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Trellis Coding of Quadrature Frequency/Phase 
Modulated Signals 

Shalini S .  Periyalwar, Member, IEEE, and Solomon Fleisher, Senior Member, IEEE 

Abstract-In this paper, we explore the trellis coding of con- 
tinuous phase QFPM (CPQFPM) signal sets and continuous 
phase FPM (CPFPM) signal sets, which are embodiments of the 
quadrature biorthogonal modulation (QBOM) technique. Con- 
ventional TCM and multiple TCM schemes with these modu- 
lation formats are examined using both the AWGN channel and 
the Rician fading channel design. Asymptotic coding ains in 

schemes, in comparison with uncoded modulations (8AMPM, 
32AMPM) and other trellis-coded modulations [TCM (2FSK/ 
4PSK, 16QAM, 64QAM), MTCM (ZFSKIIPSK)] of equivalent 
throughput rate. Performance gains on the Rician fading chan- 
nel are demonstrated by increased values of the design param- 
eters for this channel, namely symbol diversity L,,, and branch 
distance product P .  

d'(free) are tabulated for trellis-coded rate i, :, and 7 P QFPM 

I. INTRODUCTION 

RELLIS coded modulation (TCM) [ 11, a technique of T channel coding proposed by Ungerboeck [2], has been 
extensively investigated for a number of applications and 
with a variety of modulation formats. TCM techniques 
with MPSK signal sets have demonstrated coding gains 
on the AWGN [2] channel and the Rician fading channel 
[3]. Coded frequency/phase modulation (FPM) formats 
have been shown to provide performance gains on the 
AWGN channel [4] and the Rician fading channel [5]. 
Multidimensional trellis codes with lattice-type (QAM) 
signal constellations have been analyzed for performance 
on the AWGN channel by Ungerboeck [6], Fomey [7], 
Wei [8], and others. Multidimensional trellis codes in the 
form of multiple TCM (MTCM) have been proposed by 
Divsalar and Simon for AWGN channels [9] and for the 
Rician fading channel [ lo] ,  [ 1 I]. Trellis-coded multidi- 
mensional MPSK schemes for the AWGN channel have 
also been studied in [12]. 

A general schematic diagram of a TCM encoder-mod- 
ulator is shown in Fig. 1. The redundancy in signal space 
is introduced by encoding m of the m input bits by using 
a rate m / ( m  + 1) convolutional encoder, and then map- 
ping the (m  + 1) bits at the convolutional encoder output 
to select a subset of a redundant 2"+'-ary signal set. The 
remaining m - m bits are used to select one of the 2"' - m  

signals in the subset for transmission. The mapping of bit 

Manuscript received September 2,  1991; revised June 30. 1992. 
The authors are with the Department of Electrical Engineering, Tech- 

IEEE Log Number 9203040. 
nical University of Nova Scotia, Halifax NS B3J 2 x 4  Canada. 

sequences (termed mapping by set partitioning) into sig- 
nals from an M-ary alphabet (where M = 2" + I )  is unique 
to combined coding and modulation schemes such as 
TCM, and is performed to meet different design criteria 
depending on the type of channel that is involved. The 
signal set employed in the TCM scheme may be two-di- 
mensional (e.g., MPSK, QAM) or multidimensional 
[e.g., 4-D QAM, MFSK, frequency and phase modula- 
tion (FPM)]. 

Multidimensional modulations may be realized by the 
transmission of a series of constituent 1 - 0  or 2 - 0  sym- 
bols. Thus, for example, 4 - 0  and 8 - 0  modulations are 
obtained from 2 - 0  modulations by the transmission of 
groups of 2 or 4 symbols per trellis transition. By apply- 
ing this technique to trellis coding of M-ary PSK and 
M-ary AM signal sets, Divsalar and Simon introduced the 
concept of multiple trellis coded modulation (MTCM) [9]. 
In the MTCM encoder-modulator [9], the output bits from 
the rate m / m  + 1 encoder in Fig. 1 are assigned signal 
k-tuples ( k  > 1) from an expanded signal set. The essen- 
tial difference between TCM and MTCM is in the multi- 
plicity k of signals available in each transmission interval 
at the output of the encoder-modulator. For the conven- 
tional TCM scheme, k is equal to 1. 

The design criterion for trellis codes on the AWGN 
channel is well known to be the maximization of d * ( f ree) .  
On the Rayleigh fading channel (with no direct signal 
component), under the conditions of ideal interleaving/ 
deinterleaving , the criteria for optimum code design have 
been defined as the length Lmin (defined as the number of 
symbols at nonzero Euclidean distance) of the shortest er- 
ror event path, and the product of branch distances P along 
that path [ lo] .  On the Rician fading channel with direct 
signal components, the performance is affected by all three 
quantities mentioned above [d2 (free), Lmin, and PI. 

As an example of TCM and MTCM schemes, Fig. 2 
illustrates the signal assignments to a two-state trellis (de- 
signed for the AWGN channel) for a rate of $ ( k  = l )  
TCM scheme and a rate + ( k  = 2) MTCM scheme, both 
using QPSK signals. The trellis structure consists of 2"' 
transitions from each state in the trellis diagram, with each 
transition being represented by k symbols, chosen in such 
a way as to meet the design criteria. To represent all pos- 
sible combinations of the m + 1 bits at the encoder output 
2'"" distinct k-tuples are required. Each of the trellis 
transitions in the rate $ scheme is assigned one QPSK sig- 
nal while each of the trellis transitions in the rate $ scheme 
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Fig. 2 .  Two-state trellis for a rate TCM scheme and a rate MTCM 
scheme. 

is assigned two QPSK signals. The MTCM scheme offers 
the advantages of increased d ( f ree )  when compared to 
the TCM scheme, yielding a performance gain on the 
AWGN channel. It also has a larger time diversity (k = 
2) with respect to the former (k = I ) ,  and thus attains 
improved performance on the Rayleigh or Rician fading 
channel (Lmin = k). Note, however, that the four-dimen- 
sional MTCM scheme has more transitions per trellis state 
than the two-dimensional TCM scheme, which contrib- 
utes to an increase in error coefficient. The throughput 
rate of both schemes is m/k = 1 b /s /Hz.  

While the time orthogonality (multiplicity) in MTCM 
schemes results in increased dimensionality (= 2k, if two- 
dimensional modulation is employed in each time inter- 
val) of the trellis-coded schemes, multidimensional mod- 
ulations realized by frequency orthogonality (i.e., the use 
of N ( L 2) orthogonal frequencies such as in FPM) have 
been used with TCM [4] and MTCM [5] schemes to yield 
performance gains on the AWGN channel and the Rician 
fading channel. In these schemes, the increased dimen- 
sionality is due to both N and k, and equals 2Nk. MTCM 
schemes with FPM signal sets, thus, employ a combina- 
tion of time and frequency orthogonality to increase di- 
mensionality. One may argue that the increased dimen- 

sionality resulting from frequency orthogonality may be 
accompanied by a price in bandwidth and, consequently, 
a reduced throughput rate. For example, compare the rate 
j ( k  = 2) MTCM schemes employing 8PSK signals (N = 
1)  and 2FSKI4PSK FPM signals (N = 2). By defining the 
throughput rate as r = m/Nk,' it may be argued that the 
throughput rates of these schemes is 2 b /s /Hz  and 
1 b/s /Hz,  respectively, and therefore any gain in 
d * ( f r e e )  obtained by the MTCM/FPM scheme with re- 
spect to the MTCMBPSK scheme is not without penalty. 
However, as observed in [4], the bandwidth occupancy of 
the FPM schemes in terms of 99% (or a number of other 
percentages [ 141) signal power containment is the same 
or lower than that of MPSK schemes and, under this def- 
inition of bandwidth, the comparison of the two schemes 
is valid without penalty in the throughput rate. A similar 
analysis will be presented for the QFPM and CPQFPM 
schemes to be discussed. 

In this paper, the technique of quadrature biorthogonal 
modulation (QBOM) 1151 in combination with trellis cod- 
ing is examined for performance on the AWGN channel 
and the Rician fading channel. Quadrature frequency/ 
phase modulated (QFPM) [ 161 and its continuous phase 
modification (CPQFPM) [ 151, which are embodiments of 
the QBOM technique, are considered. The constant en- 
velope versions of QFPM and CPQFPM, the CEQFPM 
and CPFPM schemes [ 171, respectively, are of particular 
interest for satellite communication channels. It turns out 
that the CEQFPM scheme is, in fact, a 4N-ary NFSKI 
4PSK scheme, and CPFPM consequently can be viewed 
as a continuous-phase version of NFSKI4PSK. The (2N)'- 
ary QFPM signal set is derived as a quadrature-carrier 
sum of two biorthogonal N-dimensional NFSKI2PSK sig- 
nal sets. In Section I1 of this paper, the QFPM technique 
is discussed. Section I11 covers the performance analysis 
of conventional TCM schemes and MTCM schemes em- 
ploying QFPM-type signals. Trellis-code designs for the 
AWGN channel and the Rayleigh fading channel are con- 
sidered, and the design parameters d 2 ( f r e e ) ,  Lmin, and P 
are evaluated for all codes. Asymptotic coding gains are 
demonstrated over uncoded modulation and other trellis- 
coded modulations of equivalent throughput rate. Section 
IV contains the discussion. 

'This approximation is based on the Nyquist bandwidth and is crude, as 
far as N is concemed [ 131. 
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11. QUADRATURE FREQUENCY /PHASE MODULATION 
FORMATS 

Biorthogonal modulation [ 181 and quadrature-carrier 
multiplexing are two well-known techniques in digital 
communications. Both these techniques have been incor- 
porated into a novel modulation format [ 151, referred to 
as quadrature biorthogonal modulation (QBOM) . 

A 2N-ary biorthogonal signal set [18] comprises two 
polar signals on each of N orthogonal carriers. In partic- 
ular, a biorthogonal signal set can be generated by com- 
bined frequencylphase modulation of the type NFSKI 
2PSK, with the orthogonal signals cos w i ( t ) ,  i = 1, , 
N defining the orthogonal vectors of the N-dimensional 
signal space. 

By introducing the concept of quadrature-carrier mul- 
tiplexing into this technique, a 2N-dimensional signal 
space may be realized by utilizing, along with the cosi- 
nusoidal vectors defined above, their sinusoidal counter- 
parts. Quadrature-carrier multiplexing of two biorthog- 
onal signal sets yields a new modulation technique named 
quadrature frequency/phase modulation, acronymed 
QFPM. The frequencies in each of the two biorthogonal 
signal sets are offset from the center frequency w,  by an 
integer multiple of wd = r t / T  (frequency modulation in- 
dex h = 1). 

r r 

II/ = -cos wit; 11/2 = j+ sin w I  t ;  
I zi: 

The QFPM ( N  = 2) signal set contains the following 

0: cos w l t  + sin w l t  1: cos w l t  + sin w2t 

4: -cos w l t  + sin w l t  5: -cos w l t  + sin w2t 

8: -cos w l t  - sin w l t  9: -cos w l t  - sin w2t 

12: cos w l t  - sin w l t  13: cos w l t  - sin w2t 

2: cos w2t + sin w2t 3: cos w2t + sin w l t  

6: -cos w2t + sin w2t 7: -cos w2t + sin w l t  

10: -cos w2t - sin w2t 11: -cos w2t - sin w l i  

14: cos w2t - sin w2t 15: cos w2t - sin w l t  

The squared Euclidean distance between the signal 

signals: 

point 0 and all other signal points is as follows: 

d2(O, 0) = 0 d 2 ( 0 ,  2) = 2 d 2 ( 0 ,  1) = 1 

The (2N)’-ary QFPM signal set occupies the vertices 
of a 2N-dimensional hypercube, and can be expressed as 

d 2 ( 0 ,  3) = 1 

d 2 ( 0 ,  5 )  = 3 

d 2 ( 0 ,  4) = 2 

d 2 ( 0 ,  7) = 3 

d 2 ( 0 ,  6) = 2 

d2(0, 8) = 4 
s ( t )  = *cos w l t  f sin w,t i , j  = 1, 2, * - * , N .  d’(0, 10) = 2 d 2 ( 0 ,  9) = 3 d 2 ( 0 ,  11) = 3 

(1) 
The QFPM signal set is a constant energy signal set, but 
has a nonconstant envelope in the general case of i f j .  
When the same frequency wi = wj is used for both the 
cosinusoidal and sinusoidal components in any signaling 
interval, the QFPM signal set reduces to a 4N-ary con- 
stant envelope QFPM (CEQFPM) signal set. It can be 
readily seen that the CEQFPM signal set is, in fact, a 
frequency and phase modulated (FPM) signal set of the 
type NFSK14PSK.2 

The CPQFPM and CPFPM techniques described in 
[ 151, [ 171 are continuous-phase modifications of QFPM 
and CEQFPM, respectively, providing rapid rolloff of 
sidelobes in the power spectrum at the expense of a dou- 
ble-frequency modulation index ( h  = 2). 

For the unit-energy QFPM ( N  = 2) or the CEQFPM 
( N  = 2) signal sets, the signal space is four-dimensional, 
and the orthonormal basis functions are defined in (3) 

d 2 ( 0 ,  12) = 2 

d 2 ( 0 ,  15) = 1. 

d’(0, 14) = 2 d 2 ( 0 ,  13) = 1 

This signal set occupies the vertices of a four-dimensional 
hypercube. The minimum squared Euclidean distance of 
this signal set is d$, = 1. The even-numbered signals of 
this 2QFPM signal set, corresponding to wi = wj ,  consti- 
tute the CEQFPM ( N  = 2) signal set with d i in  = 2. The 
minimum squared Euclidean distance of the 16-ary QFPM 
( N  = 2) signal set is higher than that for the 16-ary 2FSK/ 
8PSK FPM signal set [4], [5], which has diin = 0.5858. 

The QFPM ( N  = 4) signal set contains 64 signals. The 
constant envelope subset of the signals in this set is the 
16-ary CEQFPM ( N  = 4) signal set. The value of dkin 
for the QFPM ( N  = 4) signal set remains the same as that 
for the QFPM ( N  = 2) signal set. The bandwidth require- 
ment and the data rate are larger than for QFPM ( N  = 2). 

The QFPM technique is discussed in detail in [14], 
wherein the topics of modulation/demodulation tech- 

‘The NFSKI4PSK signal set belongs to the class of M-ary NFSKIIPSK niques, spectra, power and bandwidth efficiencies, and 
FPM signals (I = M / N  = 4, 8. etc.) which have been investigated with 
TCM [4] and MTCM [ 5 ] .  The general definition for the FPM signal set is 

comparison with QAM/MPSK are addressed. 

111. TRELLIS CODING OF QFPM SIGNALS given as 

Set partitioning to meet the design criterion of d 2  ( free)  
for TCM schemes on the AWGN channel begins with the 
division of the signal set into subsets of odd-numbered 

[ (U,  k bhn/T)r  - $I,] (*) 

where T i s  the symbol duration, b = 1, 3 ,  . . . , ( N  - I). 4, E (0. 2 ~ / 1 ,  - . = 0 5 .  1) 
The signal space is 2N-d1mensional, and is defined in 141 tor the four- 
dimensional 2FSKIl PSK schemes For the class of NFSKI4PSK signals 

, 2 ( /  - I ) T / / ) ,  and h takes on any suitable value (e g and even-numbered signals. The signal points from each 
subset are assigned to transitions from 

discussed in  this paper, h = 1. states. 
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In the MTCM design for the AWGN channel, each trel- 
lis transition is assigned multiple (k > 1) signals, which 
are obtained as Cartesian products of signals within a 
given subset [9]. Again, subsets of odd-numbered and 
even-numbered signal k-tuples are assigned to alternate 
trellis states. On the Rayleigh fading channel, to meet the 
design criteria of length L,,, and the branch distance 
product P for MTCM schemes, the set partitioning is car- 
ried out to ensure that parallel transitions in particular are 
assigned multiple signals which differ in all k positions 
(to provide L,,, = k ) ,  in such a way that the branch dis- 
tance product is maximized as well [ 1 11. In this paper, we 
have applied the two set partitioning techniques to MTCM 
schemes with k = 2. 

Here, TCM and MTCM ( k  = 2) schemes are investi- 
gated for performance with QFPM signal sets. For all 
codes, including the TCM and MTCM codes designed for 
the AWGN channel d’(free),  L,,,, and P are tabulated 
in Tables I1 and V.  The latter two computations are added 
to trellis codes designed for the AWGN channel to high- 
light the merits of the fading channel design where appli- 
cable or, in some cases, to illustrate the merits of the TCM 
schemes over their MTCM counterparts. From the results 
tabulated in Table I11 for MTCM schemes, we arrive at 
the conclusion that, for QFPM signal sets, set partitioning 
for the Rayleigh fading channel is also optimum for the 
AWGN channel. A similar conclusion was reached in the 
analysis of multiple trellis-coded FPM signals in [ 5 ] .  

Wherever possible, asymptotic coding gains are com- 
puted with respect to uncoded and coded signal sets with 
nonconstant envelope (QAM, AM-PM) for coded QFPM 
schemes, and with constant envelope (MPSK, FPM) for 
coded CEQFPM schemes. In some cases, asymptotic 
coding gains are also reported with respect to constant 
envelope signal sets. 

In the comparison between coded QFPM and other 
modulation formats, it is always assumed that the band- 
width occupancy and, consequently, the throughput rate 
of the relevant signal sets are the same. With respect to 
FPM signal sets, this is true when the number of frequen- 
cies Nand the frequency modulation index h are the same 
in QFPM and FPM. It can be shown [I41 that, under 
certain conditions, this assumption is also valid with re- 
spect to QAM and MPSK signal sets. For a given bit rate, 
the bandwidth of QFPM is perceived to be wider than that 
of QAM (or MPSK). However, the normalized BT, that 
captures 99% of the total power, B,,, is approximately 
the same for QFPM with N = 2, 4 ,  and 8,  and QAM (or 
MPSK). Clearly, if the transmission bandwidth is limited 
to a value B ,  < B,,, the throughput rate of QFPM will be 
less than that of QAM; similarly, if B ,  > B99, the 
throughput rate of QFPM will be higher than that of 
QAM. The same analysis holds for the comparison be- 
tween CEQFPM and MPSK. 

The situation is more favorable for CPQFPM. The main 
lobe of the power spectral density of CPQFPM is wider 
than that of QFPM for any given N, but the sidelobes fall 
off more rapidly. As a result, the bandwidth efficiency of 

TABLE I 
FRACTIONAL POWER CONTAINMENT A N D  BANDWIDTHS CORRESPONDING TO 
EQUAL BANDWIDTH EFFICIENCY FOR CPQFPM A N D  QAM (MPSK) WITH A 

SIGNAL SET SIZE M = 4N2, A N D  FOR CPFPM A N D  QAM (MPSK) WITH 
M = 4N 

Bandwidth B 

N S M = 4N’ M = 4N 

2 91 % 0.575 r,, l .18rb 
4 95 % 0.72rh 1.87rb 
8 97.5% 1.04r, 3.16rb 

TABLE I1 
d’ (  free), L,,,,  A N D  P FOR T H E  TCM SCHEMES 

~ 

Description States d’(free) L,,, P 

Rate: 2 4 1 4 

8 6 3 16 
16 6 3 16 

Rate: 2 2 1 2 
Signal Set: CPQFPM (N = 2) 4 3 1 4 

8HC 4 1 4 
16 4 2 4 

Signal Set: CPFPM (N = 2)  4 4 2 4 

Rate: 2 2 I 2 
Signal Set: CPFPM (N = 4) 4 4 1 4 

8,c 6 1 4 
16 6 2 4 

Rate: 2 2 2 1 2 
Signal Set: CPQFPM (N = 4) 4 2 1 2 

8 2 1 2 
16 2 1 4 

CPQFPM exceeds that of QAM (or MPSK) even in terms 
of bandwidths that correspond to a fraction of the total 
power considerably smaller than 99%.  Table I contains, 
for various values of N, the fraction of total power cor- 
responding to equal bandwidth efficiencies of CPQFPM 
(and CPFPM) on the one hand, and QAM (or MPSK) on 
the other. Clearly, with a bandwidth corresponding to a 
larger fractional power containment than that indicated in 
Table I, the bandwidth efficiency of CPQFPM and 
CPFPM is higher than that of QAM (or MPSK). The 
bandwidths in terms of rb, corresponding to the indicated 
fractions of total power, are also given in Table I. The 
bandwidths are calculated for signal sets of size M = 4N2 
corresponding to CPQFPM and M = 4N corresponding 
to CPFPM, as well as QAM and MPSK signal sets of the 
same size M .  

Thus, while the performance of coded QFPM and 
CEQFPM as well as their continuous phase versions 
(CPQFPM and CPFPM) is the same in terms of d 2  ( f ree ) ,  
L,,,, and P ,  the continuous phase modulation schemes 
make realizable the assumption of equal (or larger) 
throughput for a larger range of bandwidth occupancy. 
For this reason, the following analysis refers to CPQFPM 
and CPFPM schemes rather than QFPM and CEQFPM. 
The results of the analysis hold for QFPM and CEQFPM 
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TABLE 111 
CODING GAINS I N  d ' ( f r p p )  FOR THE TRELLIS-CODED RATE QFPM SCHEME 

Gain (dB) Gain (dB) Gain (dB) 
Versus Versus Versus 

Uncoded TCM TCM 
Description States 8AMPM 2FSKI8PSK 16QAM 

Rate: 2 3.98 0.0 2.3 
Signal Set: CPQFPM ( N  = 2)  4 5.14 1.76 2.7 

8 6.99 1.9 3.01 
16 6.99 1.9 2.25 

when the utilized transmission bandwidth captures at least A 
99% of the total power; otherwise, some loss in band- 
width efficiency should be taken into account. 

A .  TCM Schemes 

for the following TCM schemes. 
~ 

Table I1 contains the values of d 2  ( f ree) ,  L,,,, and P 

I )  Rate 3 code: This code requires an expanded 8-ary 

= 2) signal subset of the CPQFPM ( N  = 2) signal set 
may be used. For this code, the values of d 2  ( f ree)  are 
reported by Padovani and Wolf [4] and are reproduced in 
Table I1 for reference. Table I1 also contains the values 
of L,,, and P.  This code is compared with the uncoded 
QPSK scheme and the rate 3 trellis-coded 8PSK scheme 
in [4]. 

code: For this code, an expanded 16-ary sig- 
nal set is used. The signal set is partitioned as follows: 

signal set. The constituent constant envelope CPFPM ( N  Fig 3 Two-state trellis diagram 

44%% %q 
\ 

qq '0, 

#4%@($ & 2) Rate 

A = (0, 4, 8, 12); B = (2, 6, 10, 14);  solo, 4 
Fig. 4 Four-state trellis diagram C = (1, 5, 9, 13); D = (3, 7, 11, 15). 

Two 16-ary signal sets are considered: The CPQFPM 
( N  = 2) signal set, and the CPFPM ( N  = 4) signal set. 
The signal space structure of the QFPM ( N  = 2) signal 
set is given in Section 11. For the two-state trellis shown 
in Fig. 3, the parallel transitions determine d 2 ( f r e e )  and 
d 2  (free)  = 2,  Lmin = 1, and P = 2.  The two-branch error 
event has d 2  = 3. 

For the four-state trellis shown in Fig. 4 ,  subsets as- 
signed are as follows: 

A0 = (0, 8); AI = (4, 12); Bo = (2, 10); 

BI = (6, 14); C = (5, 13); CO = (1, 9); 

DO = (3, 11); Dl = (7, 15) 

The squared free distance is determined by the two- 
branch error event with d 2  = 3 .  The distance between the 
parallel transitions is 4. Lmin and P are determined by the 
parallel transitions. 

For the eight-state half-connected trellis (since the free 
distance is not determined by the parallel transitions in the 
four-state trellis), d 2  ( f ree)  = 4 due to the parallel tran- 
sitions and due to the two-branch error event, Lmin, and P 
remain the same as for the four-state code. For the six- 
teen-state trellis, d 2  ( f ree)  = 4 due to the two-branch er- 

ror event, Lmin = 2, and P = 4. To achieve a larger value 
of d ( free) ,  the number of states has to be increased until 
the two-branch error event disappears. This is possible 
when 32 or more states are used. 

The values of d 2  ( f ree) ,  Lmin, and P are listed in Table 
I1 for this code. Comparison with uncoded 8AMPM, trel- 
lis-coded 2FSKBPSK [4], and trellis-coded 16QAM is 
given in Table 111. With respect to uncoded 8AMPM, 
coding gains up to 6.99 dB are observed for the eight-state 
trellis. With respect to trellis-coded 2FSK/8PSK, coding 
gains of 1.76 dB for the four-state trellis and 1.9 dB for 
the eight-state and sixteen-state trellises are observed. 
With respect to trellis-coded 16QAM [2], coding gains up 
to 3.01 dB for the eight-state trellis are observed. 

Alternately, the constant envelope CPFPM ( N  = 4) 
signal subset of the CPQFPM ( N  = 4) signals may be 
employed for this code. The values of d ( f ree)  are higher 
when compared to the use of CPQFPM ( N  = 2) signals. 
However, the throughput is lower in this case. This is a 
typical case of tradeoff in throughput for power. Also, the 
constant envelope characteristic of CPFPM is of rele- 
vance to satellite communication channels. 

3) Rate 2 code: This code requires the 64-ary CPQFPM 
( N  = 4) signal set. The two-state trellis has 16 parallel 
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TABLE IV 
CODING GAINS IN d 2  ( f ree)  FOR THE TRELLIS-CODED RATE QFPM SCHEME 

Description 

Gain (dB) Gain (dB) 
Versus Versus 

States Uncoded 32AM-PM TCM/64QAM 

Rate: i 2 10.2 - 
Signal Set: CPQFPM ( N  = 4) 4 10.2 7.41 

8 10.2 6.41 
16 10.2 5.61 

transitions with a minimum distance of 2.  The distance 
between any two of the four subsets assigned to the two- 
state trellis is 1. Therefore, both the parallel transitions 
and the two-branch error event have a minimum distance 
of 2. For the four-state and eight-state trellises, there are 
8 and 4 parallel transitions, respectively, both with a min- 
imum distance of 2 as well. For the sixteen-state trellis, 
the distance between the parallel transitions increases to 
4,  but d 2 ( f r e e )  remains at 2 due to the two-branch error 
event. The number of states has to be increased to 128 or 
more to avoid this error event. In all of the above cases, 
Lmin and P given in Table I1 are due to the parallel tran- 
sitions. In Table IV, this code is compared with uncoded 
32AM-PM and coded 64QAM [2], yielding coding gains 
of 10.2 and 7.41 dB (four-state trellis) respectively. 

B. MTCM Schemes 
Table V contains the values of d 2  ( f r e e ) ,  L,,,, and P of 

the following MTCM schemes. 
1)  Rate i code (k = 2): This code requires 32 signal 

pairs, which may be obtained from a Cartesian product of 
CPFPM (N = 2) signal sets. This code has been discussed 
in [ 5 ]  for 2FSK/4PSK signal sets. The results are repro- 
duced in Table 111 of the AWGN and fading channel de- 
signs, for trellises up to sixteen states, for comparison 
with other codes discussed in this paper. The values of 
d 2  ( f ree )  obtained with the AWGN channel design are the 
same as that for the rate 5 TCM code discussed earlier. 
Multiple trellis coding offers advantages when the Ray- 
leigh fading channel design is used, yielding a higher 
value of d ( f ree )  for the sixteen-state trellis and a higher 
value of L,,, for the two-state trellis. Clearly, for the 
eight-state and sixteen-state trellises, the rate 3 TCM code 
has higher values of L,,, due to the absence of parallel 
transitions, while the parallel transitions still prevailing 
in the rate MTCM code limit L,,, to 2.  

2) Rate 2 code (k = 2) 
AWGN chanrlel design: This code has 32 transitions 

from each state, and a total of 64 unique signal pairs which 
may be obtained by a Cartesian product of CPFPM ( N  = 
2) signals are required. The signal set is first partitioned 
into sets a = (0, 2, 4, 6) and b = (1, 3, 5 ,  7). The Carte- 
sian set products A = a x a ,  B = b X b,  C = a X b,  D 
= B x A defines the 64 unique signal pairs. For all these 
sets, the intraset distance is 2.  The interset distances are 
d 2 ( A ,  B) = 2 and d 2 ( A ,  C) = d 2 ( A ,  D)  = 4. 

For the two-state trellis with sets A and B assigned to 

TABLE V 
d 2 ( f r e e ) ,  L,,,, AND P FOR THE MTCM ( k  = 2) SCHEMES 

~ 

Description States d 2 ( f r e e )  L,,, P 

Rate: 2 4 1 4  

Design: AWGN 8 6 2 16 
16 6 2 16 

Signal Set: CPFPM ( N  = 2) 4 4 2 4  

Rate: '5 2 4 2 4  
Signal Set: CPFPM ( N  = 2) 4 4 2 4  
Design: Fading 8 6 2 16 
Uncoded: QPSK 16 8 2 16 

Rate: '6 2 2 1 2  
Signal Set: CPFPM ( N  = 2) 4 4 1 4  
Design: AWGN 8 4 2 4  

16 4 2 16 

Rate: '6 2 4 2 3  
Signal Set: CPQFPM ( N  = 2) 4 4 2 4  
Design: Fading 8 4 2 4  

16 6 2 16 

Rate: $ 2 2 1 2  
Signal Set: CPQFPM ( N  = 2) 4 4 1 4  
Design: AWGN 8 4 2 4  

16 4 2 4  

Rate: '8 2 2 1 2  
Signal Set: CPQFPM ( N  = 2) 4 2 1 2  
Design: AWGN 8 3 2 4  

16 3 2 4  

Rate: 2 4 2 3  
Signal Set: CPQFPM ( N  = 4) 4 4 2 3  
Design: Fading 8 4 2 4  

16 6 2 4  

state 0 and sets C and D assigned to state 1, d 2  ( f ree )  = 
2 is determined by the parallel transitions. For the four- 
state trellis, both the one-branch error event (parallel tran- 
sitions) and the two-branch error event account for 
d 2  ( f ree )  = 4. For the eight-state and sixteen-state trel- 
lises, d 2 ( f r e e )  remains at 4 due to the two-branch error 
event. 

Fading channel design: The two-state trellis for this 
code has 16 parallel transitions, and to maintain Lmin = k 
= 2 a 16-ary signal set such as CPQFPM (N = 2) is re- 
quired. The Cartesian products of the even-numbered and 
odd-numbered signal points yields 128 signal pairs, of 
which only 64 are required. The set partitioning is now 
carried out to obtain Lmin = k = 2 and to maximize the 
branch distance product P. The two-state trellis is shown 
in Fig. 5, along with the assigned signal pairs. 
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A 

B =  

0 8  
1 13 
2 2  
3 7  
4 12 
5 1  
6 6  
7 11 
8 0  
9 5  
10 10 
11 15 
12 4 
13 9 
14 14 
15 3 

c =  

0 4  
1 1  
2 14 
3 11 
4 8  
5 5  
6 2  
7 15 
8 12 
9 9  
10 6 
11 3 
12 0 
13 13 
14 10 
15 7 

D =  

Fig. 5 .  Two-state trellis diagram for a rate 2 MTCM ( k  = 2 )  scheme (fading design) 

TABLE VI 
CODING GAINS IN d ' (  free) FOR THt TRELLIS-COD~D RATF ( k  = 2 )  QFPM S C H E M E  

0 12 
1 9  
2 6  
3 3 .  
4 0  
5 13 
6 10 
7 7  
8 4  
9 1  
10 14 
11 11 
12 8 
13 5 
14 2 
15 15 

Description 

Gain (dB) Gain (de)  Gain (dB) 
Versus Versus Versus 

Uncoded MTCM TCM 
States 8AMPM 2FSKi8PSK I6QAM 

~~ ~______ ~_______ 

Rate: 2 6.99 1.71 5.24 
Signal Set: CPQFPM ( N  = 2 )  4 6.99 1.71 3.95 

8 6.99 0.51 3.01 
16 8.75 2 . 3 2  4.01 

Alternately, the constant envelope 16-ary CPFPM (N 
= 4) signal set can be used. This scheme results in a lower 
throughput due to the larger bandwidth required as com- 
pared to the CPQFPM (N  = 2) scheme. As long as the 
interset distances do not come into play, the two signal 
sets have the same values of d 2 ( f r e e ) ,  L,,,, and P .  With 
an increasing number of states set partitioning follows a 
tree structure, as described for some of the AWGN chan- 
nel codes. For the FPM signals, this procedure does not 
reduce3 the branch distance product P .  

As shown in Table VI, this code demonstrates im- 
proved performance over the rate $ code using 2FSK/ 

'For 16PSK signals, set partitioning for an increasing number of states 
using a tree structure yields lower values of branch distance products. 

8PSK signals [ 5 ] ,  yielding coding gains in d 2 ( f r e e )  of 
1.71 dB for the two-state and four-state trellises, and 0.57 
dB for the eight-state trellis. Coding gains in P up to 3.01 
dB for the eight-state trellis are observed. Coding gains 
up to 8.75 dB are observed with respect to uncoded 
8AMPM ( r  = 3 b/s /Hz)  and up to 5.24 dB versus rate 

TCM/16QAM ( r  = 3 b /s /Hz) .  
3) Rate 4 code (k = 2 )  

AWGN channel design: A CPQFPM ( N  = 2) signal 
set is used. Here, another method of set partitioning often 
used for multidimensional signals [ 191 is illustrated. After 
the first level of partitioning into two subsets of even- 
numbered (subset A) and odd-numbered (subset B) sig- 
nals, the Cartesian products (Ao = A X A ,  Bo = B X B )  
of elements within these subsets yield 128 unique signal 
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TABLE VI1 
CODING GAINS IN d Z  ( f ree)  FOR THE TRELLIS-CODED RATE f ( k  = 2) QFPM SCHEME 

Description 

Gain (dB) Gain (dB) 
Versus Versus 

Uncoded 8AMPM TCM/ 16QAM States 

Rate: f 2 
Signal Set: CPQFPM ( N  = 2) 4 

8 
16 

3.98 
6.99 
6.99 
6.99 

2 .3  
3.95 
3.01 
2.25 

. 
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pairs. Altemately, sets A and B may be comprised of sub- 
sets AAo--AA7 and BBo--BB7, respectively, each with 
eight elements, which are generated as follows: 

A A 0  = ( 0 0  

2 2  

4 4  

6 6  

8 8  

10 10 

12 12 

14 143 

BB5 = BBo + [0 101; 

BB7 = BBo + [0 141. 

BB6 = BBo + [0 121; 

Clearly, the intraset distance within sets A. and Bo is 2, 
and the interset distance between sets A. and Bo is also 2. 

For the two-state trellis, elements from sets AAo, AA2, 
AA4, and AA6 are assigned to the thirty-two parallel tran- 
sitions from state 0 to state 0. Similarly, elements from 
sets AA,, AA3, AA5, and AA7 are assigned to the thirty- 
two parallel transitions from state 0 to state 1; elements 
from sets BBo, BB2, BB4, and BB6 are assigned to the tran- 
sitions from state 1 to state 0; and elements from sets BBI , 
BB3, BB,, and BB7 are assigned to the transitions from 
state 1 to state 1. The distance between the parallel tran- 
sitions determines d 2  (free) (= 2) for the code. 

For the four-state code, the minimum distance between 
the sixteen parallel transitions accounts for d 2 ( f r e e )  = 4. 
For the eight-state trellis, the sixteen sets AAo--AA7 and 
BBo--BB, are assigned to transitions emanating from al- 
ternate states. The intraset distance of these subsets is 

equal to 4 ,  and again d 2 ( f r e e )  is limited by the parallel 
transitions. The two-branch error event also has the same 
squared Euclidean distance. 

The sixteen-state trellis with four parallel transitions 
continues to maintain the same distance between parallel 
transitions. Higher values of d 2 ( f r e e )  can be expected 
when 256 or more states are reached, i.e., when the two- 
branch error event with the same value as d 2  (free) ceases 
to exist. 

Again, for this scheme, L,,, and P are determined by 
the parallel transitions. 

This code may be compared with the rate i code pre- 
sented here. The four-state trellis in this code has a smaller 
d 2  (free) than the rate code, due to the distance between 
the parallel transitions remaining at 2 rather than increas- 
ing to 4 ,  as for the rate code. It is also compared with 
trellis-coded 2FSK/8PSK and trellis-coded 16QAM in 
Table VII. 

4) Rate code (k = 2) 
AWGN channel design: Here the CPQFPM (N = 2) 

signal set is used. For the rate 5 code requiring 128 signal 
pairs, the Cartesian cross-products of sets A and B were 
not required. This code requires 256 unique signal pairs, 
which are generated by Cartesian products of sets A and 
B with themselves as illustrated for the rate 5 code, and 
by Cartesian cross-products of sets A and B,  which results 
in sets ABo--AB7 and BAo--BA7. 

For the two-state trellis, there are 64 parallel transi- 
tions. In the assignment shown in Fig. 3, set A is com- 
prised of sets AAo to AA,, and set B is comprised of sets 
BBo to BB7 given for the rate 5 code. Set C is comprised 
of sets ABo to AB,, and set D is comprised of sets BAo to 
BA7. The distance between the parallel transitions deter- 
mines d 2 ( f r e e )  = 2. The two-branch error event path has 
d 2  = 3. For the four-state trellis, d 2 ( f r e e )  is again 2,  
determined by the distance between parallel transitions. 
For the eight-state trellis with 16 parallel transitions and 
for the sixteen-state trellis with 8 parallel transitions, 
d 2  (free) is that due to the two-branch error event. 

The CPFPM (N = 4) signal set can be used in place of 
the 16-ary CPQFPM (N = 2) signal set. As long as the 
parallel transitions determine d 2  (free), the values of 
d 2  (free) are the same as that for the rate 5 and '8 CPQFPM 
(N = 2) codes. Only when the intersubset distances begin 
to play a role with error events of three branches or more 
(the two-branch error event will also yield the same val- 
ues of d 2 ( f r e e )  as a CPQFPM (N = 2) signal set), the 
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CPFPM (N = 4) signal set offers higher gains than the 
CPQFPM ( N  = 2) signal set. 

Fading channel  des ign:  With 64 parallel transitions 
in the two-state trellis, this code requires a CPQFPM (N 
= 4) signal set. A Cartesian product of this 64-ary signal 
set yields 2048 signal pairs, of which only 256 are re- 
quired. With set partitioning carried out to meet the fad- 
ing channel criteria of Lmi, = k ,  the d 2  ( f r e e )  obtained for 
this code remains the same as that obtained for the rate ; 
code for the fading channel. Only smaller values of P are 
encountered. As explained for the AWGN channel design 
of this code, the values of d2 ( f r e e )  and P increase when 
the number of states is made very large. 

I V .  DISCUSSION 
In this paper, conventional (TCM) and multiple 

(MTCM) trellis-coding techniques for the AWGN chan- 
nel and the Rician fading channel are applied to quadra- 
ture frequency /phase modulated signals. A 2N-dimen- 
sional signal space is generated by the quadrature (cosine 
and sine) components at N orthogonal frequencies. This 
signal space is used to generate 2N-ary NFSKI4PSK 
CEQFPM signal sets and 2N2-ary QFPM signal sets (1). 
The latter signal sets make a more efficient use of the sig- 
nal space by increasing the number of signals by a factor 
of N .  The signal space for N = 2 is defined in (3). 

As shown in Tables 11-VII, coding gains are observed 
when compared to a variety of uncoded and coded mod- 
ulation schemes. The AWGN channel design for MTCM 
schemes has a lower value of L,,, when compared to the 
fading channel design. It is observed that, in Table 111, 
the fading design of MTCM schemes is optimum for the 
AWGN channel as well. This is consistent with the ob- 
servation in [5] that this is indeed the case with FPM sig- 
nal sets. As discussed in [5], the simultaneous optimiza- 
tion is advantageous for the use of trellis codes on the 
Rician fading channel. Coding gains in d 2  (free) and P 
are observed in comparison to MTCM schemes reported 
in literature. 

It was observed that the TCM and MTCM schemes with 
QFPM signals provided coding gains over equivalent 
schemes employing FPM4 signal sets and MPSK signal 
sets, as illustrated by a few examples below. Trellis-coded 
FPM schemes [4], [ 5 ]  with N = 2 were observed to pro- 
vide coding gains over trellis-coded MPSK schemes. The 
rate f TCM/[CEQFPM (N = 2)] scheme and the rate 
MTCM/[CEQFPM (N = 2)] scheme presented in Section 
111 were first discussed in [4] and [5], respectively, and 
are given here only for completeness. For the rate TCM 
scheme in [4] and the rate 2 MTCM scheme in [5], a 
2FSKI8PSK signal set was used. The value of d;,, (= 1) 
for the QFPM (N = 2) signal set employed for the 
schemes in Section 111 is larger when compared to a 2FSK/ 
8PSK signal set (d i , ,  = 0.5858). This is reflected in the 

'Note that not all FPM signal sets can be classified as QBOM signals. 
Only NFSKI4PSK FPM signals belong to the class of QBOM signals. 

improved performance of trellis-coded 2QFPM signals 
when compared to trellis-coded 2FSKI8PSK signals (and 
16PSK signals), demonstrated by coding gains for the rate 

TCM scheme and the rate '6 ( k  = 2) MTCM scheme, in 
Tables IV and VI,  respectively. Coding gains are also 
given in Table IV for the rate 2 code versus uncoded 8PSK 
and TCMI16QASK. 

For the two-state trellis, the rate 2 QFPM (N = 2) code 
has a coding gain of 2.3 dB over the rate $ 2FSKBPSK 
code [ 5 ] ,  with similar gains as the number of states in- 
creases. With respect to the rate ; MTCM scheme (AWGN 
design) using 16QASK signal sets [2], the coding gain for 
the two-state trellis is 4.32 dB. The value of branch dis- 
tance product P is also higher with a gain of 1.06 dB w.r.t. 
the 2FSKI8PSK code. 

The fading design has not been discussed for the rate 
5 MTCM scheme, for lack of a 32-ary QFPM signal set 
to suit the requirement of L,,, = k for the 32 parallel 
transitions in the two-state trellis of this code. If 32 sig- 
nals from the 64-ary QFPM (N = 2) signal set are em- 
ployed, the values of d 2  ( f r e e )  and P will be the same as 
reported for the rate 4 MTCM scheme, with a lower band- 
width efficiency. 

Comparing the TCM and MTCM schemes of equal 
throughput rates, it is observed that the rate f TCM scheme 
and the rate MTCM scheme utilize the same CPFPM (N 
= 2) signal sets. The fading design of the latter scheme 
provides a larger value of d 2 ( f r e e )  for the sixteen-state 
trellis. Note that for the eight- and sixteen-state trellises, 
the value of L,,, is larger for the TCM scheme, providing 
better performance on the Rayleigh fading channel. When 
TCM trellises have no parallel transitions and MTCM 
trellises have them for a given number of states, the TCM 
scheme may have a larger value of Lmin. This result also 
applies to TCM and MTCM schemes employing MPSK 
signals. Also, the rate '6 TCM scheme employs QFPM (N 
= 4) signals, while the rate ; MTCM (fading) scheme 
employs QFPM (N = 2) signals. The latter scheme per- 
forms better than the former in d2(free), Lmi,, and P .  The 
rate TCM scheme and the rate 5 MTCM (AWGN) 
scheme employ QFPM ( N  = 2) signal sets, and the latter 
scheme has the same or improved performance compared 
to the former. 

Most importantly, it has also been shown that the con- 
tinuous phase QFPM (CPQFPM) scheme [14] may pro- 
vide vastly improved bandwidth efficiency over QFPM. 
For the 99% bandwidth criterion, the bandwidth effi- 
ciency of uncoded CPQFPM (N = 2) is 0.97 b / s / H z  
while that of 16-ary PSK is 0 .2  b/s /Hz.  This is also true 
of the continuous phase FPM (CPFPM) schemes [17]. 
The use of the continuous phase versions of QFPM and 
CE-QFPM schemes will affect the bandwidth efficiency 
without altering the coding gains of the TCM and MTCM 
schemes discussed in this paper. 

While the QFPM signal set is a constant energy signal 
set, its envelope is not constant over a symbol interval. 
In this sense, it is different from the nonconstant envelope 
QAM signal set that it has been compared with, since the 
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QAM signal sets do not contain constant energy signals. 
From this point of view, the QFPM signal sets are ex- 
pected to be more robust to satellite transponder nonlin- 
earities when compared to QAM signal sets. The CPFPM 
scheme, which offers coding gains along with its proper- 
ties of constant envelope, constant energy, continuous 
phase, and good bandwidth efficiency offers a very good 
modulation choice. 
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