwaka et al., 1995). Studies using mutants in
the different genes of trehalose metabolism in S. cere-
visiae and in other yeasts support the protective role of
trehalose and more specifically a role in the acquisition
of stress tolerance (Arguelles, 2000). However, ad-
ditional functions have been proposed for trehalose 6-
phosphate (T6P), which is the first intermediate in the
biosynthesis of trehalose (Fig. 1). In particular, analysis
of S. cerevisiae mutants impaired in the biosynthesis of
T6P has indicated a role for T6P and the T6PS in the
control of the influx of glucose into glycolysis (Blazquez
et al., 1993; Bonini et al., 2000; Hohmann et al., 1996;
Thevelein & Hohmann, 1995).

Several studies have been conducted to determine the
role of trehalose and T6P in filamentous fungi but they
have remained inconclusive. Two genes encoding T6PS
have been identified in Aspergillus niger (Wolschek &
Kubicek, 1997). However, disruption of only one of
these genes has been achieved and therefore an un-
ambiguous role for T6P or trehalose in filamentous
fungi could not be deduced from this study (Wolschek &
Kubicek, 1997). Arisan-Atac et al. (1996) have never-
theless shown that T6P participates in the control of
citrate production in A. niger. In A. nidulans, T6PP is
encoded by the orlA gene, the inactivation of which
results in an osmoremediable thermosensitive growth
phenotype that can be explained by an inhibitory role of

T6P in the control of chitin biosynthesis (Borgia et al.,
1996). However, orlA mutants produce normal levels of
trehalose and are therefore not suited to determine the
role of trehalose in filamentous fungi (Borgia et al.,
1996). T6P is a potent inhibitor of hexokinase also in A.
nidulans and A. niger, suggesting a role in the control of
glycolytic flux in these species (Panneman et al., 1998;
Ruijter et al., 1996). Finally, neutral trehalases have also
been identified in filamentous fungi and a role in the
control of trehalose mobilization has been demonstrated
during growth resumption stages, in particular spore
germination, in a manner similar to that observed in
yeast (d’Enfert et al., 1999).

Interestingly, analysis of A. nidulans mutants devoid of
neutral trehalase has suggested that trehalose has a
minor role as a storage carbohydrate and could function
in the protection of germinating conidia against thermal
stress (d’Enfert et al., 1999).

Here, we report the characterization of the tpsA gene of
A. nidulans, encoding a T6PS, and the construction of
an A. nidulans tpsA-null mutant. This mutant fails to
accumulate trehalose in response to a variety of stress
conditions but this defect is not associated with an
increased sensitivity to a short exposure of the same
stress conditions. In contrast, this mutant is defective for
growth at high temperature, shows an increased sen-
sitivity to long exposure to sublethal doses of reactive
oxygen species and has reduced spore viability, thus
suggesting a role for trehalose in the resistance of A.
nidulans to sustained exposure to various stress con-
ditions, including starvation.

METHODS

Strains and growth conditions. A. nidulans strains FGSC28
(pabaA6 biA1) and FGSC773 (wA3 ; pyroA4 ; pyrG89) were
obtained from the Fungal Genetics Stock Centre (University of
Kansas, Kansas City, KA, USA). A. nidulans strains CEA150
(wA3 ; pyroA4 ; pyrG89 ; tpsA-AfpyrG-tpsA∆) and CEA152
(wA3 ; pyroA4 ; pyrG89; tpsA∆) are derivatives of FGSC773
obtained in the course of this study. Growth conditions for A.
nidulans strains have been described (d’Enfert & Fontaine,
1997). H

#
O

#
was added to solid culture media in a 0–5 mM

range. Cultures of A. nidulans strains for the assay of heat
or oxidative-shock sensitivity were inoculated at 2¬10(
conidia ml−" and grown for 3 h at 30 °C in minimal glucose
medium containing 0±01% Tween-20. Following heat shock
(0–60 min at 50 °C) or oxidative shock (100 mM H

#
O

#
for

0–60 min), an aliquot of each culture was withdrawn and
serially diluted in PBS (150 mM NaCl, 10 mM sodium
phosphate pH 7±2)}0±1% Tween-20. Heat- or H

#
O

#
-shocked

cells were then plated on complete medium containing 0±1%
Triton X-100 in order to limit the growth of the colonies.
Colonies were counted after a 2 d incubation at 37 °C. The
same cultures were used to measure trehalose content in the
conidia with previously described procedures (d’Enfert &
Fontaine, 1997). Alternatively, trehalose, T6P, sugar phos-
phates and ATP were measured using extracts from mycelia
grown at 30 °C in minimal glucose medium for 4 h using the
procedure of Ruijter & Visser (1996). Conidium viability was
monitored using duplicates of two independent stocks of
FGSC773 and CEA152 conidia stored at either 4 °C or 20 °C in
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Table 1. Oligonucleotides used in this study

Oligonucleotide Sequence

tps1F 5«-TGGCCNCTNTTCCAYTACCA-3«

tps1B 5«-GGNACNCCYTTRATGTARTC-3«

tps5«Bgl 5«-TGCAGATCTCCCGGCGTTGAGAAATCC-3«

tps3«Not 5«-TTGATGCGGCCGCTACTGTGACGAAGTCTC-3«

tps4 5«-GTTGCGAGCCAAGTTCAG-3«

tps5 5«-CCCTGGAATTCTATCCCA-3«

tps6 5«-CATTGTGATGTTGAACA-3«

tps9 5«-GGTTGGCAGTCCCAGCAA-3«

tps10 5«-AGGAGATCCCGACTCTG-3«

tps11 5«-TACTCGGTCAGACCAGG-3«

PBS}0±1% Tween-20. At different time intervals, an aliquot of
each stock was serially diluted and plated in duplicate on
complete medium containing 0±01% Triton X-100. Colonies
were counted after a 2 d incubation at 37 °C. Conidiospore
germination was monitored by microscopic examination of
slides coated with minimal glucose medium and spot-inoc-
ulated with approximately 10% freshly harvested conidia. The
percentage of germinated spores was recorded at different
times.

The S. cerevisiae strains used in this study were W303.1A
(Thomas & Rothstein, 1989; MATa leu2-3,112 ura3-1 trp1-92
his3-11,15 ade2-1 can1-100 GAL SUC mal) and the isogenic
YSH290 strain containing the tps1∆ mutation (Neves et al.,
1995). Yeast cells were routinely grown on a rotary shaker at
30 °C in yeast nitrogen base medium (YNB; Sherman, 1991)
containing 2% glucose or 2% galactose (YSH290) as carbon
source.

Escherichia coli strains PAP105 [∆(lac-pro) F«(lacIq"
∆(lacZ)M15 pro+ Tn10)] and DH5α (Woodcock et al., 1989)
were used for plasmid propagation. The β-lactam antibiotic
carbenicillin (100 µg ml−") and tetracycline (15 µg ml−") were
added to the growth medium when required.

PCR amplification of a segment of the A. nidulans tpsA gene.
The genomic DNA of A. nidulans FGSC28 prepared according
to Girardin et al. (1993) was used as template to amplify a
segment of genes potentially encoding a T6PS. The sense and
antisense primers (tps1F and tps1B, Table 1) were based on
amino-acid sequences (WPLFHYH and DYIKGVP, respect-
ively) conserved in several fungal T6PS (Bell et al., 1992;
Blazquez et al., 1994; Luyten et al., 1993; Wolschek &
Kubicek, 1997). The amplification protocol consisted of a
denaturation step at 94 °C for 5 min followed by 35 cycles of
the following steps : denaturation at 94 °C for 30 s, annealing
at 55 °C for 1 min, extension at 72 °C for 2 min. A last
elongation step was carried out at 72 °C for 10 min. An
approximately 650 bp amplification product was gel purified
and cloned in Bluescript SK+ (Stratagene) using standard
cloning procedures. Two plasmids, pTPS1 and pTPS2, were
obtained that carry the amplification product in opposite
orientations.

DNA and RNA manipulations. General recombinant DNA
techniques and Southern-blot analyses were essentially per-
formed according to Sambrook et al. (1989) and Ausubel et al.
(1992). Transformation of calcium-manganese-treated E. coli
was as described by Hanahan et al. (1991). Oligonucleotides
used in this study were obtained from Genset (Paris, France)
and are listed in Table 1. A BamHI–EcoRV fragment

corresponding to the cloned PCR product was labelled with
[α-$#P]dCTP using the Megaprime kit (Amersham) and used
to probe a replica of a genomic library (a gift from C.
Scazzochio) made in plasmid pFB39, a derivative of pUC18
carrying the A. nidulans argB gene. This screening yielded a
single positive plasmid, pTPS4, which lacked the 3« end of the
tpsA gene as deduced from DNA sequencing. To identify a
clone carrying the entire tpsA gene, the chromosome-specific
libraries of A. nidulans genomic DNA (Brody et al., 1991) that
had been obtained from the Fungal Genetic Stock Center and
transferred onto nylon membranes (ZetaProbe, Bio-Rad) were
probed using a 400 bp EcoRI fragment located at the 3« end of
the cloned tpsA region and labelled as above. The plasmids
pTPS6 and pTPS7 are derivatives of pUC18 and pBLSN+

(d’Enfert, 1996), respectively, that carry a 1±75 kb SalI–SmaI
fragment containing the region of tpsA carried by pTPS4. The
plasmids pTPS11 and pTPS12 are derivatives of pBLSN+

which carry a 2±4 kb EcoRI fragment of cosmid L24E04 in
opposite orientations. DNA sequencing was performed by the
dideoxy chain termination method (Sanger et al., 1977) on
double-stranded plasmids derived from pTPS6, pTPS7,
pTPS11 and pTPS12 by internal restriction-enzyme-mediated
deletions and using a set of appropriate oligonucleotide
primers. The sequence of a 2699 bp fragment was read at least
twice on each strand and is deposited in the GenBank database
under accession number AF043230.

Plasmid pTPS13 was obtained by subcloning the 0±8 kb
SalI–ClaI fragment of pTPS7 into SalI–ClaI-digested pTPS-
11∆P, a derivative of pTPS11 with an internal deletion of a PstI
fragment. Plasmid pTPS17 was then obtained by subcloning a
KspI–EcoRV fragment carrying the A. fumigatus pyrG gene
(Weidner et al., 1998) into KspI}SmaI-digested pTPS13.
Plasmid pTPS17 was used to transform protoplasts of A.
nidulans strains (Osmani et al., 1987). Genomic DNA from 15
prototrophic transformants was prepared according to Mol et
al. (1998) and screened by PCR using primers tps10 and tps11
(Table 1). While a 2006 bp product is expected in trans-
formants carrying an ectopic integration of pTPS17 or a
tpsA∆-AfpyrG-tpsA allele, a 1462 bp fragment is expected in
transformants with a tpsA-pyrG-tpsA∆ allele. Putative mero-
diploids with a tpsA-AfpyrG-tpsA∆ allele were confirmed by
Southern blot analysis of EcoRI}SalI-digested genomic DNA
prepared according to Girardin et al. (1993) and probed with
a 0±8 kb ClaI–SalI fragment of pTPS13 that had been labelled
with the Rediprime labelling kit (Amersham). Washed mem-
branes were exposed to X-omat films (Kodak). While strains
carrying only a wild-type tpsA allele show a 1±15 kb hybrid-
izing fragment, tpsA-AfpyrG-tpsA∆ merodiploids show
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1±15 kb and 0±8 kb hybridizing fragments corresponding to the
wild-type and mutant allele respectively. Conversion of the
tpsA-AfpyrG-tpsA∆ allele to the tpsA∆ allele was obtained by
plating conidia of strain CEA150 on minimal glucose plates
containing 1 mg ml−" 5-fluoro-orotic acid (5-FOA), uridine,
uracil and pyridoxine.HCl, thus promoting the excision of the
A. fumigatus pyrG gene through recombination between the
two tpsA alleles (d’Enfert & Fontaine, 1997). The nature of
the tpsA allele in 5-FOA-resistant clones was checked by PCR
using primers tps10 and tps11 (Table 1), which can dis-
criminate between wild-type tpsA and tpsA∆, and with
primers tps4 and tps5 (Table 1), which yield only a 363 bp
product if the wild-type tpsA gene is present. Excision of the
A. fumigatus pyrG gene was confirmed by Southern blot
analysis as described above. In this case a single EcoRI–SalI
fragment could be detected corresponding to either the wild-
type allele (1±15 kb) or the mutant tpsA∆ allele (0±8 kb).

Preparation of total RNA from conidia, germinating conidia,
heat-shocked germinating conidia, mycelia and developing
cultures of A. nidulans strain pabaA1 and FGSC773 has been
previously reported (d’Enfert et al., 1999). RT-PCR exper-
iments were achieved using the Reverse Transcription System
according to the manufacturer’s instructions (Promega).
Approximately 1 µg total RNA was used for each oligo-dT
primed reverse transcription. An aliquot of the reaction was
then subjected to the following amplification protocol using
primers tps4 and tps5 (Table 1) : a denaturation step at 93±5 °C
for 5 min followed by 20 cycles of the following steps :
denaturation at 93±5 °C for 30 s, annealing at 58 °C for 1 min,
extension at 71 °C for 1 min. Amplification was limited to 20
or 25 cycles in order to remain in a linear range and therefore
produce semi-quantitative data. The tps4 and tps5 oligo-
nucleotides are sense and anti-sense primers, respectively, that
are located on both sides of an intron in the tpsA gene.
Therefore amplification from genomic DNA yields a 363 bp
product while amplification from reverse-transcribed mRNA
yields a 308 bp product. Alternatively, primers tps4 and tps9
were used that yield a 282 bp fragment corresponding only to
reverse-transcribed mRNA because tps9 overlaps with an
intron in tpsA.

Expression of tpsA in S. cerevisiae. To obtain a cDNA
encompassing the full tpsA ORF, total RNA prepared from
the mycelium of a A. nidulans pabaA1 strain was reverse
transcribed as described above. Reverse transcription products
were then amplified using primers tps5«Bgl and tps3«Not
(Table 1) and the following amplification procedure. A
denaturation step at 93 °C for 5 min, 30 cycles of the following
steps : denaturation at 93 °C for 30 s, annealing at 54 °C for
1 min, extension at 72 °C for 5 min and a final extension step
of 10 min at 72 °C. The amplification product was subcloned
using the TA cloning kit according to the supplier’s instruc-
tions (Invitrogen), yielding plasmid pTPS15. Following se-
quencing of the cloned tpsA cDNA, the BglII–NotI fragment
of pTPS15 was subcloned into the yeast expression vector
pCM190L (Llorente et al., 1999) cut by BamHI and NotI.
Controlled expression in yeast is achieved by a tetracycline-
repressible promoter. Furthermore, the protein is produced as
a fusion with an HA-epitope and a (His)

'
tail that allows

quantificationof protein production.Two independent recom-
binants, pTPS16-1 and pTPS16-2, were selected for trans-
formation into the S. cerevisiae strain YSH290 along with
pCM190L and pCM190L: :X, a derivative of pCM190L
carrying a S. cerevisiae ORFunlinked to trehalosemetabolism.
Yeast transformation was performed using the one-step
method (Chen et al., 1992). Trehalose levels in the trans-
formants were measured using cells that had been grown into

stationary phase on galactose as described by Neves et al.
(1994).

RESULTS

Isolation of the A. nidulans tpsA gene encoding a
T6PS

To investigate the role of trehalose in A. nidulans, we set
out to identify genes encoding T6PS using a two-step
strategy. First, two degenerate primers, tps1F (sense
primer; Table 1) and tps1B (antisense primer; Table 1),
were designed that correspond to two regions conserved
in the T6PS of yeast (Bell et al., 1992; Blazquez et al.,
1994; Luyten et al., 1993) and in the A. niger TpsA T6PS
(Wolschek & Kubicek, 1997). Using these primers, a
624 bp fragment was amplified by PCR from genomic
DNA of A. nidulans strain FGSC28. The nucleotide
sequence of this PCR product was determined and the
deduced amino acid sequence revealed significant ident-
ity to corresponding regions of A. niger and S. cerevisiae
T6PS (94±2% and 66±8% identical amino acids, re-
spectively). These results suggested that the PCR prod-
uct corresponded to an A. nidulans T6PS-encoding gene
referred to as tpsA.

In a second step, the PCR product was used to probe
different libraries of A. nidulans genomic DNA. Using
chromosome-specific libraries (Brody et al., 1991), three
positive cosmids, L09H05, L14G06 and L24E04, were
identified. These cosmids have been assigned to the same
region of A. nidulans chromosome V (Prade et al., 1997),
suggesting that the tpsA gene is located on this chro-
mosome.

Sequencing of the A. nidulans tpsA gene

DNA sequencing of an approximately 1±8 kb SalI–SmaI
fragment derived from plasmid pTPS4 (see Methods)
and of an approximately 1±2 kb EcoRI–PstI fragment
derived from cosmid L24E04 yielded a nucleotide
sequence of 2699 bp (GenBank accession number AF-
043230; data not shown). Analysis of this DNA sequence
revealed an ORF of 1512 bp interrupted by four putative
introns of 63, 55, 48 and 55 bp, respectively. The location
of these introns was confirmed by sequencing a cDNA of
tpsA obtained by amplification of reverse-transcribed
mRNAs using primers tps5«Bgl and tps3«Not (Table 1).
Furthermore, analysis of several A. nidulans-expressed
sequence tags (c3e03, m7e02, c5f08) determined within
the A. nidulans EST sequencing program (D. Kupfer &
B. Roe, http:}}www.genome.ou.edu}fungal.html) con-
firmed the location of these introns and revealed the
occurrence of an additional intron of 200 bp located in
the 5«-untranslated region of the gene and extending
from position ®302 to ®103 relative to the tpsA start
codon (data not shown).

The A. nidulans 1512 bp ORF identified in the cloned
DNA region encodes a 504 amino acid protein with a
molecular mass of 56±8 kDa. This protein shares a
minimum of 62±2% identical amino acids and 74±1%
similar amino acids with known fungal T6PSs and its
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.................................................................................................................................................................................................................................................................................................................

Fig. 2. Alignments for maximal amino acid similarities of the A. nidulans TpsA protein (antpsA) with the S. cerevisiae
(sctps1; Bell et al., 1992), K. lactis (klggs1; Luyten et al., 1993), Schiz. pombe (sptps1; Blazquez et al., 1994) and A. niger
(AgtpsA and AgtpsB; Wolschek & Kubicek, 1997) T6PSs. This alignment was produced using the PILEUP program of the
UWGCG package version 9 (Devereux et al., 1984). Conserved residues (identical, upper case letters ; similar, lower case
letters) in all six proteins have a black background.

.................................................................................................................................................................................................................................................................................................................

Fig. 3. Expression of the tpsA gene under different growth conditions. RNA was prepared from A. nidulans cultures
grown under the following conditions: rich liquid medium for 0–64 h (samples 1–6); rich liquid medium for 16 h and
transfer to rich solid medium for 0–24 h (samples 7–11); minimal glucose medium at 30 °C for 4 h and transfer to 45 °C
for 10 and 30 min (samples 12–14). Total RNA was reverse transcribed and subjected to an amplification using
oligonucleotides that yield a PCR product specific to the tpsA transcript. Amplification was reduced to 20 cycles in order
to obtain semi-quantitative data.

closest known homologue is the A. niger TpsA protein
(87±4% identical amino acids and 90±1% similar amino
acids ; Fig. 2).

Regulation of the tpsA gene

Expression of the A. nidulans tpsA gene under different
culture conditions was monitored using semi-quan-
titative RT-PCR. Results presented in Fig. 3 show that

transcription of the tpsA gene is induced during spore
germination in rich medium (Fig. 3, lane 2), is maximal
during exponential growth (Fig. 3, lanes 3–5 and lane 7)
and decreases during the stationary phase of growth
(Fig. 3, lane 6) and during conidiogenesis (Fig. 3, lanes
8–11). As a consequence, an RT-PCR product cor-
responding to the tpsA transcript could not be detected
in non-germinating conidia of A. nidulans (Fig. 3, lane
1). When 4 h germlings of A. nidulans were exposed to
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Table 2. Trehalose levels in transformants of the
S. cerevisiae tps1∆ strain

Transforming plasmid Cloned gene Trehalose

(% of wet

weight)*

pCM190L – 0±33

pCM190L: :X Control 0±31

pTPS16-1 A. nidulans tpsA 2±10

pTPS16-2 A. nidulans tpsA 2±13

*Trehalose levels in wild-type S. cerevisiae grown in minimal
galactose medium are 1±5–2±0% of wet weight.

a heat shock at 45 °C (Fig. 3, lanes 12–14) expression of
tpsA was not altered.

Expression of the tpsA gene complements the
various defects of a S. cerevisiae tps1∆ mutant

S. cerevisiae strains lacking the TPS1 gene are deficient
in the synthesis of trehalose in response to various stress
conditions and are unable to grow on glucose or other
rapidly fermentable sugars because of an uncontrolled
influx of sugar into glycolysis, causing rapid ATP
depletion (Van Aelst et al., 1993). To test whether tpsA
could functionally complement the various defects of a
S. cerevisiae tps1∆ strain, the tpsA ORF was amplified
and cloned into the yeast expression vector pCM190L
(Llorente et al., 1999), yielding plasmids pTPS16-1 and
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Fig. 4. A. nidulans tpsA∆ mutants are defective for trehalose accumulation in response to a heat or oxidative stress. (a)
Trehalose accumulation in response to a heat shock (30 °C! 50 °C) or an oxidative shock (100 mM H2O2) in germinating
conidia of A. nidulans strains FGSC773 (wA3 pyroA4 pyrG89) (+, heat shock; E, oxidative shock) and CEA52 (wA3 pyroA4
pyrG89 tpsA∆) (*, heat shock; D, oxidative shock). Conidia were germinated for 3 h in minimal glucose medium at 30 °C
and subjected to the shock for the indicated times. (b) Conidia survival following a heat shock or an oxidative shock in
germinating conidia of A. nidulans tpsA+ and tpsA∆ strains. Duplicates of the samples analysed in (a) were diluted and
plated on complete medium containing 0±01% Triton X-100. Colonies were counted after 2 d at 37 °C. Results are
representative of two independent experiments. Symbols as in (a).

pTPS16-2. After transformation of the plasmids into the
yeast tps1∆ mutant, growth of the transformants on
glucose and galactose media was monitored. Expression
of the A. nidulans tpsA gene fully restored growth of the
S. cerevisiae tps1∆ mutant on glucose (data not shown).
Furthermore, trehalose production in the S. cerevisiae
transformants expressing A. nidulans tpsA was restored
to wild-type levels (Table 2). These results indicate that
the A. nidulans TpsA protein can fulfil all of the
functions of the yeast Tps1 T6PS, including the control
of hexokinase function.

Disruption of the tpsA gene in A. nidulans

A pop-in}pop-out strategy was used to inactivate the
tpsA gene. First, a strain carrying both the wild-type
tpsA gene and a mutant allele separated by the A.
fumigatus pyrG gene was constructed (CEA150: wA3
pyroA4 pyrG89 tpsA-pyrG-tpsA∆) by transformation of
A. nidulans strain FGSC773 with plasmid pTPS17. The
tpsA∆ mutant allele removes 146 internal amino acids
(90–235) in the 504 residue TpsA polypeptide, including
stretches of amino acids that are highly conserved within
fungal T6PS (Fig. 2). Excision of the A. fumigatus pyrG
gene by recombination between the two tpsA alleles was
then forced in the presence of 5-FOA. PCR analysis of
random 5-FOA-resistant clones using primers tps10 and
tps11 or tps4 and tps5 (Table 1), which yield products of
different sizes according to the tpsA allele, revealed that
segregation between the wild-type and mutant alleles
occurred randomly under these conditions (data not
shown). Interestingly, all segregants with a tpsA∆ allele
were thermosenitive for growth while the CEA150
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Table 3. Metabolites accumulated in the wild-type and
tpsA∆ strains during vegetative growth at 30 °C
.................................................................................................................................................

Values are in µmol (g dry wt)−" and are means of assays of two
independent cultures and standard deviations are indicated.
The ratios between values obtained for the mutant and wild-
type strains are shown in parentheses.

Metabolite FGSC773 (wt) CEA152

(tpsA∆)

Trehalose 46±5³2±5 !1±0

Trehalose 6-phosphate 2±39³0±65 !0±2

Glucose 6-phosphate 0±54³0±10 2±49³0±48 (4±6¬)

Fructose 6-phosphate* 0±13 0±48 (3±7¬)

Fructose 1,6-bisphosphate 0±33³0±04 0±79³0±53 (2±4¬)

ATP 1±37³0±22 2±13³0±42 (1±5¬)

*Values for fructose 6-phosphate were obtained from a single
culture.

parental strain and tpsA+ progenies were not, suggesting
that thermosensitive growth resulted from the inac-
tivation of tpsA (see below). The occurrence of the
tpsA∆ allele in two of the 5-FOA-resistant clones was
confirmed by Southern analysis of EcoRI}SalI-digested
genomic DNA. One of the clones carrying the tpsA∆

allele was designated CEA152. A comparison of strains
FGSC773 (pyrG89 wA3 pyroA4) and CEA152 (pyrG89
wA3 pyroA4 tpsA∆) is reported below.

tpsA is required for trehalose accumulation in
response to various stress conditions

In A. nidulans, trehalose is known to accumulate during
conidiogenesis (d’Enfert & Fontaine, 1997) as well as in
response to heat shock (Noventa-Jordao et al., 1999). In
other fungal species, trehalose has been shown to
accumulate in the stationary phase of growth and in
response to an oxidative or osmotic shock (Hounsa et
al., 1998; Lewis et al., 1995; Lingappa & Sussman,
1959; Van Laere, 1989; Wiemken, 1990). Accumulation
of trehalose was therefore monitored in wild-type and
tpsA∆ conidia as well as in germinating conidia that
were subjected to a heat shock or an oxidative shock.
Trehalose could not be detected in mutant conidia (data
not shown). When conidia of the wild-type strain
FGSC773 were germinated for 3 h at 30 °C and sub-
sequently subjected to a 50 °C heat shock, a rapid
increase in trehalose levels was observed (Fig. 4a).
Similarly, addition of 100 mM H

#
O

#
to wild-type

germlings resulted in trehalose accumulation, although
to a lesser extent (Fig. 4a). Addition of 1 M NaCl did not
result in a significant increase in trehalose levels (data
not shown). In contrast to these results, neither heat
shock nor 100 mM H

#
O

#
resulted in trehalose accumu-

lation in germlings of the tpsA∆ strain (Fig. 4a).
Furthermore, T6P and trehalose were undetectable in
the mycelium of a tpsA∆ strain (Table 3). We conclude

that tpsA encodes a T6PS essential for biosynthesis of
T6P and trehalose in A. nidulans under various con-
ditions, including conidiogenesis, heat shock and oxi-
dative shock.

Inactivation of tpsA does not increase sensitivity of
germinating conidia to heat or oxidative shock

It has previously been shown that viability of wild-type
conidia is significantly decreased following a heat shock
and that the loss of viability can be prevented by
accumulated trehalose (d’Enfert et al., 1999). This would
suggest that the inability to accumulate trehalose in
response to stress may further increase the stress
sensitivity of germinating conidia. To test this hy-
pothesis, the viability of germinating wild-type or tpsA∆

conidia that had been subjected to a 50 °C heat shock or
a 100 mM H

#
O

#
shock (see above) was monitored.

Results in Fig. 4(b) show that wild-type and tpsA∆

germlings display a similar sensitivity to heat and
oxidative shock independent of the ability to accumulate
trehalose. It therefore appears that the rapid accumu-
lation of trehalose in response to a heat or oxidative
stress does not contribute significantly to cell survival
during short-term exposure to a stress.

Inactivation of tpsA results in thermosensitive
growth

To investigate the consequence of the inactivation of the
tpsA gene in A. nidulans, we first compared the growth
of strains FGSC773 (wild-type) and CEA152 (tpsA∆) on
various media and at different temperatures. The tpsA∆

mutant was unable to form colonies at temperatures
above 44 °C when glucose (Fig. 5a) or fructose (data not
shown) were used as a carbon source. Thermosensitive
growth was also observed when glucose was replaced by
glycerol (Fig. 5a) although to a lesser extent. The tpsA∆

mutant also showed reduced growth on media con-
taining sublethal doses (1–2 mM) of H

#
O

#
(Fig. 5a).

Microscopic examination of conidia grown on minimal
glucose medium revealed that the inability of strain
CEA152 to establish a colony at temperatures above
44 °C was due to a block of conidia germination (Fig.
5b, c). Only a few spores had produced a germ tube after
24 h of growth at 44 °C (Fig. 5c). At lower temperatures,
conidia of strain CEA152 were able to produce germ
tubes at a frequency similar to that observed for the
wild-type strain FGSC773, althoughwith slower kinetics
(Fig. 5b). When conidia were germinated on minimal
glycerol medium at 45 °C germination was only partially
delayed (Fig. 5c).

Results presented in Fig. 6 show that the thermosensitive
growth defect of strain CEA152 became irreversible
after prolonged incubation at the non-permissive tem-
perature and was limited to the developmental stages
extending from spore germination to early filamentous
growth. Indeed, when conidia of strain CEA152 were
germinated at the non-permissive temperature (45 °C)

1857



S. FILLINGER and OTHERS

120

100

80

60

40

20

5 10 15
Time (h)

G
e

rm
in

a
te

d
 s

p
o

re
s 

(%
)

20

(b)

wt/30 °C
tpsA∆/30 °C
wt/44 °C
tpsA∆/44 °C

(a)

30 °C 45 °C

Glycerol

30 °C 45 °C

Glucose

–H2O2

Glucose

+H2O2

wt

tpsA∆

Glucose Glycerol

wt

tpsA∆

(c)

.................................................................................................................................................................................................................................................................................................................

Fig. 5. Inactivation of tpsA results in a thermosensitive growth defect. (a) Comparison of the growth of the tpsA∆
mutant (CEA152, wA3 pyroA4 pyrG89 tpsA∆) and the wild-type strain (FGSC773, wA3 pyroA4 pyrG89) on minimal
medium with 1% glucose or 1% glycerol as carbon source in the presence or absence of 2 mM H2O2. Incubation was for
48–64 h at 30 °C or 45 °C. (b) Germination frequency of the tpsA∆ mutant and the wild-type strain at 30 °C or 45 °C in
glucose-containing minimal medium. Results are representative of two independent experiments (c) Microscopic
examination (¬570) of germinated spores after 24 h at 45 °C in liquid minimal medium with the indicated carbon
sources.
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Fig. 6. The thermosensitive phenotype of the tpsA∆ mutant is
dependent on the developmental stage. Shift experiments from
restrictive (45 °C) to permissive (37 °C) temperature (a) and vice
versa (b). Between 100 and 200 spores of the A. nidulans wild-
type (FGSC773, wA3 pyroA4 pyrG89 ; +) and tpsA∆ (CEA152,
wA3 pyroA4 pyrG89 tpsA∆ ; *) strains were inoculated on
complete medium and incubated for the indicated time periods
before the shift. Counts represent the percentage of the
maximal count. Results are representative of two independent
experiments.

and shifted to the permissive temperature (37 °C) after
various times, they were only able to form a colony
when incubation at the non-permissive temperature was

restricted to 12 h (Fig. 6a). In contrast, transfer to the
non-permissive temperature of conidia germinated at
the permissive temperature did not block colony for-
mation when the transfer was performed after 10–12 h
of germination (Fig. 6b).

Inactivation of tpsA results in reduced conidium
viability during prolonged storage

Since the results presented above appeared to confirm a
protective role of trehalose against sustained exposure
of A. nidulans cells to various stress conditions, we
evaluated the role of trehalose for the survival of conidia
of A. nidulans during prolonged storage. Conidia of
strains FGSC773, which contain trehalose, and CEA152,
which are devoid of trehalose (data not shown), were
maintained at 4 °C or 20 °C for several weeks and the
number of viable spores was estimated at different times.
Results presented in Fig. 7 show that the conidia of the
tpsA∆ mutant strain lost viability much more rapidly
than wild-type conidia when incubated at 20 °C. In
contrast, no difference in viability between the wild-type
and mutant conidia was observed upon incubation at
4 °C over a period of up to 7 weeks (Fig. 7). These results
indicate that trehalose might play an important role in
the survival of conidia during prolonged storage, either
as a protective molecule or reserve carbohydrate.
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Fig. 7. Trehalose is required for conidium viability during
prolonged storage. Viability of conidia from A. nidulans tpsA+

(FGSC773, wA3 pyroA4 pyrG89) or tpsA∆ (CEA152, wA3 pyroA4
pyrG89 tpsA∆) strains upon prolonged incubation at 4 °C [tpsA+

(E) and tpsA∆ (D), or 20 °C, tpsA+ (+) and tpsA∆ (*)]. Conidia
were resuspended in PBS/0±1% Tween-20 at a density of 109

conidia ml−1 and maintained at room temperature or 4 °C for
the indicated times. Spore viability was determined by the
number of c.f.u. after plating on complete medium and growth
at 37 °C.

DISCUSSION

In this paper we have reported the cloning of the A.
nidulans tpsA gene and physiological characterization
of the tpsA∆ mutant. Our results demonstrate un-
ambiguously that the tpsA gene product is a T6PS that is
essential for trehalose biosynthesis in A. nidulans. The
finding that tpsA is the unique T6PS-encoding gene in A.
nidulans, in contrast to the situation in A. niger, where
two T6PS genes have been identified (Wolschek &
Kubicek, 1997), and that inactivation of tpsA results in
a complete loss of trehalose biosynthesis, in contrast to
the inactivation of the A. nidulans T6PP-encoding orlA
gene (Borgia et al., 1996), has allowed us for the first
time to investigate the physiological role of trehalose in
a filamentous fungus.

In the yeast S. cerevisiae, trehalose is synthesized by a
large multi-subunit complex (Bell et al., 1998). The
subunits of this complex share a domain which is similar
to T6PS although devoid of T6PS activity. Our results
show that the A. nidulans T6PS can fulfil all of the
functions of its yeast counterpart, thus suggesting that it
can associate in the multi-subunit trehalose synthase
complex in yeast. Our reinvestigation of the sequence of
the orlA gene shows that the A. nidulans T6PP is larger
than previously proposed (Borgia et al., 1996) with an
amino-terminal domain which is homologous to A.
nidulans T6PS (C. d’Enfert & A. Antczak, unpublished
data). Furthermore, cDNAs encoding a homologue of S.
cerevisiae Tps3 have been identified in the course of
expressed sequence tag (EST) sequencing of A. nidulans
cDNAs (D. Kupfer & B. Roe, http:}}www.genome.

ou.edu}fungal.html; C. d’Enfert, unpublished data)
thus suggesting that the A. nidulans trehalose synthase is
also present in a multi-subunit complex in A. nidulans.

In A. nidulans trehalose has been shown to accumulate
under a variety of conditions including nutrient star-
vation, conidiospore differentiation and heat stress
(d’Enfert & Fontaine, 1997; Noventa-Jordao et al.,
1999; this study). Here we have shown that trehalose
accumulation is also stimulated in response to an
oxidative stress (Fig. 4a) consistent with the results of
Noventa-Jordao et al. (1999), who showed a link
between heat shock recovery and the cellular response to
oxidative stress in A. nidulans. Results presented in this
paper show that trehalose accumulation is mediated by
TpsA under the different conditions tested, i.e. heat
stress, oxidative stress and conidiogenesis. Furthermore,
TpsA is responsible for the basal levels of trehalose and
T6P that are produced during mycelial growth (data not
shown). Although these results would suggest that
trehalose biosynthesis in response to temperature and
oxidative stress could contribute to the resistance of the
germlings to these stress conditions, results presented in
Fig. 4(b) show that this is not always the case : wild-type
and tpsA-null germlings are similarly sensitive to a heat
or an oxidative shock. In contrast, the absence of
trehalose and}or trehalose biosynthesis results in re-
duced spore viability and a reduced ability to grow upon
constant exposure to sublethal stress, including pro-
longed exposure to high temperature and growth in the
presence of reactive oxygen species. Taken together,
these results suggest that trehalose is mainly involved in
the resistance of A. nidulans to progressive exposure to
lethal stress or prolonged exposure to sublethal stress
rather than rapid exposure to lethal stress. This is in
agreement with the previous observations that germlings
of A. nidulans maintaining a high level of trehalose due
to a defect in the TreB neutral trehalase are less sensitive
to heat stress than wild-type germlings (d’Enfert et al.,
1999) and that viability of the conidia of an A. niger tpsA
mutant is reduced (Wolschek and Kubicek, 1997). This
is also consistent with the role of trehalose in the
acquisition of thermotolerance and halotolerance
demonstrated in S. cerevisiae (Hounsa et al., 1998;
Lewis et al., 1995) and in Schizosaccharomyces pombe
(Ribeiro et al., 1998). Results presented in Fig. 6 show
that this protective role of trehalose is most important
during A. nidulans conidial germination as opposed to
later developmental stages, including mycelial growth,
suggesting that additional mechanisms of adaptation to
stress operate following germ tube formation.

Analysis of the expression of the tpsA gene in response
to a heat shock or during conidiogenesis, when trehalose
is synthesized, did not reveal induction of the tran-
scription of tpsA under these conditions (Fig. 3). In
contrast, expression of tpsA is induced during the early
stages of mycelial growth, when trehalose biosynthesis
appears minimal. Our results contrast with those of
Wolschek & Kubicek (1997), who showed that the A.
niger tpsA and tpsB genes are respectively down-
regulated and up-regulated by a heat shock. While
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activation of trehalose biosynthesis in A. niger appears
to be controlled in part at the transcriptional level, our
data suggest that, in A. nidulans, an inactive form of
T6PS is accumulated during phases of rapid growth to
prepare for induction of trehalose biosynthesis in
response to stress, nutrient starvation, or developmental
transitions by means of post-transcriptional control
mechanisms. In S. cerevisiae T6PS activation is mediated
both at the transcriptional level through an STRE-
dependent activation mechanism (de Virgilio et al.,
1993; Winderickx et al., 1996) and at the post-trans-
lational level by the protein kinase Rim15 (Reinders et
al., 1998). A homologue of Rim15 has been identified by
systematic sequencing of A. nidulans cDNAs (D. Kupfer
& B. Roe, http:}}www.genome.ou.edu}fungal.html ;
C. d’Enfert, unpublished data). It is a possible candidate
for post-translational control of TpsA, allowing rapid
activation of trehalose synthesis under stress conditions.

In S. cerevisiae, inactivation of the T6PS results in an
inability to grow on rapidly fermentable sugars such as
glucose and fructose because of an uncontrolled influx
of the sugars into glycolysis, causing rapid ATP de-
pletion (Van Aelst et al., 1993). Recent results suggest
that both T6P inhibition of hexokinase and a direct
involvement of T6PS are responsible for this phenom-
enon (Bonini et al., 2000). In A. nidulans, T6P is also
known to inhibit hexokinase (Ruijter et al., 1996) and
our results show that TpsA is able to fulfil all the
functions of the yeast T6PS, including its control on
glucose influx into glycolysis, thus suggesting that
similar mechanisms of glucose influx could operate in
yeast and A. nidulans. On the other hand, the A.
nidulans tpsA-null mutant is able to grow on glucose or
fructose as a carbon source. Although increased levels of
sugar phosphates could be detected in the mycelium of
the mutant strain grown at 30 °C, this increase was not
associated with a decrease of the ATP pool (Table 3).
This suggests that T6P is a physiological inhibitor of
hexokinase in A. nidulans but that the increase in
glycolytic flux resulting from T6P depletion has only
minor consequences in this fungus compared to what
has been observed in S. cerevisiae. This physiological
role of T6P is also supported by the poor growth on
fructose of the A. nidulans orlA mutant which ac-
cumulates T6P and consequently should have reduced
hexokinase activity (S. Fillinger & C. d’Enfert, un-
published results). Interestingly, the thermosensitive
growth defect of the A. nidulans tpsA∆ strain appeared
less pronounced on minimal glycerol medium than on
minimal glucose medium (Fig. 5). Although this may
reflect a more stringent role of T6P on the control of
glycolytic flux at high temperature or the replacement of
trehalose as a stress metabolite by intracellular glycerol
resulting from glycerol uptake, the thermosensitive
growth defect might also be less pronounced on slowly
metabolizable carbon substrate because of a slower
growth rate and the resulting presence of a higher
intrinsic stress resistance (see Thevelein & de Winde,
1999, for a recent review). Further analysis of metabolic
fluxes at different temperatures in wild-type and tre-

halose biosynthesis mutants is needed to assess precisely
the role of T6P glycolytic control in filamentous fungi.

In summary, results presented in this study show that
T6P, in addition to its role in the control of chitin
biosynthesis (Borgia et al., 1996), appears to play only a
minor role in the control of the glycolytic flux in A.
nidulans, in contrast to what has been observed in S.
cerevisiae and some phylogenetically close yeast species
(Kluyveromyces lactis, Candida albicans). More im-
portantly, our results show that trehalose is a major
stress metabolite in A. nidulans and is probably involved
in the acquisition of resistance to a variety of stress
conditions, including heat and oxidative stress, as well
as in the survival of conidia during prolonged storage.
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