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Abstruct- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn this partially tutorial paper, we examine minimal 
trellis representations of linear block codes and analyze several 
measures of trellis complexity: maximum state and edge dimen- 
sions, total span length, and total vertices, edges and mergers. We 
obtain bounds on these complexities as extensions of well-known 
dimensiodlength profile (DLP) bounds. Codes meeting these 
bounds minimize all the complexity measures simultaneously; 
conversely, a code attaining the bound for total span length, 
vertices, or edges, must likewise attain it for all the others. We 
define a notion of “uniform” optimality that embraces different 
domains of optimization, such as different permutations of a 
code or different codes with the same parameters, and we give 
examples of uniformly optimal codes and permutations. We 
also give some conditions that identify certain cases when no 
code or permutation can meet the bounds. In addition to DLP- 
based bounds, we derive new inequalities relating one complexity 
measure to another, which can be used in conjunction with known 
bounds on one measure to imply bounds on the others. As an 
application, we infer new bounds on maximum state and edge 
complexity and on total vertices and edges from bounds on span 
lengths. 

Index Terms-Trellis decoding, block codes, decoding complex- 
ity, minimal trellises, dimensiodlength profiles. 

I. INTRODUCTION 

VERY linear block code can be represented by a minimal E trellis, originally introduced by Bahl et al. [l], which is 
a labeled graph that can be used as a template for encoding 
or decoding. As shown by McEliece [21], the minimal trellis 
simultaneously minimizes the maximum number of states, and 
the total numbers of vertices and edges in the trellis. 

A code’s minimal trellis is unique as long as the ordering of 
the code’s symbols is fixed. However, different permutations 
of the symbols yield different minimal trellises. An optimum 
minimal trellis for the code is one which minimizes a suitable 
measure of trellis complexity over all possible permutations 
of the code. There are no known efficient algorithms for 
constructing optimum minimal trellises. 
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In this paper we examine properties of the minimal trellis 
representation of a code and its dual for a fixed permutation, 
and apply these properties to obtain useful relationships among 
a variety of complexity measures. We extend these results to 
the problem of finding a trellis that minimizes complexity over 
all permutations of a code lor all codes with the same param- 
eters. We also briefly discuss minimal trellises of maximum 
complexity. 

Many of the basic results reported in this paper have become 
well known during a flurry of recent research in this area. Our 
intent is to provide a cohesive tutorial presentation of this 
material, along with some new results. 

11. THE MINIMAL TRELLIS OF A CODE 

A. The Minimal Span Generator Matrix 

For any linear zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk )  block code C over GF ( 4 )  there exists 
a minimal span generator matrix (MSGM) which can be used 
to construct a minimal trellis 7 for the code. The trellis has 
R. + 1 levels of vertices and n levels of edges. The vertex 
levels, called depths, are numbered from 0 to n; the edge 
levels, called stages, are numbered from 1 to n. Each stage 
of edges corresponds to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAone stage of encoding or decoding 
using the trellis. Each vertl:x at depth i represents a possible 
encoder state after the ith stage of encoding. The ith stage 
corresponds to the ith column of the MSGM, whereas the ith 
depth corresponds to the “space between” columns zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and i + 1. 

The edge span of any IOW of the MSGM is the smallest 
set of consecutive stages containing its nonzero positions. The 
vertex span of a row is the iset of depths i such that at least one 
nonzero symbol occurs before and after depth i. We use the 
term span length to refer lo the cardinality of a span. Using 
the MSGM to encode k information symbols in n stages of 
encoding, the edge span of the jth row represents the interval 
of stages during which the j th information symbol can affect 
the encoder output. The vertex span of the j th row is the set 
of depths at which the j th information symbol can affect the 
encoder state. 

A remarkable result is that the MSGM simultaneously 
makes all of the spans as short as possible: the edge spans 
and vertex spans for any other generator matrix representing C 
always contain the corresponding spans of some row-permuted 
MSGM [21]. Any generator matrix can be put into minimal- 
span form using the following greedy algorithm: at each 
step, perform any row operation that reduces the edge-span 
length of any row of the mamx. The rows of the MSGM 
are then “atomic codewordls,” according to the terminology of 
Kschischang and Sorokina [15]. 
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Fig 1. An MSGM and mnimal trellis for the (6,3,3) shortened Hamming code. 

Each vertex or state at a given depth can be uniquely 
labeled using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk or fewer symbols from GF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( q ) ,  but any state- 
label symbol can be reused to represent several information 
symbols, as long as the vertex spans of the corresponding 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXXX-..X denotes some sequence of symbols from 
GF (4). Defining y1, y2 > . . . > yn-k in this manner 
the left-dependent columns in the MSGM produces n - k dual 
codewords of the form 

y1 = xxx.. .XlOOO'.. 0 
y2 = xxx XlOOO 

rows of the MSGM do not overlap: This time-sharing bf stat; 
label symbols is the key to efficient trellis representations of 
the code. 

For example, Fig. 1 shows a minimal span generator matrix 
and corresponding minimal trellis for the (6,3,3) shortened Yn-k = xxx"' x1. 
Hamming code. The edge spans are {1,2,3}, {2,3,4,5,6}, 
and {3,4,5}. The vertex spans are {l,2}, {2,3,4,5}, and 
{3,4}. The trellis needs only 22 states, not Z3, because the 
vertex spans of the first and third rows do not overlap, thus 
one of the state bits can be time-shared by the first and third 
information bits. 

Following Forney [6 ] ,  let us define the ith past and future 
subcodes, denoted P, and 3z, to be the linear subcodes 
consisting of codewords whose edge spans are contained in 
[ 1, i ]  and [i + 1, n], respectively. The dimensions of these codes 

can be easily determined from the MSGM: f, dim (Fz) is 
the number of rows for which the leftmost nonzero entry lies 
in column i + 1 or later, and p ,  = dim(Pz) is the number of 
rows for which the rightmost nonzero entry lies in column z 

or earlier [21]. This implies that {pz}T=o increases in steps of 
0 or 1 from p o  = 0 to pn = k and { f z } ~ ! o  decreases in steps 
of 0 or 1 from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo = k to f n  = 0. 

For each 1 5 i 5 n, we define the left- and right-basis 
indicators, E,,  r,, to identify the positions where the future and 
past subcode dimensions change 

n 

a 

a 
E ,  = fz -1 - fz E {0,1} 

Tz = P z  - Pz-1 E {O, I}. 

For any i ,  I ,  = 1 if and only if the ith column of the MSGM is 
linearly independent of the z - 1 columns to the left. Similarly, 
r, = 1 if and only if the ith column is linearly independent of 
the n - i columns to the right. The columns where I ,  = 1 and 
the columns where I-, = 1 each form a basis for the column 
space of the generator matrix, called the left basis and the 
right basis, respectively. The positions of the left- and right- 
basis columns can be regarded as information positions when 
the MSGM is used to encode the information left-to-right or 
right-to-left, respectively. 

Note that I ,  = 0 if and only if there exists a dual codeword 
y of the form 

y = xxx.. -x 1000 -- 
2-1  n--z 

These dual codewords are clearly linearly independent and 
thus can be used as the rows of the generator matrix for the 
dual code C'. We see that the positions where r$ = 1 are 
precisely the positions where I ,  = 0, and the positions where 
I: = 1 ase the positions where r ,  = 0. Here If and r? are 
the left- and right-basis indicators for C'. These observations 
lead to the following lemma. 

and its dual are related by 
Lemma 1: The left- and right-b 

E, + r $  = Z$ + r ,  = I, 15 z 5 n 

and the dimensions p,, f,, of the past and future subcodes 
a code are given in terms of those of the dual code p:, 
as follows: 

O < z < n  

. 0 5 i L . n .  

This result has been derived using different approaches in 
171, Wl. 

B. Primitive Structures of a Minimal Trellis 

There are four basic building blocks (see also [15], [18]) 
that can be used to construct the minimal trellis for any code. 
At any given stage i, all primitive structures are of the same 
type, which is determined by the values of I ,  and r,. The 
primitive structures are: 

1) Extension (-) : This primitive structure appears at stage 
i when I ,  = 0, r ,  = 0, e.g., stage 4 in Fig. 1. There is a 
single edge out of each vertex at depth z - 1 and a single 
edge into each vertex at depth i ,  hence the number of 
vertices remains constant. 

2) Simple expansion (<) : corresponds to I ,  = 1, r ,  = 0, 
e.g., stages 1 and 2 in Fig. 1. There are q edges out of 
each vertex at depth i - 1, and a single edge into each 
vertex at depth i ,  hence multiplying by q the number of 
states from one vertex depth to the next. 
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Dual Structure 

TABLE I 
DUAL PRIMlTIVE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTRUCTURES 

l i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,ri = 1 I f  = 0 , r f  = 1 
Butterfly (X or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo ) I Extension (-) 

li = 1,rj = 1 I If = O,rf = O 

Simple merger (>) : corresponds to Z i  = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  = 1, e.g., 
stages 5 and 6 in Fig. 1. A simple merger is a time- 
reversed simple expansion, reducing the number of states 
by a factor of q. 
Butterfly (x or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0): corresponds to Z; = 1,ri = 1, e.g., 
stage 3 in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. There are q edges out of each vertex 
at depth i - 1 and q edges into each vertex at depth i, 
hence the number of states is constant. 

The butterfly structure is degenerate at the ith stage when the 
edge span of some row of the MSGM is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ i } .  This implies that 
the corresponding information bit is uncoded and the code's 
minimum distance is d = 1. A nondegenerate butterfly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x ) has 
q2 edges, while a degenerate butterfly (0) has only q edges. 

The total numbers of primitive structures in the trellis are 
denoted by N - ,  N , ,  N, ,  Nx, and No. For example, the 
trellis in Fig. 1 has N< = 3 = N,, Nx = 2, N- = 

4, No = 0. Because the trellis has exactly one initial node 
and one terminal node, the total number of simple expansions 
must equal the total number of simple mergers: N< = N>.  

Much information about the trellis for the dual code can be 
inferred from the trellis structure of the code. For example, 
if the code has a simple expansion at the ith stage, then 
1, = 1, T; = 0, and Lemma 1 implies Z> = 1, T$ = 0, 
hence the trellis of the dual code also has a simple expansion 
structure at this stage. Repeating this procedure we find the 
"dual" of each primitive structure, shown in Table I. The 
dual of a nondegenerate butterfly is a set of q extensions, 
while the dual of a degenerate butterfly is a single extension. 
The dual relationship for primitive structures implies that 
N$ = N< = N> = N>" and N- = q N k +  N & .  

111. COMPLEXITY MEASURES FOR MINIMAL TRELLISES 

A. Dejinitions and Basic Relationships 

For a minimal trellis, the total number of vertices at depth 
i is q"" and the total number of edges at stage i is get, where 
w; and e; are the vertex and edge space dimensions [7] 

The most commonly used measure of Viterbi decoding 
complexity for a minimal trellis, cited as one of the essential 
characteristics of any code [22], is the maximum dimension 

of its state space 

(3) 
A 

s,,, = max w,. 
a 

Similarly, the maximum edlge space dimension is 

(4) 
A 

em,,:= maxe,. 

Fomey argues that this is a more relevant complexity measure 
because, unlike smax, this, quantity cannot be reduced by 
combining adjacent stages of a trellis [7]. 

A different metric, used in the derivation of the MSGM 
[21], is the total length of all the edge spans of the rows of 
the MSGM 

2 

IC 
A 

E =  & 
3 = 1  

where E~ denotes the length of the edge span of the jth row 
of the MSGM. A similar span length metric is the total length 
of all the vertex spans 

k 

v i  c v 3  
3=1 

where uJ = E~ - 1 is the length of the vertex span of the j th 
row of the MSGM. These two metrics are equivalent to the 
sums of all the edge dimensions or vertex dimensions (summed 
over stages or depths, respectively) 

n n 

i=l i = O  

It is argued in [21] that more meaningful measures of Viterbi 
decoding complexity are the total number of edges E, vertices 
V ,  and mergers M ,  rather than simply the vertex or edge 
dimensionality 

n 

i=l 
n 

v = Cq"" 
i = O  
n 

(7) 

i=l 

E is equal to the number of binary additions required to com- 
pute path metrics, and M is the number of q-ary comparisons 
required to merge trellis PiithS. The computational complexity 
of Viterbi decoding is linear in E and M [21]. 

By counting the edges associated with each primitive trellis 
structure, we find 

E = N - + q N < + q N > + q 2 N x  + q N o .  (9) 

Similarly, counting the simple mergers and the mergers in- 
cluded in butterflies yields 

M = N > + q N x  +No. (10) 
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Counting the vertices on the right side of each primitive 
structure, we account for every vertex in the trellis except 
the initial node, hence 

v - 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN- + qN, + N> + qN, + N o  . (11) 

Combining (9)-( 11) we find 

E - V + l  

q - 1  
M =  

This is the generalization of the b i n w  version of this result 
found in [21]. 

Lemma 1 and (9)-( 11) lead to the following duality relation- 
ships for the trellis dimensions and the complexity measures: 

Lemma 2: For each 1 5 i < n, the vertex and edge space 
dimensions of a code and its dual arc related as 

1 

v,' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,. 

e, = e, + (1 - 1, - r,). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

The equivalence of vertex spaces for a code and its dual 

Theorem 1: The trellis complexity measures for a code and 
was first noted by Forney [6]. 

its dual are related as 

Smax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE skax 

Pro03 The fact that I ( C )  contains no butterfly structures 
proves the first equality. The others follow as a consequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
We can also restrict the types of structures that can appear in 

the minimal trellis for certain divisible codes [25]. A divisible 
code is one whose codeword weights are all multiples of some 
integer greater than one. Examples of divisible codes include 
the (31,10,12) cyclic codes and doubly-even self-dual codes 
such as the extended Golay code. 

Theorem 3: If C is such that all codeword weights are 
divisible by some integer m > 2, then C cannot have rate 
greater than $, and there does not exist a position i such that 
1, = r, = 1, i.e., 7 ( C )  contains no butterfly structures. The 
complexity measures are related by 

of Lemma 3 and (9)-(11). 

Smax = emax (12) 

M 1 = M + N - - N ,  -qNx 

For self-dual codes, Lemma 1 yields stronger results because 
for any such code I ,  = 1; and r, = r," for all i .  Consequently, 
as noted in [15]: 

Lemma3: For any self-dual code C ,  for each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 

1 , 2 , . . . , n ,  either a) I ,  = 1 and r, = 0, or b) I ,  = 0 
and r, = 1. In other words, every stage corresponds to an 
information symbol when encoding from one direction and a 
parity symbol when encoding from the other direction. The 
only primitive trellis structures in I ( C )  are simple expansions 
and simple mergers. 

The converse of Lemma 3 does not hold: a code whose 
minimal trellis contains only simple expansions and simple 
mergers need not be self-dual. 

There are convenient relationships among the complexity 
measures for self-dual codes: 

Theorem 2: For any self-dual code 

Proof: If I ,  = r, = 1 then the ith column begins 
and ends spans in the MSGM. This implies the existence 
of codewords of the form x = X X X  . . . XIOn-, and y = 

X ,  where (-1) denotes the additive in- 
verse of 1 in GF ( q )  and X X X . .  . X 
of symbols in GF ( 4 ) .  Then I(: + y is a 
1x1 + I?JI - 2 which cannot be divisible by m. This implies 
I ,  + r, 5 1 for all i, so 

n 

2k = C(Z, + r,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n 

which establishes the rate constraint. The fact that T ( C )  can 
have no butterfly structures proves (12). Equations (13) and 
(14) then follow from (9)-(11). Since I ,  + r, 5 1, Lemma 1 

U 
The converse of Theorem 16 does not hold: a code is not 

necessarily divisible when 1, + r, 5 1 for all 2. If a code 
and its dual satisfy the conditions of Theorem 3 then the code 
resembles a self-dual code: the code must have rate and its 
trellis contains only simple expansions and simple mergers. 

B. Bounds Interrelating the Complexity Measures 

z = 1  

implies + r,' 2 1, which gives (15) and (16). 

Smax = emax 

E + 1  
q + l  v=-- 

2q 

M = - E .  1 

In this section we present some new inequalities linking one 
complexity measure to another. These results allow bounds 
on one complexity measure to immediately imply bounds on 
other measures. 

The following lemma arises from the definitions of smax 
and emax, and the fact that the vertex and edge dimensions 
change by no more than one unit from one index to the next. 2q 
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Notice the similarity of these lower bounds in terms of s- 

and e- with the corresponding upper bounds of Theorem 4 in 
terms of smax and emax. 

C. Bounds from MSGM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpan Length 

In this section we present some lower bounds on complexity 
that are derived from MSGM Span length. we refer to an 
(n, k ,  d) code with dual distance dL as an (n, k ,  d, dL) code. 

Every row of an MSGM for an (n, k ,  d, dL) code must have 

total area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 1 2 ... 

Fig. 2. 
on total edge span zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. 

An edge dimension profile that nunimizes E subject to a constraint 

Lemma4: The vertex and edge dimensions are upper 
bounded by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

vi 5 min{i, n - i, smaX}, 

ei < min{i, n + I - i ,  emax}, 

Q < i < n  
1 < i 5 n. 

Summing the inequalities in Lemma 4 according to (5)-(7) 
leads to 

Theorem 4: The total complexity measures U, E ,  V, E are 
upper-bounded in terms of the maximum complexity measures 
Smax, emax by 

v I smax(n - smax) 

E I emax(n + 1 - emax) 

2q 2emax gemax - - 2q 
E <  [n+-- q - 1  ] 4 - 1 '  

Since the average edge dimension over all stages is E / n  and 
the average vertex dimension over the last n depths is v/n, 
loose lower bounds on E and V can be obtained from (6) and 
(7) using Jensen's inequality and the convexity of qwz and qe" 
as functions of U; and ei. 

Theorem 5: The complexity measures V, E are lower- 
bounded in terms of the span length complexity measures 
U, E by 

v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 + nqv/n 

E 2 nqEIn. 

The bounds in Theorem 5 can be tightened by using Lemma 
4 to constrain how fast the vertex and edge dimension profiles 
can change near the ends of the trellis. For given v or E ,  a 
vertex or edge dimension profile such as the one in Fig. 2 
minimizes V or E. This leads to the following bounds on V 
and E: 

Theorem 6: Given a total span length U or E ,  let 

AE = E - e-(n + 1 - e-) 

Au = v - s-(n - s-) 

and 

edge-span length E; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 d and vertex-span length U, 2 d - 1. 
Applying this simple bound to both the code and its dual and 
using Theorem 1 leads to the following lower bounds on U 

and E. 

Theorem 7: The total lengths U and E of the vertex spans 
and edge spans for any (n ,  k ,  d, dL) code are lower bounded 
by 

U 2 max{k(d- 1 ) , ( n -  k) (d l  - l)} 

E 2 L + max { k ( d  - I), (n - I C ) ( &  - I)}. 

Applying the Singleton bound to these inequalities gives the 
weakerbounds U 2 (d - l ) (& - l )  and€ 2 k+(d-l)(dL-l). 

We say that a code meeling the bounds of Theorem 7 with 
equality is a minimal span code. To construct an (n,k,d,2) 
binary minimal span code for any d > 2 and n 2 d + ( IC - 
1) [+I, let the first row of the MSGM be l d O n P d  and form 
each successive row by cyclically shifting the previous row at 
least I$] positions but not more than d positions to the right, 
such that the total of all the shifts is n - d. We use the notation 
MS*(k, d )  to refer to a minimal-span code of minimal length 
n = d + ( k  - 1) [$I, i.e., leach shift is exactly positions. 
MS*(k, d) is a divisible code when d is even. 

The dual of a minimal-span code is also a minimal-span 
code. These codes are not usually good in terms of distance, 
but they have very low complexity trellises, as we shall see 
in Section IV-C. 

The span length bounds of Theorem 7, combined with 
the bounds of Theorems 4-6 lead to lower bounds on the 
complexity measures smaa, emax, V, E:  

Theorem 8: For any (n, k ,  d, dL) code 

smax(n - smax) L max { k(  d - 1), (n - k )  ( dL - 1) } 
emax(n+ 1 - emax)>ki-max{k(d-l),(n- k ) (&  - I)} 

and V and E are lower-bounded by substituting the right-hand 
sides of the bounds in Thlzorem 7 for U and E in Theorem 5 
or Theorem 6. 

This theorem implies connections between complexity and 
asymptotic coding gain kd/n. For instance, emax, smax + 
k/n, log,(E/n), and log,((V - l ) /n)  + k/n are all lower- 
bounded by kdln. A slightly weaker version of the bound of - .  - 

Theorem 8 on smax has been proved in [17] for both linear 
and nonlinear where e- and s- are the largest integers such that AE 2 

0, Au 2 0, e- 2 (n + 1)/2, and s- 5 n/2. Then 

IV. UNIFORMLY OPTIMAL MINIMAL TRELLISES 

The results of Section [I assume a fixed code and a fixed 
coordinate ordering. The trellis structure, and hence complex- 
ity, depend on the choice of code and its permutation. In this 

- 2  + ( 4  - q q s -  au 
q - 1  

E 2 [n + - 2q - 2e-]qe- - 5 + ( q  - 1 ) q e - A E .  
q - 1  
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section we discuss minimizing complexity over permutations 
of a given code or all codes with the same parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 d'). 

A. Uniformly Dominating Past/Future Dimension Projles 

To compare the complexity of two minimal trellises, we 
must first select the relevant complexity measure. However, 
in some cases one trellis may be simpler than another at every 
stage and depth with respect to all of the complexity measures 
simultaneously. We can see from the complexity measures 
(3)-(8) that a permutation of C that makes f, and p,  large 
wherever possible will produce a low-complexity trellis. 

For a given ( n , k )  code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, let { p ( C ) , f ( C ) }  denote its 
pastfluture dimension projle (PFDP): p(C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {p,(C)}~==, and 
f (C) = {f ,(C)}r=o. We say that the profile { p ( C ) , f ( C ) }  is 
uniformly dominated by the profile {p(C*), f(C*)>, denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{ P ( C ) , f ( C ) }  5 {P(C*) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(C*)> 

if p,(C) 5 p,(C*) and f,(C) 5 f,(C*) for all i. For the 
purposes of this definition, either profile may be replaced by 
a pseudo-PFDP { p * , f * } ,  where p* = {pf>y==, and f* = 

{f:};==, satisfy the constraints that {pf};==, must increase in 
steps of 0 or 1 from pT, = 0 to p z  = 5 and {f:}F=o must 
decrease in steps of 0 or 1 from f$ = k to fi = 0. If the 
pseudo-PFDP is symmetric, pf = fi-z, we may refer to it by 
specifying only p* .  

If {p * ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf * }  is a valid pseudo-PFDP we associate with it 
a profile of pseudo-trellis dimensions {u:}:=~ and 
defined by substituting p,* and f: into (1) and (2). Similarly, 
we associate with {p* , f *  } a suite of pseudo-trellis complexity 
measures s;,,, U * ,  E * ,  V*, E*, and M* defined by 
substituting {v;>r==,, {e:};=.=,, and {r: = pf - pf-,}~=l into 
(3)-(8). Finally, we define a dual pseudo-PFDP { P * ~ ,  f*'} by 
substituting p: and f,* into the last two equations of Lemma 
1. All of these definitions are consistent with the actual trellis 
dimensions and complexity measures when {p* , f* } is the 
PFDP of some code C*, so we usually drop the distinction 
between PFDP's and pseudo-PFDP's. 

The following duality relationship is a straightforward result 
of the definitions: 

Theorem 9: Uniform dominance of the PFDP's of codes 
and their duals are equivalent: {p(C) ,  f(C)} 5 {p* ,  f*} if and 
only if 

{ P W ,  f ( C L ) >  3 { P * l ,  f*'>. 
Uniform dominance can be used to obtain bounds on all the 

complexity measures: 
Theorem 10: If 

{P (C) ,  f(C), 5 {P*, f*} 

for some valid uniformly dominating PFDP with (pseudo)- 
trellis complexity measures defined above, then 

smax(C) L s > a  

emax(C) L e;ax 

.(e) 2 U* 

.(e) 2 E* 

V(C) >_ v* 
E(C) 2 E* 

and 

M(C) 2 M*.  

Proof: Inequalities for s,,, emax, U ,  E ,  V, E follow im- 
mediately from the definitions. It remains to show that 
M(C) 2 M*. From (8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n n n 

Now r, = 1 in precisely the k places where pz is incremented, 
so the nonzero values of r,q-P% are qW1, q P 2 ,  . . . , q-', which 
gives 

j = 1  

where R3 is the position of the j th 1 in (TI, 7 - 2 , .  . . rn). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
similar expression holds for the (pseudo-)trellis merger count 
M*, if we define R; to be the position of the jth 1 in 
(T: ,  r;, . . . r:). Uniform dominance implies pf 2 p ,  (C), thus 
R; 5 R3(C). Uniform dominance and the monotonicity of 
{f:},"=o imply 

f;; L f R ;  (C) L fR, (e )  (Cl. 

Thus 

k k 

M* = qk 4-34 pf+ 5 qk x q - 3 q - f R , ( e ) ( C )  = j qc ) .  
3=1 3=1 

0 
The bounds of Theorem 10 can sometimes be tightened 

by invoking additional constraints on the trellis dimensions. 
For example, we can exploit the constraint that U, and e, 
must be nonnegative, or that e, 2 1 for a code with dual 
distance d l  > 1. Recent work by Lafourcade and Vardy [IS] 
incorporates more sophisticated constraints on { u , } ~ ~ ~  and 
{e,},",, as a means of tightening the bounds. 

Finally, we have a strong converse theorem: if a uniformly 
dominating PFDP exists and any one of four measures of total 
complexity attains the corresponding bound of Theorem 10, 
then all seven of the complexity measures must attain their 
bounds. Specifically 

Theorem 11: Suppose that {p(C),  f(C)} 5 {p * ,  f*} for all 
codes C E Q, where Q is an arbitrary class of codes. If for 
some C* E Q any of the complexity measures &(e*), .(e*), 
E(C*), or V(C*) meets the corresponding bound E * ,  U * ,  E*, 
or V* of Theorem 10 with equality, then for all codes C E Q 

{P(C),f(C)} 3 M C * ) , f ( C * ) )  = {P*,I*l. 
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Proof: Suppose, for some 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< i < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, either p;(C*) < p: 

or fz(C*) < f,*. Then from (1) and (2), and uniform 
dominance, uz(C*) > w: and either e,(C*) > e: or 
ez+l(C*) > e:+l. But this would imply from (5)-(7) that 
u(C*) > U * ,  &(e*) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE * ,  V(C*) > V*, and E(C*) > E*, 
contradicting the assumption that one of these complexity 
measures attains its bound. U 

If the PFDP of C* uniformly dominates that of any other 
code within a set &, we say that the code C* and its minimal 
trellis I ( C * )  are uniformly optimal over &. Our motivation for 
defining uniform optimality and studying its consequences lies 
in the correspondingly strong results obtained for the problem 
of finding a minimal trellis in the first place, i.e., finding the 
least complex trellis that represents a fixed permutation of a 
fixed code. As shown in [21], the minimal trellis is uniformly 
less complex at every stage and depth than any other trellis 
that represents the code. 

The most prominent research on bounding the complexity 
of minimal trellises has been based on finding a uniformly 
dominating pasvfuture dimension profile {p* , f*}. This is the 
premise of the dimensiodlength profile bounds discussed in 
the next sections. 

B. Uniformly Eficient Permutations of a Code 

In this section we consider re-ordering the symbols of a 
code to reduce the trellis complexity. Massey calls this “the 
art of trellis decoding” [20]. 

Let S, denote the set of all permutations of { 1,2,  . . . n}, and 
for any 7r E S,, let C7r denote the code C with coordinates 
re-ordered according to 7r .  For a given code C the dimen- 
sion/Zength profile (DLP) [7], [ lo ] ,  [24] is the set of subcode 
dimensions {K,(C)}p==, satisfying 

K,(C) = maxp,(Cr) = max fn-,(C7r). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TES, TES, 

It can be shown that {K,(C)}pzo increases in steps of 0 or 1 
from Ko(C) = 0 to K,(C) = k [7]. Lemma 1 leads to the 
well-known duality relationship K,(C’) = i - k + KnPZ(C) 
[7], [lo], [26]. Much research has been devoted to determining 
DLP’s, which contain the same information about a code as the 
minimum support weights or generalized Hamming weights 
(GHW VI, [51, [81, P I ,  WI, WI, W I ,  V61, 1271. 

The DLP has been used to bound the trellis dimensions and 
complexity [7], [lo], [18], [24]. In the language of the previous 
section, the DLP defines a symmetric uniformly dominating 
PFDP for all permutations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACT of a fixed code C. Thus by 
Theorem 10, all of the complexity measures for C7r are lower- 
bounded by the corresponding expressions based on the DLP. 

For afixed code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, we say that a permutation 7r* and the 
corresponding minimal trellis ~ ( C T * )  are uniformly efficient if 

MCn),  f(cT)} 5 { P ( C T * ) ,  f (Cf l*)}  
- 
for all r E S,. Clearly, T* is uniformly efficient for C if and 
only if 

&(er*) = KZ(C) = fn-z(C7r*). 

Such permutations have been referred to as “efficient” 
[7] or “strictly optimum” [lo] orderings. From Theorem 

11, if any of the four total complexity measures &(er*), 
u(C7r*), E(Cr*), V(C7r*) attains the corresponding DLP 
bound, then r* is uniformly efficient. Prom Theorem 9 and 
the DLP duality relationship, a permutation 7r* is uniformly 
efficient for C if and only if T* is uniformly efficient for C’. 

The standard permutation of any Reed-Muller code is 
uniformly efficient [IO]. The next section gives additional 
examples of codes with uniformly efficient permutations. 

In the remainder of this section we include some theoretical 
results that impose necessary conditions on uniformly efficient 
permutations. These conditions can be used to identify codes 
which cannot meet the DL.P bounds. 

If 7r’ denotes the permutation that maps coordinates into the 
order 

(1 ,2 , . .  . , i ,  n - j + 1 , n - : i + 2 , .  . . ,n ,  i + l , i + 2 , . . .  , n - j )  

then for any permutation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7: of an (n, k )  code C 

Kzt3(C) 2 ~ , + ~ ( C 7 r 7 r ’ )  =pZ(Cr) + f n - j ( C X ) .  

In the special case where 7r is a uniformly efficient permutation 
for C, this gives: 

Theorem 12: If an (n, k )  code C has a uniformly efficient 
permutation, then for any i , j  such that i + j 5 n 

KZ+j(C) 2 KZ(C) + K3(C). 

The fact that K d ( C )  == 1 and Kdl(CL)  = 1 for any 
( n , k , d , d l )  code leads ta 

Theorem 13: Suppose n *  is a uniformly efficient permuta- 
tion for an (n, k ,  d, d’) code C. Then C7r* contains codewords 
of the form XdOnPd, On-“Xd and C’r* contains codewords 
of the form X d L  O1l -d l  X d L  , where 03 denotes j con- 
secutive zeros, and X3 denotes some sequence of j nonzero 
symbols from GF ( 4 ) .  

Corollary 1: If a binary ( n , k , d , d l )  code C has a uni- 
formly efficient Permutation 7r*, then min(d, d l )  must be 
even. 

Proof: From Theorem 13 

E c7r* I d o n - d  

and 

I d L  O n - d l  E C l r *  

but if min(d,&) is odd then these sequences cannot be 

By Corollary 1, the (23,12,7,8)  Golay code has no uni- 
formly efficient permutation, neither does the (2m - 1, 2m - 
m- 1,3,  2m-1) Hamming code for any m 2 3. Consequently, 
no nontrivial perfect birmy linear code has a uniformly 
efficient permutation. 

If a trellis converges to a single vertex at depth i ,  i.e., w; = 0, 
for some i # 0 or n, then C is a direct-sum code [19, p. 761. 
The direct sum of an (721, k l )  code C1 and an (122, ka) code CZ 
is an (nl + 722, k1 + kz )  code, denoted C1 @ Cz, consisting of 
all codewords of the form c1 Icz (i.e., c1 followed by c2) where 
c1 E C1 and c2 E Cz. The DLP of a direct-sum code can be 
computed directly from the DLP’s of its component codes. 

orthogonal. 0 
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for some linear subcodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ1 C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ2 C: C2. Clearly we 
maximize 

dim[Pm[(C1 @ C ~ ) T ] ]  = dimQl+ d imQ2 

when dimQ1 = K,(C1) and dim& = K3(C2)  for some 

The definition of uniform efficiency has the desirable prop- 
erty that, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ( C )  is uniformly efficient, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ( C  @ C) is also 
uniformly efficient. However, combining Theorems 12 and 14 
we can show that if I ( C 1 )  and I ( C 2 )  are uniformly efficient 
minimal trellises for two different codes, it is not true in 
general that C1 @Cz has a uniformly efficient permutation, even 
though I ( C 1  @ C,) cannot be improved upon according to any 
of the complexity measures. It can be argued that I ( C 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACB C2) 
is efficient, though not uniformly so. 

Although many codes lack uniformly efficient permuta- 
tions, for many such codes there exists some permutation 
that simultaneously minimizes all of the trellis complexity 
measures, e.g., the (7,4) Hamming code. For self-dual codes, 
Theorem 2 tells us that there is always a single permutation 
that simultaneously minimizes E ,  V, and M .  We do not know 
whether this is true in general. 

C. Uniformly Concise Codes 

We now consider the problem of minimizing trellis com- 
plexity over all codes with given (n, k ,  d, d l ) .  The inclusion 
of d l  as a parameter of the optimization domain elucidates 
symmetries that are hidden by consideration of only n, k ,  and 
d. 

Let Q ( n , k , d , & )  be the set of all ( n , k , d , d l )  codes 
over GF (9 ) .  For any (n, k ,  d ,  d l ) ,  the upper dimension/ 
length profile (UDLP) is the set of subcode dimensions 
{K,(n, I C ,  d, d l ) } p z o  satisfying 

i + j = m .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Since each K,(C) is associated with a linear subcode of C, 
many authors have used bounds on the best possible linear 
codes (Le., codes with the largest possible minimum distance) 
to upper-bound the UDLP [5], [7],  [91, [lo], [141, [151, [221, 
[24]: zz(n, k ,  d,  dL) 5 E,(n, k ,  d ,  d l )  where 

K, (n, I C ,  d ,  d ) = min[k,,(z, d) ,  k - n + i + kmax(n - i ,  &)I 
and kmax(m,d) is the largest possible dimension for any 
q-ary linear block %ode of length m and minimum dis- 
tance d. The set { K z ( n , k , d , d L ) } y = o  is called the “best 
codes” dimensiodength projile (BCDLP) for the code pa- 
rameters ( n , k , d , & ) .  Both the UDLP and the BCDLP de- 
fine symmetric uniformly dominating PFDP’s for all codes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

C E Q(n, k ,  d ,  d l ) .  Hence Theorem 10 implies corresponding 
UDLP and BCDLP lower bounds for all of the complexity 
measures. 

Bounds based on the BCDLP are important practically, 
because much data about the be ossible codes has been 
tabulated [2], and some codes achieve these bounds with 
equality. However, for many combinations of (n, k ,  d ,  d l )  it 
is not possible for a single code and its duh to both have a 
series of subcodes, all with the maximum code dimensions. 

We say that an (n, 5 ,  d, dL) code C* and its corresponding 
minimal trellis I ( C * )  are uniformly concise if 

for all (n, k ,  d ,  d l )  codes C! Clearly, C* is uniformly concise 
if and only if 

pz(C*)  = K2(n, k ,  d,  d l )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfn-,(C*). 

Also, from Theorem 11, C* is uniformly concise if any of 
the four total complexity measures &(e*), .(e*), E(C*), or 
V ( C * )  meet the UDLP or BCDLP bounds with equality. Both 
the UDLP and BCDLP definitions are nsistent with that 
of the corresponding dual PFDP: the PFDP for parameters 
(n, n - k ,  d’-, d )  equals the dual PFDP for (n, k ,  d,  di). Hence, 
from Theorem 9, C* is uniformly concise if and only if C * I  
is uniformly concise. 

Uniformly concise codes are optimum in a 
sense. Not only do they have an efficient permuta 
are “concise” in the sense ey have the smallest possible 
trellis compared to all CO 

Table I1 lists known uniformly concise binary codes. In 
each case, the complexities listed are the lowest possible 
values for any code with the same parameters. Uniform 
conciseness of first-order Reed-Muller codes follows from 
the explicit GHW derived by Wei [26] together with the 
result of Kasami et al. [lo] that the standard permutation is 
uniformly efficient. Other examples in the table are obtained 
by discovering a column permutation that meets the BCDLP. 
In [4] we reported such a permutation for the (48,24,12,12) 
quadratic residue code. Permutations that meet the BCDLP for 
the (24,12,8,8) extended Golay code [6], the (32,16,8,8) 
second-order Reed-Muller code [IO], and the (16,7,6,4) 
lexicode [ 161 have been reported elsew 

We can use the results of the previous 
ples of code parameters (n, k ,  d, dL) for which no uniformly 
concise trellis can exist. In the remainder of this section we 
provide some illustrations of the types of arguments that can 
be used. 

If CT* is uniformly concise then clearly ?r* must be uni- 
formly efficient for C. This fact combined with Theorem 12 
can be used to show, for example, that no binary (6,3,2,2) 
code is uniformly concise. 

For another example, Theorem 13 combined with the prop- 
erties of the DLP and BCDLP can be used to show that there is 
no binary (18,9,6,6) uniformly concise code. So the quadratic 
residue code with these parameters cannot have a uniformly 
efficient permutation. 

Since minimal-span codes minimize E ,  every minimal-span 
code is either uniformly concise, or no uniformly concise code 

the same parameters. 
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TABLE I1 
SOME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUNIFORMLY CONCISE BINARY CODES 

(Codes are grouped with their duals, which are also uniformly concise. Complexity measures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ,  can be computed as M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E - V + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, E = Y + k .  
Notes: (l) Complexity expressions for first-order Reed-Muller and extended Hamming codes are valid for m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3, except emax = 3 when 

m = 3. ('IC U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI denotes the code formed by takmg all linear combinations of codewords in C U {z}. (3 )  The code is 
MSL(5,8) U ( O l ) 4 ( O O l l ) 2 0 s  U (1100)2(10)4(1100)2 U Os(OOll)2(Ol)4. (4) The code is MS*(4,16) U (10)" U ( l l O O ) l o  U (1404)5.) 

dominated by the PFDP of any other (n, k )  code C. Thus are given in the following two theorems. 

exists with the same parameters. MS*(4,3) is a (9,4,3,2) 
minimal-span code. If C is the direct sum of the (6 ,3,3,3)  
shortened Hamming code, and the (3,1,3,2) repetition code, 
then C is a (9,4,3,2) code with superior DLP but larger edge 
span length E, thus there is no (9 ,4,3,2)  uniformly concise 
code. 

D. Full Minimal Trellises and Uniformly Ineficient 
Permutations 

For any (n, k )  code, p i  and fi both reach maximum values 
of k ( f o  = k and p,  = k )  and can fall from these values at a 
maximum rate of one unit per trellis stage. The trellis dimen- 
sions are therefore lower-bounded [7] as pz 2 &(n, k ) ,  fi 2 
En.-i(n, k), where 

n 
- Ki(n,  k )  = max(0, k - n + i ) .  

The set {&(n, is called the Zower dimensiodength 
proJile (LDLP) for the code parameters (n, k ) .  

The LDLP defines a valid symmetric PFDP for an easily 
constructed ( n , k )  code C*. (To construct the j th row of the 
MSGM of one such code, place 1's in the j th and (n-k+j)th 
positions and 0's elsewhere.) The PFDP of C* is uniformly 

we can apply Theorem 10 in reverse to conclude that all 
of the complexity measures are upper-bounded by the values 
associated with the LDLF. 

The LDLP bound on maximum state complexity is the 
well-known Wolf bound: smaX(C) 5 min(k,n - k )  [28]. 
The corresponding bound on maximum edge complexity is 
emax(C) 5 min(k,n + 1 - k ) .  Explicit expressions for the 
LDLP bounds on .(e), E((:) ,  V(C), and E(C) are the same as 
those obtained by substituting these bounds on smax(C) and 
emax(C) into the inequalities of Theorem 4. Thus the bounds 
of Theorem 4 are tighter than the LDLP bounds, except when 
the bounds of both theorems are met with equality. 

For a fixed code C, we say that a permutation T* and the 
corresponding minimal trellis 'T(C7r*) are uniformly ineficient 
if 

for all 7r E S,. From Theorem 9, a permutation 7r* is uniformly 
inefficient for C if and only if T* is uniformly inefficient for 
C l .  Many codes have uniformly inefficient minimal trellises 
in their standard permutations, e.g., cyclic, extended cyclic, 
and shortened cyclic codes [ll], [15]. Additional examples 
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Theorem 15: A self-dual code always has a uniformly 

inefficient permutation. 
Proofi By Lemma 3, any ( 2 k , k )  self-dual code has k 

stages of simple expansions and k stages of simple mergers. 
The columns of the MSGM corresponding to the expansion 
stages form a linearly independent set, as do the columns 
corresponding to the mergers. Any permutation which groups 
all k of the expansion columns followed by all k of the merger 
columns is uniformly inefficient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Theorem 16: If and only if a code is maximum-distance- 
separable (MDS), every permutation 7r is uniformly inefficient. 

This theorem was proved by Fomey [7]; it follows from 
the fact that a code is MDS if and only if every subset of 
k columns of its generator matrix is linearly independent. A 
peculiar consequence of Theorem 16 is that every permutation 
of an MDS code is also uniformly efficient, and the code is 
uniformly concise. In fact, the lower bounds of Theorem 8, 
which are generally looser than the BCDLP bounds, are also 
met with equality for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan MDS code (with bounds on V and 
E derived from Theorem 6, not Theorem 5). However, we 
prefer to emphasize the inefficiency of MDS trellises, because, 
no other (n, k )  code can have a more complex minimal trellis 
than that of an MDS code. 

We say that the minimal trellis of an (n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  code C is full 
if p z ( C )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= &(n, 5 )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf z ( C )  = KnPz(n, k ) .  Equivalently, 
7 ( C * )  is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfull if 

for all (n, k )  codes C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA full minimal trellis reaches the 
maximum possible vertex dimension min{k,n - k }  in the 
minimum number of stages from both directions and stays 
there if k < n - k. From Theorem 9, T ( C * )  is full if and only 
if 7 ( C * l )  is full. The complexity of any full minimal trellis 
equals the LDLP bounds, i.e., a full minimal trellis has the 
maximum complexity for any (n, k )  code. 

In the proofs of the two previous theorems, the uniformly 
inefficient permutations produced -full minimal trellises. This 
fact generalizes as follows: 

Theorem 17: If T* is a uniformly inefficient permutatbn 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, then I ( C r r * )  is full. 

Pro03 If C is k-dimensional, any generator matrix for 
C has k linearly independent columns. Let 71-1 and 71-2 be two 
permutations which place k independent columns in the first 
and last k positions, respectively. If 7r* is uniformly inefficient, 
then 

and 

fi(C.ir*) 5 f , ( C ~ l )  = max(0, k - i) 

i.e., T*  must achieve the LDLP bounds on both the past and 
the future, implying that both the first k columns and last k 
columns of the corresponding MSGM are linearly independent. 

17 The corresponding minimal trellis is full. 

V. CONCLUSION 

In this paper we approached the trellis complexity prob- 
lem by first considering the minimal span generator matrix 
(MSGM) for a fixed permutation of a code. After briefly 
describing the connection between a minimal trellis and the 
MSGM, we identified the primitive structures of a minimal 
trellis and gave some fundamental duality relationships. The 
ideas in this section grew from the work of [21] and closely 
resemble that of [15], to which the reader is referred for more 
details on constructing minimal trellises or extending these 
results to nonlinear codes. 

McEfiece [21] showed that the minimal trellis minimizes 
not only the maximum stat nsion of the trellis but other 
complexity measures as we have augmented the 
list of reasonable comple es and have shown many 
connections among them and with the primitive structures. 
The duality properties lead to interesting relationships among 
several of the complexity measures for the special cases of 
self-dual codes and certain divisible codes. 

We gave some simple inequalities bounding one complexity 
measure in terms of another, ich can be used in conjunction 
with any known bounds on complexity measure to imply 
bounds on the others. By applying these results, we were able 
to infer some simple new bounds on the maximum state or 
edge complexity and on the total numbers of vertices and 
edges by bounding instead the total span lengths associated 
with the MSGM. These bounds imply a simple link between 
complexity and asymptotic coding gain, similar to that shown 
in 1171, where this connection is discussed in more detail. 

The trellis complexity analysis for a fixed code was ex- 
tended to codes allowed to vary over a domain of optimization. 
We looked at two useful domains, the set of permutations of 
a given code and the set of all codes with given parame- 
ters. Bounds on maximum state complexity derived by other 
authors from the dimensiodlength profile (DLP) of a code 
(see especially [7])  generalize easily to similar bounds on all 
the complexity measures over each domain. Conversely, we 
have shown that if a minimal trellis attains the bounds for 
certain complexity measures (total span length, total vertices, 
or total edges), it must necessarily be uniformly optimal, but 
this is not true for the simpler measures of maximum state 
or edge dimension usually considered by other authors. This 
lends credence to the argument in [21] that a measure of 
total complexity is more useful than a measure of maximum 
complexity. 

We attempted to unify the theory of DLP bounds over 
different domains of optimization by defining the simple 
concept of a uniformly dominating pasvfuture dimension 
profile (PFDP). A code or permutation is uniformly optimal 
within a given domain if its associated PFDP uniformly 
dominates that of any other code or Permutation within the 
same domain, a definition that does not require reference 
to any particular bounds. We demonstrated that this is a 
useful concept by presenting several examples of uniformly 
optimal trellises. However, uniform optimality is such a strong 
requirement that in many cases we were able to prove that no 
uniformly optimal code or permutation can exist. This shows 
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that there is room for considerably more research to define 
what should be meant by an “optimal” code or permutation 
without the qualifier “uniformly.” 

Finally, to round out the subject, we briefly examined 
minimal trellises of maximal complexity. The theory is much 
simpler here, because one can easily construct a minimal 
trellis that has the maximum number of vertices and edges for 
any code of given length and dimension. Maximum-distance- 
separable codes always have full minimal trellises, as do many 
other codes if inefficiently permuted. It is much easier to 
construct full minimal trellises than to find concise ones. 
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