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TRELLISES FORMED BY STABLE AND UNSTABLE 
MANIFOLDS IN THE PLANE 

BY 
ROBERT W. EASTON 

ABSTRACT. A trellis is the figure formed by the stable and unstable mani-
folds of a hyperbolic periodic point of a diffeomorphism of a 2-manifold. This 
paper describes and classifies some trellises. The set of homoclinic points is 
linearly ordered as a subset of the stable manifold and again as a subset of the 
unstable manifold. Each homoclinic point is assigned a type number which is 
constant on its orbit. Combinatorial properties of trellises are studied using 
type numbers and the pair of linear orderings. Trellises are important be-
cause their closures in some cases are strange attractors and in other cases are 
ergodic zones. 

Introduction. In Chapter 33 of New Methods of Celestial Mechanics, Poincare 
describes the figure formed by the stable and unstable manifolds of a hyperbolic 
fixed point of a transformation of the upper half plane as follows: "When we try 
to represent the figure formed by these two curves and their intersections, each of 
which corresponds to a doubly asymptotic solution, these intersections form a type 
of trellis, tissue, or grid with infinitely serrated mesh. Neither of the two curves 
must ever cut across itself again, but must bend back upon itself in a very complex 
manner in order to cut across all of the meshes in the grid an infinite number of 
times. The complexity of this figure will be striking, and I shall not even try to draw 
it. Nothing is more suitable for providing us with an idea of the complex nature of 
the three body problem, and of all the problems of dynamics in general. ... " 

The aim of this paper is to understand figures of the type Poincare described so 
well. If p is a hyperbolic periodic point of a diffeomorphism of a 2-manifold, then 
the figure formed by its stable and unstable manifolds will be called the trellis of 
p whenever these manifolds have nonempty intersection. Figure 1 illustrates the 
beginning development of such a trellis. 

Similarly the figure formed by the stable and unstable manifolds of a cycle of 
hyperbolic periodic points is called the trellis of the cycle. A cycle of hyperbolic 
periodic points of a diffeomorphism is a finite collection P of periodic points having 
a cyclic permutation 11': P ~ P such that the unstable manifold of p intersects 
the stable manifold of 1I'(p) for each p E P. It is natural to conjecture that in 
some cases "ergodic zones" are the closures of trellises. Anosov transformations 
of the torus provide examples where this is the case [1]. One may also conjecture 
that "strange attractors" are sometimes the closures of the unstable manifolds of 
cycles of hyperbolic periodic points. For certain values of the parameters a and 
b the Henon Map of the plane defined by T(x, y) = (1 + y - ax, by) may provide 
examples. 
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FIGURE 1 
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The remainder of this paper is organized in five sections. The first section con-
tains some definitions and results which are relevant to understanding trellises. 
In §2 the homoclinic trellis associated with a horseshoe map is described. In §3 
some other homoclinic trellises are studied, and in §4 some model trellises are con-
structed. §5 contains some final remarks. As far as I know trellises have not been 
systematically studied and my own understanding of these beautiful objects is very 
incomplete. 

1. Fundamental segments, stable and unstable orderings. Let T be a 
diffeomorphism of the plane having the origin as a hyperbolic fixed point. To keep 
the situation as simple as possible, assume that 

DT(O) = (~ ~) with 0 < b < 1 < a. 

Let WS and Wll denote the stable and unstable manifolds of the origin. Let H = 
WS n Wll - {O}. H is the set of homoclinic points. From the stable manifold 
theorem one has immersions ,s: Rl -+ R2 and ,ll: Rl -+ R2 with ,s(Rl) = WS and 
,ll(Rl) = Wll; ,S(O) = ,ll(O) = (0,0); and 1ll(0) = (1,0) and 1S(0) = (0,1). The 
trellis of the origin is the set WS U Wll, and the general problem is to describe the 
sets WI, W±, H and their closures, where W'+ = ,S([O,oo)), W~ = ,S((-oo,O]), 
W~ = ,ll([O,OO)) and W~ = ,ll((-OO,O]). 

1.1 REMARK. The trellis of the origin is a topological conjugacy invariant of the 
transformation T. 

1.2 DEFINITIONS. The immersions ,S and ,ll induce linear orderings <s and <ll 
on WS and Wll respectively. Thus H has two linear orderings called its stable and 
unstable orderings. 

For points p, q E H let U[p, q] denote the closed segment of Wll with endpoints 
p and q. Let S[p, q] denote the closed segment of WS with endpoints p and q. 

For p E H define the type number of p to be n(p) = inf{j 2: 0: S[O, TJ(p)] n 
U[O,p] f. 0}. n(p) is the number of iterates of T needed to "pull" S[O,p] off of 
the initial segment U[O,p]. It follows that n(p) = n(TJ(p)) for any j. Hence H is 
partitioned into sets Hk = {p E H:n(p) = k}. 

We call U[p, T(p)] a fundamental segment provided p E Hand n(p) = O. Simi-
larly define a fundamental segment S[p, T(p)]. Now choose fundamental segments 
U±, S± with common endpoints in W± and WI respectively. These segments may 
appear as pictured in Figure 2. 

The homoclinic trellis is the union of powers of T applied to the segments 
U+, U-, S+, S-. For each pair of fundamental segments S = S[p, T(p)] and 
U = U[q, T( q)] there is associated an intersection matrix 

M(S, U) = (M(S, U,j, k)) 
with M(S, U,j, k) = Tj (S) nTk(U). Each set M(S, U,j, k) is ordered by the stable 
and unstable orderings. The matrix M (S+ , U+) for example contains considerable 
information about W'+ U W+. From the definition, 

TT(M(S, U,j, k)) = M(S, U,j + r, k + r) 
and thus M(S, U) is determined by one of its rows or one of its columns. Sometimes, 
as we see in §3, M(S, U) can be computed. 
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2. The trellis of a horseshoe map. An example where a homoclinic trellis 
can be described comes from Smale's horseshoe map. Let B denote the region in the 
plane consisting of the unit square [0,1] x [0, 1] plus two half disks Do = {{x,y):x ~ 
0, x2 +(y - 1/2)2 ~ I} and Dl = ({x, y): x 2: 1, (x - 1)2 + (y - 1/2)2 ~ I}. 

Suppose that T is a diffeomorphism of R2 which maps B into itself as pictured 
in Figure 3. In particular we assume that T maps two "vertical strips" il{) and Rl 
in the unit square onto two "horizontal strips" crossing the unit square as pictured. 

Smale showed [3] that the invariant set A = {p E il{) U Rl : rn (p) E il{) U Rl for 
all n} is a Cantor set with hyperbolic structure and that T restricted to A is topo-
logically equivalent to the shift automorphism on two symbols. A nice exposition 
of these results due to Conley is found in [2], and we will use his terminology. Thus 
a horizontal curve is the graph of a function y = u(x) with 0 ~ x ~ 1, 0 ~ u(x) ~ 1 
and u'(x) ~ 1/2 (the factor 1/2 could be replaced by any constant less than one). 
A horizontal strip is a set U of the form 

U = ({x, y): 0 ~ x ~ 1 and Ul(X) ~ Y ~ U2(X)}, 
where y = Ul(X) and y = U2(X) are disjoint horizontal curves. The diameter d(U) 
is defined to be the maximum of I(Ul(X) - u2(x))l. Vertical curves and strips are 
similarly defined. 

Let Q denote the unit square in R2. We require that there exist 0 < ..\ < 1 and 
vertical strips il{) and Rl such that 

(A) T(il{)) and T(Rd are horizontal strips. 
(B) If V is a vertical strip in Ro U Rl, then Va == T-l(V) n Ra is a vertical strip 

with d(Va) ~ ..\d(V). 
(C) If U is a horizontal strip, then Ua == T(Un(RoURt))nT(Ra) is a horizontal 

strip with d(Ua) ~ ..\d(U). 
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FIGURE 3 

Under these conditions T restricted to A is topologically equivalent to a shift 
automorphism. The equivalence is obtained as follows: For p E liD U RI define 

n+(p) = sup{k: Tj(p) E Ro U RI for 0 ~ j ~ k}, 
n- (p) = inf{k: Tj (p) E liD URI for k ~ j ~ O}. 

For n-(p) ~ j ~ n+(p) define 

( .)_{O ifTj(p)ERo, 
S p,] - 1 if Tj(p) E RI . 

Note that if pEA, then n- (p) = -00 and n+ (p) = +00. Define S to be the set of 
functions from the integers to the set consisting of 0 and 1. S is called the set of 
symbols and is given the compact open topology. 

The shift automorphism 0': S -+ S is defined by (O's)(j) = s(j - 1). The 
topological equivalence between T restricted to A and 0' is by h: A -+ S, where 
h(p)(j) = s(p,j). 

For s E Sand n > 0 define 
V(s,n) = {P:Sj(p) = s(j) for a ~ j ~ n}, 
U(s, -n) = {p: Sj(p) = s(j) for - n ~ j ~ a}. 

It is shown in [2J that V(s, n) and U(s, -n) are vertical and horizontal strips respec-
tively whose diameters are less than>. n. The fact that h is a topological equivalence 
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is a consequence of the result that thin vertical and horizontal strips intersect in a 
nonempty set of small diameter. 

The horseshoe map T and its relation to the shift automorphism a are well known 
to researchers in dynamical systems, but as far as I know the following discussion 
of its relationship with a trellis is new. 

There is a unique hyperbolic fixed point p* of T belonging to the set Ro n T ( Ro ) . 
The local unstable manifold of p* is a horizontal curve gU in T{Ro) and the local 
stable manifold of p* is a vertical curve if contained in Ro. T{gU nRI ) is a horizontal 
curve in T{Rt} which intersects gS in a unique point Pl. PI is a transverse homoclinic 
point, and the homoclinic trellis of p* is the object of our study. Initial segments 
of the homo clinic trellis of p* are pictured in Figure 4. 

For each s E S observe that each horizontal strip U{s, n) contains a horizontal 
curve which is contained in the unstable manifold WU of p*. Likewise each vertical 
strip V(s, n) contains a vertical curve which is contained in the stable manifold WS 
of p*. Thus U{s, n) n V{s, n) contains a point homoclinic to p* and consequently 
we have established 

2.1 PROPOSITION. A is contained in the closure of H, where H is the set of 
points homoclinic to p*. 

Since T{B) C B, there is an attractor A = n{Tn{B): n ~ O} contained in B. 

2.2 PROPOSITION. A is equal to the closure of the unstable manifold of p* . 
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FIGURE 5 

PROOF. Given c > 0 we will show that there exist integers Nand K such that 
TN+K(B) is within an c neighborhood of the unstable manifold WU of p*. For any 
x rt Ro U Rl, T2(X) E Do. T(Do) c Do and T restricted to Do is a contraction 
map. Thus given c > 0 one can choose an integer N > 0 such that x rt Ro U RI 
implies rn (x) is within distance c from the sink in Do for all n 2 N and hence is 
within c of WU. 

Choose a foliation of Ro U RI with fibres vertical arcs such that each x E Ro U 
RI belongs to a fibre ,(x) intersecting gU in a unique point y. T: Tr(,(x)) -+ 

rr+1 (,(x)) contracts points by a factor of A < 1 as long as x, T(x)··· TK (x) E 
Ro URI. Choose K so that AK < c. Thus TK(,(x)) has diameter ~ c. Now 
consider TN+K(x). If TN+K(x) is not within c of the sink, then Tj(x) E Ro U RI 
for 0 ~ j ~ K. Hence TK (x) is within c of TK (y), with y = ,(x) n WU. It follows 
that TN+K (B) is within c of the closure of WU. Since c is arbitrary, A equals the 
closure of wu. 

A model for the trellis of a horeshoe map can be constructed as follows: The 
"middle third" Cantor set C consists of points in the unit interval that can be 
represented in the form x = L~=I ak3-k, with ak E {O,2}. An endpoint of C is 
a point x E C such that for some n, ak = an whenever k 2 n. Let E denote 
the set of endpoints of C. Let A and B denote the linear transformations of R2 
defined by A(x, y) = (3x,1/3y) and B(x, y) = (y, x). The model trellis T consists 
of {TjUT}:j 2 O} where TJ = B(Tj), and where 

To = {(x,y):O ~ x ~ 1, Y E E}, 
TI = {(x, y): X 2 1, (x - 1)2 + (y - 1/2)2 = (1/2 - e)2 for some e E E} 
T2 = {(x, y): x ~ 1, x2 + (y - 5/6)2 = (5/6 - e)2 for some e E En [2/3, I]}, 
Tj+1 = A(~') for j 2 2. 

A beginning development of the model trellis is pictured in Figure 5. 
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It is natural to ask: In what sense is the model trellis "equivalent" to the trellis 
of a horseshoe map? Several definitions are possible. 

2.3 DEFINITION. We say that two trellises are strongly equivalent if there exists 
a homeomorphism of the plane taking one onto the other. They are equivalent if 
their closures are homeomorphic. 

A subtrellis Tn of a trellis T is a subset of the form Tn = stan, bnJ U U[en, dnJ. 
A development of the trellis T is a sequence of subtrellises {Tn} such that To = p*, 
Tn c Tn+! for each n:2: 0, and U{Tn:n:2: O} = T. Trellises T and T' are weakly 
equivalent if they have developments {Tn} and {T~} such that, for each n, Tn is 
homeomorphic to T,i with a homeomorphism which preserves the respective stable 
and unstable orderings. 

In the next section we will begin an investigation of weak equivalence. Any 
two horseshoe trellises will be shown to be weakly equivalent (see Theorem 3.5). 
However, it is probably true that they are equivalent and even strongly equivalent. 
In this direction Marcy Barge [2J has shown that any two horseshoe attractors 
are homeomorphic. This result is satisfying to me and takes away some of the 
motivation for the technical work necessary to establish equivalence of horseshoe 
trellises. 

3. Trellises of type I. The goal here is to describe the formation of a homo-
clinic trellis in a sequence of steps. In particular we suppose that p* is a hyperbolic 
fixed point having initial segments of stable and unstable ma.nifolds imbedded in 
R2 as pictured in Figure 6. Thus the "stage 0" construction of the trellis is the 
same as for the horseshoe map. Important segments of the stable and unstable 
manifolds are defined by 

Also define In = Tn(Jo), J~ = Tn(Jo), etc. Notice that W~ = U{Kn U K~} and 
W+' = U{Jn U J~}. 

In order to keep the trellis as simple as possible we assume the following. 
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Hypothesis A. The sequence {K~} and{ J:"n} are sequences of semicircular arcs 
which accumulate along W~ and W~ respectively. We also assume that for each 
n ~ 0, J:" n and K~ contain no homoclinic points. 

In order to describe the trellis formed by the stable and unstable manifolds of 
p* it is necessary to impose an additional hypothesis. 

3.1 DEFINITION. q E H n Ko has transition number t if Tt(q) E Jo. t(q) will 
denote the transition number of q and hn will denote the subset of HnKo of points 
having transition number less than or equal to n. 

3.2 LEMMA. q has transition number n if and only if q has type number n. 

PROOF. If q has type number n, then 8[0,m(q)] n U[O,q] =I- 0. Hence PI <8 
m(q). Also, 8[0,m+1(q)] n U(O,q] = 0, and it follows that m+l(q) <8 Pl. 
Therefore Tn(q) E Jo so t(q) = n. 

If t(q) = n, then 8[0, m(q)] n U[O,p] =I- 0 because m(q) E Jo. Further, 
m+1 (q) E J1 and hence 8[0, m+1(q)] n UfO, q] = 0. Therefore q has type number 
n. 

Hypothesis B. There exists a positive integer l such that 
(1) if a, bare <u adjacent points of hn with t(a) = t(b), then Tn(U[a, b]) is 

contained in the D-shaped region bounded by Jr U K~, where r = n - t(a). 
(2) If a,b are <u adjacent points of hn with t(a) < t(b), then m(U[a,b]) n 1-1 

contains exactly two points whenever n-t(a) ~ l and is empty whenever n-t(a) < l. 
3.3 DEFINITION. A trellis which satisfies Hypotheses A and B is called a trellis 

of type l. 

3.4 PROPOSITION. A horseshoe trellis is a trellis of type one. 

PROOF. In the horseshoe trellis, J- 1 intersects the square Q in two vertical arcs 
as is shown in Figure 4. Further Tn(U[a, b]) is a horizontal arc crossing Q and thus 
Tn(U[a, b]) intersects J -1 in exactly two points. Hypothesis A is evidently also 
satisfied. 

The beginning development of a trellis of type 2 is pictured in Figure 7. 
We can now state the main result of this section. 

3.5 THEOREM. Any two trellises of type 1 are weakly equivalent. 

PROOF. Let T and * T denote two trellises of type l. We assume that T and 
* T consist respectively of the stable and unstable manifolds of the same saddle 
point p* with respect to diffeomorphisms T and *T of the plane. Since they are 
trellises of type l, we may also assume that the subtrellises 7i and * 7i coincide 
where T1 = W~ U W~ U U[P*,Pl] U 8[p*,po] (see Figure 6). Let Tn = W~ U 
W~ U U[P*,Pn] U 8[P*,P-n+1]' Thus {Tn} forms a development of T and {*Tn} 
forms a development of *T, where *Tn = W~ U W~ U U[p*, *Pn] U 8[p*, *Pn-l] and 
*Pj = *Tj(po). Note that an object ° associated with the trellis T will correspond 
with an object *0 in the trellis * T in our notation. Thus * H will denote the set of 
homoclinic points in * T. 

We pause here in the proof to establish a lemma which is needed to construct a 
homeomorphism of the subtrellis Tn onto the subtrellis *Tn. 
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FIGURE 7 

3.6 LEMMA. There exists a one-to-one correspondence g: H n Ko ~ *H n Ko 
which preserves the stable and unstable orderings and type numbers. 

PROOF. Start by defining g( qo) = qo and g(pd = PI. Inductively define 9 by 
assuming that g: hn ~ *hn has been defined and is a one-to-one correspondence 
which preserves the stable and unstable orderings. 

Let a and b denote a pair of <u adjacent points of hn with U[a, b] nhn+l =f. 0 and 
t(a) < t(b). By Hypothesis B there exist exactly two points x, y E hn+l n U[a, b]. 
Choose the notation so that x is between a and y according to the unstable ordering. 
There also exist exactly two points x', y' E *hn+l n U[g(a), g(b)]. Extend the 
definition of 9 to map {x', y'} preserving the unstable order. This definition clearly 
extends 9 as a one-to-one correspondence between hn+l and * hn+l which preserves 
the unstable ordering. 

To show that 9 preserves the stable order we refer to Figure 8. This figure 
pictures part of the trellis T. From Hypothesis B, Jo contains exactly two type 
l points a,;3 with ;3 <8 a. Consistent with our previous notation we let a_I = 
T-l(a) and ,8- 1 = T- 1(;3). Since t(a) < t(b) and U[a, b] n hn+l = 0 it follows 
from Hypothesis B that n - t(a) 2: t. Therefore m(a) E S[p* ,pd. 

From Figure 8, Tn(y) <8 Tn(x). There is a similar figure occurring in the trellis 
* T and therefore we also have (* T)n (y') < (* T)n (x') establishing that the extension 
of 9 preserves the stable orderings. This completes the proof of the lemma. 

Returning to the proof of the theorem we extend the function 9 from Lemma 3.6 
from HnKo to H as follows. IfTK(x) E HnKo, define g(x) = (*T)-Kg(TK(x)). 
Clearly 9 preserves the stable and unstable orderings. 
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Now suppose U[x,y] is a segment of the trellis T with U[x,y] n H = {x,y}. 
Extend g from U[x, y] to U[g(x), g(y)] so that the ratio of the arc length of U[x, z] 
to the arc length of U[g(x), g(z)] is constant as a function of z. Thus we say that 
g preserves proportional arc lengths. 

Similarly extend g to a segment S [x, y] of the trellis T. Note that with this 
definition the restriction of g from the partial trellis Tn to the partial trellis * Tn is 
a homeomorphism and therefore the trellises T and T' are weakly equivalent. This 
completes the proof. 

There is a difficulty in showing that two weakly equivalent type I trellises are 
equivalent. Suppose that Xo E T and xJ -+ Xo as j -+ 00. If the sequence {xJ} 
is not contained in any partial development Tn of the trellis T, then it is perhaps 
possible that the sequence {g(xJ)} does not converge to g(xo). 

Now suppose that the trellis of p* satisfies Hypotheses A and B. We will show 
that the integer I in Hypothesis B determines the combinatorial structure of the 
trellis and that different l's produce different trellises. Consider the fundamental 
segments S = S(P1 , Po] = J6 U Jo and U = U(Po, PI] = Kb U Ko. Recall that in 
§1 an intersection matrix M(S, U) associated with these segments was defined. For 
i,j 2: 0 let Mi,J = Ti(S) n TJ(U) and let M denote the matrix with entries Mi,J' 
By Hypothesis A we have Ji n Kj = 0 for all i and j. Therefore Mi,J = Ji n KJ 
and also Mi+k,J+k = Tk(Mi,J)' 

Briefly, the reason that the trellis is determined by I is because I determines 
the intersection matrix M. The nth column of M is formed by the intersection of 
Kn with Jo, J1 , J2 , and so on. From Hypothesis B there exist injective functions 
')'0, ')'1: U:l Ji n H -+ Ll n Kn such that Ll n Kn is the disjoint union of the 
ranges of ')'0 and ')'1. Consequently MO,n+l = T(J _lnKn) is determined by the nth 
column of M. Since Mi,n+l = T(Mi-l,n) the (n + l)th column of M is determined 
by the nth column of M and therefore M is entirely determined by its zeroth 
column. But Mo,o = {CJo}, MO,l = {Pt} and MO,J = 0 for j > 1. Hence the zeroth 
column of M is known. 

Let Ti,J denote the number of points in Mi,J and let R denote the matrix with 
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entries ri,j' Then for l = 2 the matrix R looks as follows: 

1 0 2 4 4 8 
1 1 0 2 4 4 
0 1 1 0 2 4 

R= 0 0 1 1 0 2 
0 0 0 1 1 0 
0 0 0 0 1 1 
0 0 0 0 0 1 

In particular, rO,n = 2(Lj~g rO,j + 1) and the sequence {ro,n} is something like a 
Fibonnaci sequence. For generall we have the relation rO,n = 2(Lj~~ rO,-j + 1) and 
this shows the intersection matrices for different l's are distinct. 

4. Model of type l trellises. At the end of §2 a model for a horseshoe trellis 
was constructed based on joining the endpoints of a middle third Cantor set in a 
certain way. Examples of this sort were considered by topologists for other purposes 
and are known as Knaster continua. 

The model for the type l trellis will be described in terms of its development. 
The unstable manifold W~(p*) weaves across the square in a certain pattern (see 
Figure 7). This pattern is determined by the set hn of homoclinic points in K ° 
with type number less than or equal to n. From hn the set hn+1 is determined 
according to Hypothesis B as follows: If a adn b are two <u adjacent points of 
hn with t(a) < t(b), then U[a, b] n hn+1 contains exactly two points if and only if 
n -l ~ t(a). U[a, b] n hn+1 is empty when t(a) = t(b) or n -l < t(a). 

One can use this algorithm to construct the sets hn as subsets of the endpoints of 
the standard middle third Cantor set. Note that this gives a "strange" construction 
of the Cantor set. The set h4 is pictured below with the type number of each point 
written above it. 

o 4 4 3 3 2 2 3 3 4 4 o 
~ __ L-~ __ -L __ -L ______ ~ ________ ~ ______ ~ __ -L __ ~~ ____ J 

Now we are ready to construct a model trellis of type l. We concentrate on 
describing the development of W+'. W+' consists of the initial segment U[p* ,PI] 
together with the segments K~ U Kn for n ~ 1. By Hypothesis A, K~ is a semicir-
cular arc close to W~ which joins qn and Pn (see Figure 7). However, the segment 
Kn must weave through the segments Jo, ... , I n in a complicated way. 

4.1. Define the weaving set Wn of Kn to be Kn n S[p* ,Al]' By Hypothesis A, 
Kn n Jf = 0 for all i, and therefore Wn = U~l Mi,n' In other words the weaving 
set is the union of the sets forming the nth column of the intersection matrix M. 
The embedding of Kn in the plane is essentially determined by the requirements 
that Kn n U[P*,Pn] = Pn and that Kn runs through the weaving set in the order 
determined by the unstable ordering of these points. 

Note that Kn n Jo consists exactly of the homoclinic points in Jo having type 
number n and more generally Kn n Jr consists of homoclinic points of type number 
n - r. Thus suppose that a model trellis of type 1 has been partly constructed and 
consists of W~ U W+' U S[p* , Qo] U U[p* , pl. At this stage we add K~ as a semicircular 
loop joining lIn+! and Pn+1 and folded close to W~. To each of the segments Jr for 
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FIGURE 9 

o :S r :S n + 1 add type n - r endpoints according to the "strange" construction 
of a middle third Cantor set in Jr' In the D shaped region bounded by Jr n K: 
symmetrically join the upper and lower type n - r endpoints with semicircular arcs 
which do not intersect the previously constructed initial segment U [pO ,Pn] of the 
unstable manifold. 

Next join all points of the weaving set W n with arcs inside the square Q which do 
not intersect U [pO , Pn]. The important point here is that there is exactly one way 
to do this. All the new arcs connect to form Kn and are added to the development 
of W+. Figure 9 above indicates the construction for 1 = 2 and n = 5. Type 5 - r 
points have been added to Jr for 0 :S r :S 5 but the connecting arcs constituting 
Ks have not been drawn. In analogous fashion one constructs W+ consisting of 
S[p*, Po] and the arcs J'-n U Ln for n ~ 1. The construction is determined by 
requiring S[p* ,Pn] to cross U(p* ,Pn] transversally a minimum number of times. 

5. Conclusion. The construction of a model type l-trellis was not precise 
enough to determine its closure and indeed it is possible for trellises of type I to 
have topologically inequivalent closures. Describing the combinatorics of a trellis 
such as the one pictured in Figure 1 presents a challenge. Perhaps this paper has 
made a start in that direction. I do not expect the combinatorics of that trellis to 
be determined at any finite stage of its development. Ultimately one might hope 
to understand models of trellises as in Figure 1 and to construct models whose 
closures will give concrete examples of ergodic zones. 
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