
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012 2617

Trellis-Search Based Soft-Input Soft-Output MIMO

Detector: Algorithm and VLSI Architecture
Yang Sun, Member, IEEE, and Joseph R. Cavallaro, Senior Member, IEEE

Abstract—In this paper, we propose a trellis-search based

soft-input soft-output detection algorithm and its very large scale
integration (VLSI) architecture for iterative multiple-input mul-

tiple-output (MIMO) receivers. We construct a trellis diagram to

represent the search space of a transmitted MIMO signal. With
the trellis model, we evenly distribute the workload of candidates

searching among multiple trellis nodes for parallel processing. The

search complexity is significantly reduced because the number of
candidates is greatly limited at each trellis node. By leveraging the

trellis structure, we develop an approximate Log-MAP algorithm

by using a small list of largest exponential terms to compute
the LLR (log-likelihood ratio) values. The trellis-search based

detector has a fixed-complexity and is very suitable for parallel

VLSI implementation. As a case study, we have designed and

synthesized a trellis-search based soft-input soft-output MIMO

detector for a 4 4 16-QAM system using a 1.08 V TSMC 65 nm

technology. The detector can achieve a maximum throughput of

1.7 Gb/s with a core area of 1.58 mm .

Index Terms—ASIC, MIMO algorithm, soft-input soft-output
MIMO detection, trellis-search algorithm, VLSI.

I. INTRODUCTION

W IRELESS systems are adopting multiple-antenna con-

figurations with spatial multiplexing technique to sup-

port parallel streams of wireless data. As an example, the Ver-

tical Bell Laboratories Layered Space-Time (V-BLAST) system

has been shown to achieve very high spectral efficiency [1].

One bottleneck in suchmultiple-input, multiple-output (MIMO)

communication systems is the need to process a large amount of

data received at one end of a digital communication channel to

detect a noisy signal transmitted simultaneously by a number of

transmit antennas.

The optimal soft-input soft-output MIMO detector is based

on the log maximum a posteriori probability (Log-MAP) al-

gorithm, which is too computationally intensive to be imple-

mented in a practical MIMO receiver, because the Log-MAP

algorithm requires calculating two log-sums of exponential

terms, where is the constellation size (i.e., the number of pos-

sible symbols of a modulation alphabet of a transmitted signal),

and is the number of the transmit antennas. A brute-force

Manuscript received October 14, 2011; revised January 25, 2012; accepted
January 27, 2012. Date of publication February 13, 2012; date of current version
April 13, 2012. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Tong Zhang. This work was supported
in part by Renesas Mobile, Texas Instruments, Xilinx, and by the U.S. National
Science Foundation under Grants EECS-0925942 and CNS-0923479.
The authors are with the Department of Electrical and Computer Engineering,

Rice University, Houston, TX 77005 USA (e-mail: ysun@rice.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2012.2187646

implementation of an optimal Log-MAP algorithm consumes

enormous computing power, which makes it impractical to be

employed in multiple antenna systems with higher-order mod-

ulation schemes.

There are two main approaches to MIMO detection prob-

lems: the depth-first tree-search algorithms such as sphere de-

tection [2]–[8], and the breadth-first tree-search algorithms such

as K-best detection [9]–[13]. There are many hardware imple-

mentations of the sphere detectors and theK-best detectors, such

as [14]–[21], [8], [22]–[26]. To support iterative MIMO detec-

tion, several tree-search based soft-input soft-output detection

algorithms are developed by researchers [27]–[30]. However,

there are some drawbacks to using the tree-search based de-

tectors. For the depth-first sphere detection, the number of vis-

ited nodes is large in the low SNR (signal-to-noise) regime,

while the number of visited nodes is small in the high SNR

regime. As a result, the depth-first sphere detector has a vari-

able throughput which is undesirable in systems with strict la-

tency requirements. In the K-best detection, the number of vis-

ited nodes is fixed independent of SNR. However, a large K

value is required to achieve good performance. The main chal-

lenge for implementing the K-best detector is to sort a large

number of candidates. In addition, the candidate list generated

by a sphere detector or a K-best detector does not guarantee that

the bit-level soft information, or the log likelihood ratio (LLR),

can be found for every data bit, which will lead to some perfor-

mance degradation.

In this paper, we propose a trellis-search based detection al-

gorithm for iterative MIMO detection. We use an unconstrained

trellis structure as an alternative to the tree structure to represent

the search space of a MIMO signal. We propose a trellis-based

approximate Log-MAP algorithm as a replacement of the typ-

ically used Max-Log algorithm for iterative MIMO detection.

We search the trellis to find a number of most likely paths for

each trellis node and compute a log-sum of a number of expo-

nential terms corresponding to a hypothesized transmitted bit

value. Near-optimal performance can be achieved by choosing

an appropriate number of surviving paths in the trellis search

process. The trellis-based detection algorithm is a very data-

parallel algorithm because the searching operations at multiple

trellis nodes can be performed simultaneously. The local search

complexity at each trellis node is kept very low to reduce the

overall processing time.Moreover, the trellis-based detector can

support iterative MIMO detection by utilizing the a priori infor-

mation from the outer channel decoder.

The rest of the paper is organized as follows. Section II

summarizes the MIMO system model. Section III introduces

the trellis-search based iterative MIMO detection algorithm.

1053-587X/$31.00 © 2012 IEEE

2618 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

Section IV shows the simulation results. Section V presents the

proposed VLSI architecture. Section VI summarizes the VLSI

implementation results and the architecture comparison with

state-of-the-art solutions. Finally, Section VII concludes the

paper.

II. SYSTEM MODEL

In this section, we review the system model for MIMO

communication systems. We consider a spatial-multiplexing

MIMO system with transmit antennas and receive

antennas . The MIMO transmission can be modeled

as

(1)

where is an complex matrix and is assumed to

be known perfectly at the receiver, is an transmit

symbol vector, is an re-

ceived vector, , and is a vector of

independent zero-mean complex Gaussian noise entries with

variance per real component. A real bit-level vector

is mapped to the complex symbol

as , where the th bit of is denoted as

is the number of bits per constellation point, and is the con-

stellation size .

The optimal log maximum a posteriori probability

(Log-MAP) detector is to compute the log-likelihood ratio

(LLR) value for the a posteriori probability (APP) of each

transmitted bit. The LLR value for each bit is computed

as [5]

(2)

where is the a priori LLR for bit . In an iterative

MIMO receiver, the a priori LLR will be provided by

a channel decoder.

III. TRELLIS-SEARCH BASED ITERATIVE MIMO

DETECTION ALGORITHM

The LLR computation in (2) requires calculations of two log-

sums of exponential terms. The brute-force implementa-

tion of (2) is too complex. As a balanced tradeoff between com-

plexity and performance, we propose to use a reduced number

of exponential terms to approximate the original Log-MAP

algorithm:

(3)

where the exponential terms used in each log-sum computa-

tion are preferably the largest exponential terms. Based on the

QR decomposition of the channel matrix , (3) can

be written as

(4)

where the distance is defined as

(5)

In the equation above, , and denotes the th

element of a vector.

In order to implement (4), we must find minimum distances

for each hypothesized transmitted data bit, i.e.,

and . To realize this goal, we propose a trellis-search

algorithm to find the minimum distances.

A. Proposed Trellis Model for Iterative MIMO Detection

We introduced a trellis model for noniterative MIMO detec-

tion in [31] and [32], where we assume there is no a priori in-

formation available to the detector. The suboptimal Max-Log

approximation algorithm was used in [31] and [32] to compute

the LLRs. In this new work, we extend the trellis model in-

troduced in our earlier work [31] and [32] to support iterative

MIMO detection. The a priori information is incorporated into

the path metrics computation to support iterative MIMO detec-

tion. We propose a more reliable LLR generation algorithm by

replacing theMax-Log algorithmwith themulti-term Log-MAP

algorithm. We use the trellis model to find the minimum dis-

tances to compute the LLRs as shown in (4). The performance

of the proposed algorithm is very close to that of the optimal

Log-MAP algorithm while still maintaining low implementa-

tion complexity.

The search space of a MIMO signal can be represented with a

compact trellis diagram. As an example, Fig. 1 shows the trellis

diagram for a 4 4 4-QAM system. The trellis has stages

SUN AND CAVALLARO: TRELLIS-SEARCH BASED SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR 2619

Fig. 1. A trellis diagram for a 4 4 4-QAM system. The trellis has stages
corresponding to number of transmit antennas, and each stage contains
different nodes corresponding to number of constellation points.

corresponding to transmit antennas, and each stage con-

tains different nodes corresponding to symbols of a com-

plex constellation of the transmitted signal. In other words, the

trellis is formed of columns representing the number of transmit

antennas and rows representing values of a number of sym-

bols with nodes at intersections. Each trellis node is physically

mapped to a transmit symbol that belongs to a known modu-

lation alphabet of the constellation symbols. Thus, any path

through the trellis represents a possible vector of transmitted

symbols. Because of the upper triangular property of the matrix

, the stages of the trellis are labeled in descending order. The

trellis is fully connected, so there are number of different

paths from the root node to the sink node. The nodes in stage

are denoted as , where .

To compute the distance metric in (5) using the trellis model,

we define a weight function for each edge be-

tween node in stage and node in stage as

(6)

where is the partial symbol

vector, is the complex-valued QAM symbol

is the number of bits per constellation point, and

is the a priori information for data bit provided by the

outer channel decoder. In the first iteration, is not

available and is set to 0. Note that the weight function not only

depends on nodes and , but also depends on all

the nodes prior to node . In other words, depending on

howwe traverse the trellis, the weight function will get different

values. We further define a path weight as the sum of the edge

weights along the path. Then, the distance metric as defined in

(5) can be considered as a path weight, which can be computed

recursively by adding up the edge weights along the path from

the root node to the sink node. If we define a (partial) path metric

as the sum of the edge weights along this (partial) path, the

path weight is then computed recursively as

(7)

where and are the path weights associated with

nodes and , respectively, and is the

edge weight between node and node .

B. Per Trellis-Node Shortest Paths Problem

In the trellis diagram, each trellis node maps to a com-

plex-valued symbol such that each path from the root node

to the sink node maps to a symbol vector . With the trellis

model, we transform the MIMO detection problem into a per-

node shortest paths problem, which is defined as follows. For

each node in the trellis diagram, find a list of most likely

paths from the root node to the sink node over the node .

The most likely paths refer to the paths with the shortest

distances or the lowest path weights. For each node, we only

keep the most likely paths and will discard all the other paths

to reduce the complexity.

We use a layered detection method, where a layer refers

to a transmit antenna . The detection is performed layer by

layer. In the trellis model, a layer corresponds to a stage in

the trellis. In each stage of the trellis, there are nodes,

where each node corresponds to a constellation point. For each

node in stage , we must find

shortest paths through the trellis, which are denoted as

. Then, altogether candidates in each

stage of the stages of the trellis are used to compute the

LLRs for data bits transmitted by antenna as follows:

(8)

With the trellis model, the detection problem now becomes a

trellis-search problem. To detect a layer , we need to search for

shortest paths for each node in each stage of the trellis di-

agram. The maximum theoretical value of the number is ,

where for the first stage, second stage, and

etc., of the trellis. Practically, however, the number should be

kept small to reduce the complexity. The number determines

the detection performance: a larger leads to better error per-

formance. We will show later that even with a small (such

as for), the trellis-based detector can achieve

good detection performance. To implement this algorithm, an

exhaustive trellis search approach would be very expensive. To

reduce the search complexity, we next introduce a low-com-

plexity trellis-search algorithm.

C. Trellis-Search Algorithm for Iterative MIMO Detection

In order to reduce the search complexity, we propose a greedy

trellis-search algorithm that approximately finds the shortest

paths for each node in the trellis. In this search process, the

trellis is first pruned by removing the unlikely paths. We refer

to this pruning process as the “path reduction” process. In the

2620 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

Fig. 2. Flow of the path reduction algorithm, where each node evaluates its
incoming paths and selects the best paths.

Fig. 3. Path reduction example for a 4 4 4-QAM trellis, where in-
coming paths are kept at each node.

path reduction process, the trellis is scanned from left to right,

where each node retains the most likely incoming paths using

the local information it has so far. After the trellis is pruned, a

second process, called the “path extension” process, is applied

to extend the uncompleted paths so that each node will have

full paths through the trellis.

1) Path Reduction: Fig. 2 illustrates a flow graph demon-

strating a path reduction process. The path reduction process

is configured to prune paths for each trellis node to a smaller

number of surviving paths. The stages (columns) of the trellis

are labeled in descending order, starting from stage and

ending with stage 0. Note that Fig. 2 illustrates only three suc-

cessive stages, , and among the stages. As

an example, we use a case to explain the algo-

rithm. In Fig. 2, each node receives incoming

paths from nodes in the previous stage of the trellis and, then, the

paths (the ones with the least cumulative path weights)

are selected from the candidates. Next, the survivors are

expanded to the right so that each node will have the best

outgoing paths forwarded to the next stage of the trellis. This

process repeats until the end of the trellis. Fig. 3 illustrates a di-

agram of the trellis after the path reduction process. This figure

Fig. 4. Flow of the path extension algorithm for extending one node ,
where -best outgoing paths are selected from this node to each of the following
stages .

demonstrates a 4 4 4-QAM trellis after applying the path re-

duction procedure, where each node keeps only best in-

coming paths, the ones with the least cumulative path weights.

The path reduction process can effectively prune the trellis by

keeping only -best incoming paths at each trellis node. As a re-

sult, each trellis node in the last stage of the trellis has shortest

paths through the trellis. However, other than the trellis nodes in

the last stage, the path reduction process can not guarantee that

every trellis node will have shortest paths through the trellis.

For example, in Fig. 3, node 3 in stage 2 shows no outgoing

paths because these paths were dropped as incoming paths by

the respective trellis nodes in the next stage. These paths will

be added as path extensions as described next.

2) Path Extension: An objective of the trellis-based detec-

tion algorithm is to find shortest paths for every node in the

trellis. To achieve this goal, a path extension process is em-

ployed after the path reduction process to fill in the missing

paths for each trellis node. The goal is to extend the uncompleted

paths so that each node will have shortest paths through the

trellis.

The path extension is performed stage by stage (no path ex-

tension is required for the last stage), and node by node. Fig. 4

is a flow graph demonstrating the path extension process. The

path extension process is being demonstrated with respect to a

node in a stage (i.e., the highlighted node in the figure).

Note that all of the nodes in the same stage can be extended in

parallel and independently.

As shown in Fig. 4, for a trellis node (i.e., for the

constellation point in stage), the path extension process

first retrieves the outgoing path metrics computed

in the path reduction step (at stage), and then an extension

process in stage is used to select the best outgoing

paths (e.g., with minimal distance to the nodes in the next

stage) from candidates. Next, each of the

surviving paths is extended for the next stage of the trellis

(stage). Among the extended paths, only the best

paths are retained. This process repeats until the trellis

has been completely traversed. As a result, the shortest paths

are obtained for node .

SUN AND CAVALLARO: TRELLIS-SEARCH BASED SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR 2621

Fig. 5. Path extension example for nodes in stage 2, where full paths
are extended from each node to the end of the trellis.
(a) Path reduction process. (b) Path extension process.

Fig. 4 shows a path extension process for one trellis node. In

fact, all the nodes in stage are extended as necessary so that

each node can find shortest paths through the trellis. Gener-

ally, as shown in Fig. 4, to detect a symbol transmitted by an-

tenna , the entire search process can be expressed as

stages of path reductions followed by stages of path exten-

sions. In other words, the path reduction process is first per-

formed until stage of the trellis and next the path extension

procedure is performed until the end of the trellis (stage 0). Note

that the path extension process is to find the -best outgoing

paths extending from a particular node.

To illustrate the flow of the path extension process, we use

the same trellis example to show the path extension process for

extending the nodes in stage 2. Fig. 5(a) illustrates the trellis

after two stages of path reduction, where shortest paths

are obtained for each node in stage 2. After the path reduction

process, each node in stage 2 has incoming paths. The

objective is to find full paths through each node because the

previous stage was pruned to paths. As shown in Fig. 5(b),

after the path extension process, every node in stage 2 has suc-

cessfully obtained shortest paths through the trellis.

3) LLR Computation: The most important feature of the

trellis-based detection algorithm is that it will always guarantee

that the bit LLR can be generated for every transmitted bit. For

example, after the path reduction and the path extension pro-

cesses are employed, every node has successfully found

shortest paths or minimum distances denoted as

. The LLR for data bit transmitted by

antenna is then computed as follows:

(9)

We can separate the computation of (9) into two steps. A symbol

reliability metric is first computed for each node as

follows:

(10)

where the two-input is defined as

(11)

Moreover, the -input for , etc., can be

recursively computed based on the Jacobian algorithm. Then,

the bit LLR is computed based on the symbol reliabilities :

(12)

It should be noted that the nonlinear function

can be approximated by a lookup table to reduce

the hardware complexity. For example, in our hardware imple-

mentation, we used the following eight-entry lookup table to

implement the nonlinear function .

The data value in the lookup table is represented with a 6-bit

fixed-point format.

IV. SIMULATION RESULTS

To evaluate the performance of the trellis-search based

MIMO detection algorithm, we performed floating-point simu-

lations for the 4 4 16-QAMMIMO system, where the channel

matrices are assumed to have independent random Gaussian

distributions. A length 2304, rate 1/2 WiMAX low-density

parity-check (LDPC) code is used as an outer channel code.

A. Noniterative MIMO Detection Performance

We first show the noniterative, or “one-shot”, detection

performance with no outer iterations performed between the

MIMO detector and the LDPC decoder. The simulation results

are shown in Fig. 6 with the performance of several MIMO de-

tection algorithms including the trellis-search based detection

algorithm for several values of , where is the number of

surviving paths at each trellis node. For comparison, simulation

results are also plotted for the optimal full Log-MAP algorithm,

and for the K-best tree-search based Log-MAP algorithm,

where . In the K-best algorithm, path metrics

are used to compute the log-sums to calculate LLRs. To relate

the trellis-based detection algorithm to the K-best detection

algorithm, the total number of the survivors kept at each stage

of the trellis is whereas the total number of the survivors

kept at each level of the tree in the K-best algorithm is .

From Fig. 6, one can observe that the trellis-based detector

with the surviving path number slightly outperforms the

K-best detector with . The trellis-based detector with

clearly outperforms the K-best detector with .

The trellis-based detector with performs close to the

optimal full Log-MAP algorithm.

B. Iterative MIMO Detection Performance

By exchanging soft information between the MIMO detector

and the channel decoder, an iterative receiver can signifi-

cantly improve the performance compared to a noniterative

2622 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

Fig. 6. The performance of the trellis-search based detector with different
values.

receiver. In this subsection, we compare the performance of

our trellis-search based iterative detector with three K-best

tree-search based iterative detectors, and an optimal full

Log-MAP iterative detector. Two flavors of the K-best detec-

tors are used in the simulation: the K-best list detector and the

K-best iterative detector. For the case of the K-best list detector,

the detection is performed only once and a list of candidates

(of them) is generated and recorded, and, then, in each outer

iteration, the LLR values are computed based on the candidate

list and the a priori LLR values from the channel decoder.

For the case of the K-best iterative detector, the detection is

re-performed for each outer iteration by taking into account

the a priori information from the channel decoder, which is

somewhat similar to the proposed trellis-search detector. In

the trellis-search based detection algorithm, the number of

the survivors at each node is chosen to be 2, 3, and 4, i.e.,

.

In the simulation, the LDPC inner iteration number is 15, and

the number of the outer iterations between the MIMO detector

and the LDPC decoder is 4 for all the cases. As can be seen from

Fig. 7, the trellis-based iterative detector with outper-

forms the K-best list detector with a large value .

The trellis-based iterative detector with also outper-

forms the K-best iterative detector with , but it performs

worse than the K-best iterative detector with . However,

the trellis-based iterative detector with outperforms the

K-best iterative detector with , and it performs close to

the optimal Log-MAP iterative detector.

The main advantage of the trellis-search based detector is the

low sorting cost compared to the K-best detector. In [32], we

have given a detailed analysis and comparison of the sorting

complexity and the partial Euclidean distance (PED) computa-

tion complexity for the trellis-based detector and the tree-search

K-best detector.

Fig. 7. The performance of the trellis-search based iterative detector with dif-
ferent values, four outer iterations.

Fig. 8. Top level block diagram of the trellis-based iterative MIMO detector.

V. VLSI ARCHITECTURE

In this section, we describe a high-speed VLSI architecture

for the proposed trellis-search based soft-input soft-output

MIMO detector. As a case study, we introduce a detector

architecture with the surviving path number for the 4 4

16-QAM system. In our earlier work [32], we have described

a “systolic” array detector architecture and a folded detector

architecture for the noniterative MIMO detection. In this work,

we have significantly modified the design and extended it for

the iterative MIMO detection. The major improvements are

as follows: 1) a new path metric calculation method by incor-

porating the a priori information, 2) a new LLR computation

method based on the proposed multi-term Log-MAP approx-

imation algorithm [cf. (12)], and 3) a new recursive detector

architecture and scheduling.

A. Top Level Architecture

Fig. 8 shows the top level block diagram for the proposed

MIMO detector. The detector consists of six main functional

blocks: the path reduction unit (PRU), the path extension

unit (PEU), the LLR calculation unit (LCU), the preprocessing

unit (PPU), the path metric buffer (PM Buffer), and the candi-

date buffer (Cand Buffer). The PPU is used to precompute the

initial path metrics and some constellation-dependent constant

values that will be used by the PRU and the PEU. The PRU

SUN AND CAVALLARO: TRELLIS-SEARCH BASED SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR 2623

Fig. 9. Block diagram of the path reduction unit (PRU).

Fig. 10. Block diagram of the path calculation unit (PCU).

and the PEU are employed to implement the path reduction

algorithm (cf. Fig. 2) and the path extension algorithm (cf.

Fig. 4), respectively. The shortest path metrics found by the

PRU and the PEU are stored in the Cand Buffer, which will

then be used by the LCU to generate the LLR for each data bit

based on (12). These blocks will be discussed in more detail in

the following subsections.

B. Path Reduction Unit (PRU)

Fig. 9 shows the block diagram of PRU, which implements

the path reduction algorithm (cf. Fig. 2). The PRU employs

path calculation units (PCUs) and 16 2 minimum

finder units (MFUs) to simultaneously process all the nodes

in a trellis stage. This is a recursive architecture by reusing

the hardware for processing nodes in different trellis stages. In

Fig. 9, PCU is used to compute the extended path met-

rics from node to all the nodes in the next stage .

The extended path metrics are denoted as , where

is the surviving path index , is the

current node index, and is the node index in the next stage

. Next, the extended path metrics are gath-

ered and sent to MFUs. In Fig. 9, MFU-A is used to select

the best incoming paths to node , where the surviving

path metrics are denoted as , where .

Then, these surviving paths are fed back to PCU so that it can

continue the processing for the next trellis stage. This operation

is repeated until the trellis is completely traversed. MFU-B is

used to select the best outgoing paths, denoted as ,

from node to any nodes in stage . These best out-

going paths selected by MFU-B will be stored into the path

metric buffer (PM Buffer), which will be used later in the path

extension process.

1) Path Calculation Unit (PCU): Each PCU in Fig. 9 is

used to compute path metrics in parallel. Fig. 10

shows the block diagram of PCU which employs par-

tial Euclidean distance calculation units (PEDCUs). For a given

input path metric, or partial Euclidean distance, , one PEDCU

needs to compute extended PEDs in parallel, denoted as

. Based on the trellis structure, we

first compute edge weights , and, then,

are computed as

(13)

The edge weight is computed based on (6):

(14)

where a temporary variable is defined as

(15)

We know that will be a real value if using a particular

QR decomposition algorithm, e.g., Gram–Schmidt QR decom-

position [33]. Then, (14) can be re-expressed as

(16)

Fig. 11 shows the hardware architecture for the PEDCU,

which computes PEDs in parallel. Note that variables

and are precomputed in

the preprocessing unit (PPU). The constant multiplication of

“ ” can be implemented using a shift and add module.

C. Min Finder Unit (MFU)

The min finder unit (MFU) is used to select the best

path metrics from candidates. This type of (32,2)

sorting can be done quickly by using a comparison tree. Note

that the sorting cost of the trellis-based detector is much lower

compared with the regular K-best detector which typically re-

quires a larger sorting operation.

D. Path Extension Unit (PEU)

The PEU implements the path extension algorithm (cf.

Fig. 4). As we discussed in Section III-C-2, a path extension

process is employed after the path reduction process to fill in

the missing paths for each node so that every node will have

shortest paths through the trellis.

The PEU has a very similar architecture to the PRU. Fig. 12

shows the block diagram of PEU, which employs PCUs

and MFUs so that it can simultaneously extend nodes

in a certain trellis stage. The PEU has a recursive architecture.

In each iteration, PCU calculates the extended path can-

didates based on the input path metrics, and then, the MFU

selects the best paths from these extended path candi-

dates. The initial input path metrics are retrieved from the PM

Buffer, and, then, the PEU performs the path extension opera-

tion recursively.

2624 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

Fig. 11. Block diagram of the partial Euclidean distance calculation unit (PEDCU).

Fig. 12. Block diagram of the path extension unit (PEU).

Fig. 13. Detection timeline for the 4 4 MIMO system.

To illustrate how to employ the PRU and PEU to perform

MIMO detection, we show a detection timeline in Fig. 13 for

the 4 4 MIMO system. First, we precompute the initial path

metrics in the PPU

for all 16 nodes in trellis stage 3. Note that the trellis stages are

labeled in descending order as shown in Fig. 1. Next, the path

reduction (PR) operation is performed for three times, i.e., PR

from stage 3 to stage 2 , PR from stage 2 to stage 1

, and PR from stage 1 to stage 0 .

After the path reduction is completed, every node in the last

stage, i.e., stage 0, has full paths through the trellis, which can

be used to compute the LLR values for data bits transmitted by

antenna 0 based on (12). However, for other nodes, path exten-

sion would be required as necessary to fill in the uncompleted

paths. For example, as shown in Fig. 13, for nodes in stage 3,

two steps of the path extension are required, i.e., PE from stage 2

to stage 1 , and PE from stage 1 to stage 0 .

Fig. 14. Block diagram of LLR computation unit (LCU).

TABLE I
QUANTIZATION TABLE FOR

While for nodes in stage 2, one step of the path extension is

required, i.e., . For nodes in the last but one stage, i.e.,

stage 1, no path extension is needed because we can directly

retrieve the path metrics from the PM Buffer (these paths were

already computed by the PRU). Note that the path reduction op-

erations and the path extension operations can be overlapped to

increase the throughput. In this example, assuming each step

of the path reduction operation or the path extension opera-

tion takes cycles, we can start the path reduction for the next

MIMO symbol as early as .

E. LLR Calculation Unit (LCU)

The LCU is used to compute the LLR values for each trans-

mitted bit based on (12). Fig. 14 shows the block diagram of

SUN AND CAVALLARO: TRELLIS-SEARCH BASED SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR 2625

TABLE II
VLSI IMPLEMENTATION RESULTS AND COMPARISON FOR 4 4 DETECTORS

LCU. In Fig. 14, we first compute a symbol reliability for

each constellation point based on (10). Next, the bit LLR value

is computed using these symbol reliability values

based on (12). The function in Fig. 14 is implemented by a

linear maximum (max) function with a correction lookup-table

(LUT) based on (11) and Table I. Note that the input path met-

rics are retrieved from the candidate buffer (cf. Fig. 8),

which is used to store the best path metrics for each trellis

node.

VI. VLSI IMPLEMENTATION RESULTS AND

ARCHITECTURE COMPARISON

As a case study, we have developed a trellis-search based

iterative MIMO detector ASIC module for a 4 4 16-QAM

MIMO system. The fixed-point design parameters are summa-

rized as follows. Each element in the matrix is scaled by

, and this scaled is represented with 11 bits

signed data S2.9 (two integer bits with nine fractional bits). The

received signal is represented with 11 bits signed data S5.6.

The path metrics (PMs) are rounded to 13 bits between com-

putational blocks. The LLR values are represented with 7 bit

signed data S5.2. With this configuration, the fixed-point simu-

lation result shows about 0.1–0.2 dB performance degradation

compared to a floating-point detector.

The proposed detector has a pipelined architecture, where the

pipeline stages for the PRU and PEU are . To maximize

the throughput, we can feed four back-to-back MIMO symbols

in four consecutive cycles, e.g., at into the

pipeline to fully utilize the hardware. As shown in Fig. 13, the

processing times for the path reduction process and the path

extension process are both cycles, i.e., the iteration

bound is 12 cycles. Thus, we can feed another four back-to-back

MIMO symbols into the pipeline at ,

and so forth. Furthermore, we can overlap the path reduction

process with the path extension process to hide the processing

delay. As a result, the maximum throughput of the detector is

.

We have described the proposed detector with Verilog HDL

and we have synthesized the design for a 1.08 V TSMC 65 nm

CMOS technology using Synopsys Design Compiler. With a

320 MHz clock frequency, the proposed detector can achieve

a maximum throughput of 1.7 Gb/s. Table II summaries the

VLSI implementation results, and it also provides a compar-

ison of the trellis-search based iterative MIMO detector with

a state-of-the-art iterative sphere MIMO detector from [30], a

noniterative K-best MIMO detector from [11] (we note that no

VLSI implementation of an iterative K-best detector was re-

ported in the open literature to the best of our knowledge), and

a linear MMSE-PIC based iterative MIMO detector from [34].

In the table, the error-correction code decoder area is not in-

cluded in the analysis. The sphere detector in [30] has a vari-

able throughput, which will change with the SNR level. For

example, in [30], the average number of visited nodes for the

4 4 16-QAM system (with 4 iterations) varies from 120 (at

14 dB SNR) to 470 (at 11 dB SNR). In the architecture in [34], a

high-throughput flexible detector is proposed based on the linear

MMSE-PIC algorithm.

From Table II, one can observe that the proposed detector can

achieve a very high data throughput (1.7 Gb/s) while still main-

taining a low area requirement (1.58 mm). The throughput-to-

area ratio (measured with) of the trellis-search based

iterative detector is higher than the tree-search based iterative

sphere detector from [30], and is comparable to the nonitera-

tive K-best detector from [11]. As expected, the trellis-search

based detector consumes more area than the linear MMSE-PIC

detector.

In order to develop an iterative detection and decoding

system, a high throughput error-correction code decoder

would be required as well as some intermediate buffers in

between the detector and the decoder. Nowadays, multi-Gb/s

decoders, such as LDPC decoders, are feasible with rea-

sonable complexity [35], [36]. Thus, it is very important to

develop a high speed detector module to meet the overall

throughput requirement of the iterative detection and decoding

system. Our proposed detector provides a viable solution for

the high-throughput iterative MIMO detection problem as it

achieves both high throughput performance and good error

performance.

2626 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

VII. CONCLUSION

In this paper, we presented a trellis-search based iterative

MIMO detector which can achieve a higher throughput than the

traditional tree-search based detectors. The proposed detector

employs a path reduction operation in a MIMO trellis where

a predefined number of candidates are retained at each trellis

node, and a path extension operation where the trellis is ex-

tended to fill in the missing paths. The proposed detection al-

gorithm guarantees that a fixed number of path metrics can be

found with respect to each hypothesized value of a transmitted

bit. As a result, the LLR can be more accurately generated.

The advantageous detection performance of the trellis-based de-

tector can be achieved with a small number of paths through the

trellis. The trellis-based detector has low complexity and low

latency. As the next generation wireless systems are targeting

multiple Gb/s data rate, the proposed detector provides a fea-

sible solution for realizing such a high data rate system.

REFERENCES

[1] G. J. Foschini, “Layered space-time architecture for wireless commu-
nication in a fading environment when using multi-element antennas,”
Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, 1996.

[2] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,” Math.
Comput., vol. 44, no. 170, pp. 463–471, Apr. 1985.

[3] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1639–1642, Jul.
1999.

[4] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood
detection and the search for the closest lattice point,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2389–2402, 2003.

[5] B. Hochwald and S. Brink, “Achieving near-capacity on a multiple-
antenna channel,” IEEE Trans. Commun., vol. 51, pp. 389–399, Mar.
2003.

[6] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Ex-
pected complexity,” IEEE Trans. Signal Process., vol. 53, no. 8–1, pp.
2806–2818, Aug. 2005.

[7] H. Vikalo and B. Hassibi, “On the sphere-decoding algorithm II. Gen-
eralizations, second-order statistics, and applications to communica-
tions,” IEEE Trans. Signal Process., vol. 53, no. 8–1, pp. 2819–2834,
Aug. 2005.

[8] J. W. Choi, B. Shim, A. C. Singer, and N. I. Cho, “Low-complexity
decoding via reduced dimension maximum-likelihood search,” IEEE
Trans. Signal Process., vol. 58, no. 3, pp. 1–14, Mar. 2010.

[9] K. Wong, C. Tsui, R. Cheng, and W. Mow, “A VLSI architecture of a
K-best lattice decoding algorithm for MIMO channels,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2002, vol. 3, pp. 273–276.

[10] K. Higuchi, H. Kawai, N. Maeda, M. Sawahashi, T. Itoh, Y. Kakura,
A. Ushirokawa, and H. Seki, “Likelihood function for QRM-MLD suit-
able for soft-decision turbo decoding and its performance for OFCDM
MIMO multiplexing in multipath fading channel,” in Proc. IEEE Int.
Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), Sep. 2004,
vol. 2, pp. 1142–1148.

[11] Z. Guo and P. Nilsson, “Algorithm and implementation of the K-best
sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun.,
vol. 24, pp. 491–503, Mar. 2006.

[12] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, “K-best
MIMO detection VLSI architectures achieving up to 424 Mbps,” in
Proc. IEEE Int. Symp. Circuits Syst., Sep. 2006, pp. 1151–1154.

[13] Q. Li and Z. Wang, “Improved K-best sphere decoding algorithms for
MIMO systems,” in Proc. IEEE Int. Symp. Circuits Syst., Sep. 2006,
pp. 1159–1162.

[14] B.Widdup, G.Woodward, and G. Knagge, “A highly-parallel VLSI ar-
chitecture for a list sphere detector,” in Proc. IEEE Int. Conf. Commun.,
Jun. 2004, pp. 2720–2725.

[15] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the
sphere decoding algorithm,” IEEE J. Solid-State Circuits, vol. 40, pp.
1566–1577, Jul. 2005.

[16] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, “Sil-
icon complexity for maximum likelihoodMIMOdetection using spher-
ical decoding,” IEEE J. Solid-State Circuits, vol. 39, pp. 1544–1552,
Sep. 2004.

[17] Y. Zhang, J. Tang, and K. K. Parhi, “Low complexity list updating cir-
cuits for list sphere decoders,” in IEEE Proc. Workshop Signal Process.
Design Implementation, Oct. 2006, pp. 28–33.

[18] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myl-
lyla, “Application-specific instruction set processor implementation of
list sphere detector,” EURASIP J. Embedded Syst., vol. 2007, no. 3, pp.
1–14, 2007.

[19] X.-M. Huang, C. Liang, and J. Ma, “System architecture and imple-
mentation of MIMO sphere decoders on FPGA,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 16, no. 2, pp. 188–197, Feb. 2008.

[20] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding:
Algorithms and VLSI implementation,” IEEE J. Sel. Areas Commun.,
vol. 26, pp. 290–300, Feb. 2008.

[21] M. Myllyla, M. Juntti, and J. R. Cavallaro, “Architecture Design and
Implementation of the Increasing Radius—List Sphere Detector Algo-
rithm,” Apr. 2009, pp. 553–556.

[22] S. Chen, T. Zhang, and Y. Xin, “Relaxed K-best MIMO signal detector
design and VLSI implementation,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol. 15, pp. 328–337, Mar. 2007.

[23] M. Shabany, K. Su, and P. G. Gulak, “A pipelined scalable
high-throughput implementation of a near-ML K-best complex
lattice decoder,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Mar. 2008, pp. 3173–3176.

[24] R. Fasthuber, M. Li, D. Novo, P. Raghavan, L. Van Der Perre, and
F. Catthoor, “Novel energy-efficient scalable soft-output SSFE MIMO
detector architectures,” in Proc. IEEE Int. Symp. Syst., Architectures,
Modeling, Simulat., Jul. 2009, pp. 20–23.

[25] S. Mondal, A. Eltawil, C.-A. Shen, and K. N. Salama, “Design and im-
plementation of a sort-free K-best sphere decoder,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 18, no. 10, pp. 1497–1501, Oct.
2010.

[26] T. Cupaiuolo, M. Siti, and A. Tomasoni, “Low-complexity high
throughput VLSI architecture of soft-output ML MIMO detector,” in
Proc. Design, Autom., Test in Eur. Conf. Exhibit. (DATE), Mar. 2010,
pp. 1396–1401.

[27] Y. L. C. de Jong and T. J. Willink, “Iterative tree search detection for
MIMO wireless systems,” IEEE Trans. Commun., vol. 53, no. 6, pp.
930–935, Jun. 2005.

[28] C. Mehlfhrer, D. Seethaler, G. Matz, and M. Rupp, “An iterative
MIMO-HSDPA receiver based on a K-best-MAP algorithm,” in Proc.
IEEE Global Telecommun. Conf. (IEEE GLOBECOM), Nov. 2006,
pp. 1–5.

[29] H. Kim, D.-U. Lee, and J. D. Villasenor, “Design tradeoffs and hard-
ware architecture for real-time iterative MIMO detection using sphere
decoding and LDPC coding,” IEEE J. Sel. Areas Commun., vol. 26, no.
6, pp. 1003–1014, Aug. 2008.

[30] E. Witte, F. Borlenghi, G. Ascheid, R. Leupers, and H. Meyr, “A
scalable VLSI architecture for soft-input soft-output single tree-search
sphere decoding,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57,
no. 9, pp. 706–710, Sep. 2010.

[31] Y. Sun and J. R. Cavallaro, “Low-complexity and high-performance
soft MIMO detection based on distributed M-algorithm through trellis-
diagram,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Mar. 2010, pp. 3398–3401.

[32] Y. Sun and J. R. Cavallaro, “High-throughput soft-output MIMO
detector based on path-preserving trellis-search algorithm,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., pp. 1–13, May 2011,
vol..

[33] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber,
and W. Fichtner, “Gram-Schmidt-based QR decomposition for MIMO
detection: VLSI implementation and comparison,” in Proc. IEEE Asia
Pacific Conf. Circuits Syst., Dec. 2008, pp. 830–833.

[34] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of
soft-input soft-output MIMO detection using MMSE parallel interfer-
ence cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.
1754–1765, Jul. 2011.

[35] Y. Sun and J. R. Cavallaro, “Multi-layer parallel decoding algorithm
and VLSI architecture for quasi-cyclic LDPC codes,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2011, pp. 1776–1779.

[36] T. Mohsenin and B. M. Baas, “High-throughput LDPC decoders using
a multiple split-row method,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Apr. 2007, pp. II-13–II-16.

SUN AND CAVALLARO: TRELLIS-SEARCH BASED SOFT-INPUT SOFT-OUTPUT MIMO DETECTOR 2627

Yang Sun (S’07–M’11) received the B.S. degree
in testing technology and instrumentation and the
M.S. degree in instrument science and technology,
both from Zhejiang University, Hangzhou, China, in
2000 and 2003, respectively, and the Ph.D. degree
in electrical and computer engineering from Rice
University, Houston, TX, in 2010.
From 2010 to 2011, he was with Broadcom Cor-

poration, Sunnyvale, CA. In 2011, he joined Qual-
comm Incorporated, San Diego, CA. His research in-
terests include parallel algorithms and VLSI archi-

tectures for wireless communication systems, digital signal processing systems,
multimedia systems, and general purpose computing systems.
Dr. Sun received the 2008 IEEE SoC Conference Best Paper Award, the 2008

IEEE Workshop on Signal Processing Systems Best Paper Award (Bob Owens
Memory Paper Award), and the 2009 ACM/IEEE GLSVLSI Best Student Paper
Award. He has served on the Technical Committee for the 2011 IEEE Interna-
tional Conference on Application-Specific Systems, Architectures and Proces-
sors (ASAP) and the 2011 ACM/IEEE GLSVLSI conference. He was Session
Co-Chair for the 2012 ACM/IEEE GLSVLSI conference.

Joseph R. Cavallaro (S’78–M’82–SM’05) received
the B.S. degree from the University of Pennsyl-
vania, Philadelphia, in 1981, the M.S. degree from
Princeton University, Princeton, NJ, in 1982, and the
Ph.D. degree from Cornell University, Ithaca, NY, in
1988, all in electrical engineering.
From 1981 to 1983, he was with AT&T Bell

Laboratories, Holmdel, NJ. In 1988, he joined the
faculty of Rice University, Houston, TX, where he
is currently a Professor of electrical and computer
engineering. His research interests include computer

arithmetic, VLSI design and microlithography, and DSP and VLSI architec-
tures for applications in wireless communications. During the 1996–1997
academic year, he served at the National Science Foundation as Director of
the Prototyping Tools and Methodology Program. He was a Nokia Foundation
Fellow and a Visiting Professor at the University of Oulu, Finland, in 2005
and continues his affiliation there as an Adjunct Professor. He is currently the
Director of the Center for Multimedia Communication at Rice University.
Dr. Cavallaro was Co-Chair of the 2004 Signal Processing for Communica-

tions Symposium at the IEEE Global Communications Conference and Gen-
eral/Program Co-Chair of the 2003, 2004, and 2011 IEEE International Confer-
ence on Application-Specific Systems, Architectures and Processors (ASAP),
and Program Co-Chair for the 2012 ACM/IEEE GLSVLSI.

