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Abstract

TREM2 variants have been identified as risk factors for Alzheimer’s disease (AD) and other neurodegenerative
diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these
variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs.
These TREM2 variants also confer the highest risk for developing Alzheimer’s disease of any risk factor identified in
nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD
pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling
and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune
function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding
of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function
across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While
it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in
vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is
classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a
pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these
components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest
assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
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Background
Human genetic studies have provided crucial insight into

neurodegenerative disease (NDD) pathogenesis. Alzheimer’s

disease (AD) is a prime example of how advances in genetic

technology have facilitated the evolution of our under-

standing of the etiology of NDDs. Early studies using

genetic linkage approaches identified familial mutations

in proteins related to amyloid beta production, amyloid

precursor protein (APP), presenilin 1 (PSEN1) and PSEN2,

as well as the late onset AD (LOAD) risk variant apolipo-

protein E4 (APOE4) [1]. These studies provided important

insight into amyloid as a critical factor in AD pathogenesis

and prompted application of molecular approaches and

animal models to understand the disease. Since 2007 [2],

case-control genome wide association studies (GWAS)

have identified many novel AD-associated genetic variants

[3]. Though many of these individually confer only

modestly elevated risk for developing AD, collectively

these studies provide broad insight into the pathways

and processes involved in LOAD. Many identified

genetic linkages are implicated in modulating immune

function [4], demonstrating an important role for the

immune response in AD.

More recently, next generation sequencing technologies

have made possible the identification of rare variants,

some of which may confer higher disease risk and there-

fore can provide important insight into genes with strong

biological roles in disease [1]. The application of whole

exome sequencing [5] and GWAS with imputation based

on predicted genetic associations [6] to AD led to the

identification of relatively rare variants in the gene trig-

gering receptor expressed on myeloid cells 2 (TREM2)

that are associated with a high risk for developing AD.

Heterozygous TREM2 variants confer similar risk for

AD as one copy of APOE4. Significantly, the AD-

associated TREM2 variants are largely coding variants,
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in contrast to most of the single nucleotide polymor-

phisms (SNPs) identified in GWAS [7], making it

more straightforward to translate into in vitro and in

vivo models and perhaps also into therapeutics [8].

TREM2 variants have now also been linked to other

NDDs, suggesting that TREM2 is critically involved in

shared disease mechanisms.

The excitement in the field following identification of

these AD-associated TREM2 variants was also driven by

its implications, providing a clear link between the

innate immune system and NDD pathogenesis. While it

has long been known that immune cell function is dys-

regulated in AD and other NDDs, it was not clear

whether this actively contributed to disease pathogenesis

and progression or was just a secondary response to

AD-related pathology. However, this debate was largely

settled in favor of the former when TREM2 variants

were found to be significantly associated with risk for

AD and other NDDs, and to form a genetic basis of

polycystic lipomembraneous osteodysplasia with sclerosing

leukoencephalopathy (PLOSL, also known as Nasu-Hakola

disease). Because TREM2 is exclusively expressed on

immune cells, these genetic associations were hailed as

providing conclusive evidence that immune dysregulation

can be a primary, causal contributor to NDD pathogenesis

[9, 10]. Thus, NDD-associated TREM2 variants provide a

new avenue to investigate the important roles that the

immune system plays in neurodegeneration [11].

In the 4 years since TREM2 variants associated with

AD risk were identified, many groups have developed

research programs aimed at understanding TREM2 gen-

etics, expression, structure, signaling, function, and its

relationship to NDD pathologies and applied these find-

ings to clinical biomarkers and therapeutics. Progress in

these areas has clarified our understanding of the biology

of the TREM2 receptor. While it was previously thought

that TREM2 expression was decreased by pro-

inflammatory stimuli and mediated anti-inflammatory

effects, it is now clear that its roles are more complex. In

vitro, inflammatory stimuli decrease TREM2 expression

but in vivo TREM2 expression is increased in inflamma-

tory contexts. More than half of studies report that

TREM2 has a pro-inflammatory effect, suggesting that

there must be cell type- and context-dependent functions

of the receptor. Recent studies have also illuminated new

aspects of TREM2 biology which necessitate a reevalua-

tion and reinterpretation of previous literature. One

example is the finding that soluble TREM2 is produced in

AD in a disease progression-dependent manner [12] and

that this soluble form of the receptor may have distinct

biological effects [13, 14]. Other fundamental aspects of

TREM2 biology are also under intense investigation,

including epigenetic and posttranslational modification of

TREM2 that affect expression and function, the ontogeny

of TREM2 expressing cells in the brain, and how non-

canonical signaling pathways may contribute to TREM2

function. This review offers a comprehensive synthesis of

these studies alongside previous TREM2 literature to

identify areas of consensus and emerging questions in the

field. This understanding will be crucial to support

informed design and interpretation of studies of TREM2

and the immune response in NDDs moving forward.

Genetics of TREM2 in NDDs
Diverse TREM2 variants are associated with NDD risk

There is great diversity in the TREM2 variants that have

been associated with NDDs, including single amino acid

substitutions, frameshift and nonsense mutations, and

changes in splice sites predicted to alter the inclusion or

exclusion of particular exons [15]. And, while most of

the TREM2 variants identified are present in the coding

sequence, there have also been disease-associated vari-

ants found in the 3’UTR [16], and upstream of the tran-

scription start site [17]. The first NDD-associated

TREM2 variants identified were W78X and W44X,

which result in premature truncation of the protein, a

variant at the consensus splice site which results in

exclusion of exon 3, and the K186N mutation, which

disrupts association of TREM2 with its obligate intracel-

lular signaling adaptor, DAP12 [18]. These all likely

result in a loss of TREM2 function, and a patient with

the E14X nonsense variant of TREM2 had no detectable

TREM2 transcript levels [19]. Subsequently, a host of

diverse TREM2 variants have been identified. Despite

their structural diversity, all of the NDD-associated

TREM2 variants identified have been suggested to con-

fer loss of function through different mechanisms. How-

ever, whether loss of function truly unifies all of these

variants is still very much an open question.

TREM2 variants are the genetic basis of PLOSL and some

familial FTD cases

TREM2 was first identified as a genetic cause of PLOSL,

also commonly known as Nasu-Hakola disease [20, 21],

which is characterized clinically by bone cysts and frac-

tures, neuropsychiatric symptoms and dementia [22].

Neuropathologically, PLOSL patients have axonal degen-

eration and white matter loss, as well as cortical atrophy

[23, 24]. This is accompanied by an inflammatory

response consisting of increased microglial density and

activation and astrocytosis [25]. These neurological man-

ifestations can also occur in the absence of fractures [26]

or bone cysts [27]. Paloneva and colleagues [18] were

the first to link TREM2 variants with PLOSL, and since

then, many studies have identified homozygous TREM2

variants that form the genetic basis of PLOSL [28–33].

Studies in families with frontotemporal dementia

(FTD) [34] or frontotemporal lobar dementia (FTLD)
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found that PLOSL-associated TREM2 variants T66 M

[35, 36], W198X [37], Q33X and Y38C [36] in either

homozygosity or heterozygosity could also cause FTD

[35–37] (Fig. 1). Case-control studies were then

performed to assess whether TREM2 variants might

increase risk for FTD in the general population. Initial

studies suggested that there was a positive association

between TREM2 variants as a whole and risk of FTD

[16, 38] with a significant association found between

FTD risk and individual TREM2 variants including

T96K and L211P [39] and R47H [40]. Others failed

to replicate this association with TREM2 variants and

FTD or FTLD [34, 39, 41, 42]. However, an associ-

ation between TREM2 variants and specific endophe-

notypes of FTD, including reduced white matter

volume, seizures and motor symptoms has been re-

ported [43]. Together, it is not clear whether TREM2

variants increase risk for FTD outside of specific fa-

milial cases, but they may influence specific clinical

manifestations of the disease.

Fig. 1 Diverse TREM2 variants are associated with NDDs. Genetic variants in the TREM2 gene (shown above) result in diverse changes in the
protein structure (shown below). These variants occur in almost every exon (black boxes) and impact known protein motifs (sequences highlighted
in blue) and flank many sites of known protein modifications (amino acid number and type of modification detailed inside black boxes). TREM2
variants have been found to be significantly associated with many NDDs, including AD (variants shown in yellow), FTD or FTLD (pink), PD (purple)
and PLOSL (red). The table shows genetic variants that have been found to be significantly associated with disease risk, with supporting
references shown in dark green and references that provide strong counterevidence shown in red. References shown in light green did find a
significant association between the TREM2 variant and disease risk, but only in one or multiple populations they examined or only after inclusion
of previously published literature into metastudy analyses. While these variants have been significantly associated with disease risk, many more studies
find suggestive but not significant associations between additional TREM2 variants and NDD risk which are not represented here [5, 6, 16, 18, 26, 28,
30, 31, 35–37, 39–42, 45–47, 49–52, 54, 55, 57, 58, 60, 64, 65, 67, 70, 82, 83, 88, 131, 323–325]
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TREM2 variants are associated with risk for AD

It was investigated whether TREM2 variants could also

confer risk for Alzheimer’s disease. While it was first

suggested that PLOSL-associated genes might confer

risk for AD in 1983 [44], a small, case-control study in

2007 failed to demonstrate a significant association with

AD risk [29]. However, larger studies in 2013 found that

heterozygous expression of the TREM2 R47H [5, 6] and

D87N variants [5] were significantly associated with AD

risk. The association of TREM2 variants with AD has

been extensively replicated [15, 16, 45–48] and the

R47H variant [16, 37, 41, 42, 49–56] validated in

neuropathologically-confirmed cases [57]. Other variants

have also been consistently shown to confer AD risk,

including D87N [5, 15], R62H [51, 56], L211P and

T96K, and H157Y [51, 58] (Fig. 1). While rare, individ-

uals with AD homozygous for the R47H [41, 50, 59] and

L211P [41] variants have also been identified.

Studies examining the association of TREM2 variants

with particular AD endophenotypes yielded somewhat

inconsistent results, likely due to the small sample size

of patients with these TREM2 variants. Some found that

R47H TREM2 variant carriers had a decreased [41] or a

trend toward decrease [54] in the age of AD onset,

though others found no significant association [49, 60].

Additionally, some found that disease progression was

accelerated in R47H carriers [60, 61], though this was

not observed in all studies [41]. Other variants were also

found to increase [62] or decrease [17] the rate of AD

progression. Despite possible differences in AD onset or

progression, the clinical presentation of AD in R47H

carriers is similar to non-carriers [41, 49], though there

may be a higher incidence of some endophenotypes

including seizures and motor symptoms [63].

TREM2 variants have been investigated as risk factors for

other NDDs

TREM2 variants have also been assessed as potential risk

factors for other neurodegenerative diseases, though the

findings in these other disease contexts are less defini-

tive. In amyotrophic lateral sclerosis (ALS), one study

found a significant association of the R47H variant and

ALS risk, as well as an inverse correlation between

TREM2 levels in the spinal cord and survival in ALS

patients [64], though this was not replicated by others

[40]. The TREM2 R47H variant has also been reported

to be associated with increased risk of Parkinson’s

disease [39] by some [40, 65, 66] but not all studies

[6, 42, 67]. In order to understand these differences,

Lill and colleagues [42] divided their groups by ethnicity

and found that the odds ratio of the R47H variant was

significantly higher in their Northern European population

compared to non-Northern Europeans. Others identified

another Parkinson’s disease (PD)-associated SNP 5 kb

upstream of TREM2 [66], though its effect on TREM2

expression is not known. The TREM2 R47H variant has

also been investigated as a risk factor for posterior cortical

atrophy [68], multiple system atrophy [69], essential

tremor [70], multiple sclerosis [71] and Creutzfeldt-Jakob

disease (CJD) [41], though these studies were not conclu-

sive. One family has been identified in which a mutation

in TREM2 is thought to result in progressive non-fluent

aphasia [72], though other cases will be necessary to con-

firm this association. So far, evidence suggests that TREM2

variants are not significantly associated with dementia with

Lewy Bodies [73], ischemic stroke [40] or progressive

supranuclear palsy [40]. Because many of these diseases

share overlapping clinical features with AD and FTD, it

will be important to validate any associations of TREM2

with other NDDs in neuropathologically confirmed cases.

Overall, the association of TREM2 variants with these

other NDDs is less clear, and future studies with large

sample sizes in diverse but well-matched populations will

be required to definitively establish whether TREM2 vari-

ants confer risk for NDDs other than PLOSL, FTD and

AD. Importantly, the association of TREM2 variants with

multiple NDDs suggests it may underlie common disease

mechanisms. TREM2 dysfunction may provide insight into

mechanistic links among these diseases.

The epidemiology of TREM2 variants

Epidemiologically, the prevalence of TREM2 variants

differs greatly among individuals from different genetic

backgrounds [74]. In Caucasian populations, the minor al-

lele frequency (MAF) of the R47H TREM2 variant ranges

from 0.12–0.26% in the United States, to up to 2% in some

specific British populations [5, 6, 59]. While the R47H

variant is virtually absent in East Asian individuals,

[56, 69, 75–81] nine other TREM2 variants were

present in East Asian populations and collectively associ-

ated with NDD risk [82]. Similarly, the MAF of the R47H

and R62H variants are much lower in African Americans

compared to European American populations [83, 84].

However, exonic sequencing of TREM2 revealed variants

that had much higher MAFs in the African American

population compared to European Americans, and some

of these variants were significantly associated with AD risk

in that population [83]. Because of the small MAFs, it is

not clear whether the effect sizes of these variants differ

among different ethnic groups as well. The low MAFs and

diversity in the frequency of TREM2 variants across popu-

lations necessitates that studies have large study popula-

tions and be well-matched for ethnicity. It will also be

important to take advantage of the identification of these

TREM2 variants across diverse populations to gain a full

understanding of how TREM2 variants confer AD risk

and how they might interact with other genetic differences

among individuals from distinct genetic backgrounds.
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The relationship between TREM2 and other NDD genetic

risk factors

Several groups have examined the relationship between

TREM2 and other NDD risk factors. Variants in Siglec-3

(CD33) are significantly associated with AD risk and

CD33 levels on human blood monocytes were found to

inversely correlate with surface TREM2 levels [85]. The

AD-associated CD33 allele increased its surface expres-

sion, effectively decreasing TREM2 signaling. Another

AD-associated gene, Membrane-spanning 4-domain

family A (MS4A), was found to be co-enriched with

TREM2 in the human brain and is substantially upregu-

lated in monocytes derived from patients with PLOSL-

associated TREM2 variants [86]. An AD-associated SNP

in MS4A correlated with altered soluble TREM2

(sTREM2) levels in cerebrospinal fluid (CSF), suggesting

that MS4A may also regulate TREM2 expression or pro-

cessing [86]. TREM2 levels are also increased in AD

mouse models lacking PGRN expression, which models

lower PGRN expression observed with an AD and

FTLD-associated PGRN genetic variant [87].

Components of the TREM2 signaling pathway have

also been associated with NDDs, including its intracellu-

lar signaling adaptor DNAX activation protein of 12 kDa

(DAP12, also termed TYROBP). DAP12 and TREM2

variants produce virtually indistinguishable phenotypes

in PLOSL patients [18, 30]. However, Satoh and col-

leagues [25] found that dendritic cells derived from

monocytes of PLOSL patients with TREM2 or DAP12

mutations had very different patterns of gene expression,

suggesting that they may produce the same phenotype

through different molecular mechanisms. A rare DAP12

variant at the site of interaction with TREM2 also con-

fers risk for developing early onset AD [88] and DAP12

was found to play a central role in AD-related molecular

networks [89]. As its relationship to NDDs might

predict, DAP12 deficient mice also have synaptic degener-

ation and reduced myelination [90], though recent

evidence suggests that DAP12 deficiency may be neuro-

protective in an AD mouse model [91]. The precise mech-

anisms underlying these changes are not yet understood.

Variants in additional proteins associated with the

TREM2 signaling pathway, SHIP1 and colony stimulat-

ing factor 1 receptor (CSF1R), have been associated

with AD risk and leukoencephalopathy with spheroids

[92, 93]. In addition, ApoE, a putative TREM2 ligand

[94–96], is clearly established as an AD risk factor [97].

Finally, environmental risk factors for AD including

traumatic brain injury [98, 99], diabetes [100] and age

[101], all alter TREM2 expression in the brain. To-

gether, the identification of variants in genes involved

in these common immune pathways suggest that

TREM2, along with its interaction partners, together

play an important role in modifying NDD pathology.

TREM2 expression

Co-regulation of TREM2 and other members of the TREM

family

TREM2 is located on human chromosome 6 in a gene

locus containing several TREM and TREM-like genes,

such as TREM1, triggering receptor expressed on mye-

loid cells like transcript 1 (TREML1) and TREML2,

which likely originated from duplication events but now

have relatively diverse sequences [102–104]. Many of

these genes, including TREM2, are highly conserved

between humans and mice, while others are present only

in mice (TREM3 and TREML6) or humans (TREML3

and Nkp44). There may be some shared mechanisms of

gene regulation across the locus. For example, there is a

Retinoid X receptor (RXR) binding site upstream of the

entire locus that is thought to result in coordinate regu-

lation of these genes [105]. However, in some cases,

opposing regulation of these different genes has been

shown, such as between TREM2 and TREM1 [85], and

between TREM2 and TREML2 [106, 107]. It is not

known what factors contribute to these inverse correla-

tions in expression. SNPs within this locus can also

result in changes in expression of multiple TREM genes.

Variants in the TREML2 [66] and TREML4 [108] gene

have been shown to increase brain TREM2 and

TREML1 expression levels. Chan and colleagues [85]

found that AD-associated variants in TREM1 result in

reduced TREM1 expression on human monocytes and

increased TREM2 expression. Moreover, an intronic

variant in TREM1 which decreases its expression leads

to increased amyloid accumulation and cognitive decline

in AD patients [109]. However, non-AD associated vari-

ants decreased both TREM1 and TREM2 expression,

leading the authors to suggest that the ratio of TREM1

and TREM2 expression rather than the absolute changes

in expression may be important for disease. Additionally,

variants in TREML2 increase PD risk [62], and other

disease-related SNPs that alter TREML2 levels [66] associ-

ate with AD in GWAS analyses [93]. Another variant of

TREML2 was found to be protective against developing

AD [107]. An intergenic variant associated with AD risk

was shown to alter RNA levels of TREML4 [110]. These

data highlight the importance of characterizing the

expression patterns of all TREM members in an effort to

pinpoint co-regulatory mechanisms among these genes

physiologically and in the context of disease.

Regulation of TREM2 expression

TREM2 expression is highly cell-type and context spe-

cific. However, the molecular mechanisms governing this

highly specific regulation of TREM2 expression are just

beginning to be understood. While there are several pre-

dicted transcription factor binding sites in the UTR’s

and promoter region of TREM2, only a few have been
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functionally validated. PU.1, a master regulator of mye-

loid cell fate specification, is present in the TREM2

promoter [111]. The RXR agonist bexarotene was found

to enhance RXR occupancy of known binding sites [105]

upstream of TREM2 in mice, though this did not correl-

ate with increased TREM2 RNA levels [112]. However,

in AD mouse models, bexarotene did enhance gene

expression of TREM2 [112], suggesting that RXR may

effectively induce TREM2 transcription when cells are

already primed in a particular context. NKκB [113, 114],

Protein E [115], RANKL, and NFAT [116] have all been

shown to regulate TREM2 expression in different cell

types, but it is not clear whether these factors directly

regulate expression. One group has suggested that NFκB

may instead regulate TREM2 expression by increasing

levels of microRNA34a which, in reporter assays,

decreased TREM2 expression [113, 117–121]. There are

also epigenetic changes that have been shown to influ-

ence TREM2 expression. In humans, hippocampal en-

richment of 5-hydroxymethylcytosine (5hmc), a marker

of active demethylation, at the TREM2 transcription

start site and in exon 2 were found to positively correl-

ate with TREM2 mRNA levels [122]. Methylation

upstream of the TREM2 transcription start site was also

increased in AD, a context in which TREM2 levels are

also increased [123]. Additionally, methylation at the

CpG sites in intron 1 negatively correlated with TREM2

mRNA levels in human leukocytes, and methylation at

these sites was reduced in AD patients [124]. Others

have found that H3Kme2 and H3Kme3, histone modifi-

cations which typically are associated with active gene

transcription, are increased at the TREM2 locus in db/

db mouse adipose tissue [125] and in cultured dendritic

cells and macrophages during differentiation [126], con-

texts in which TREM2 mRNA levels are elevated.

Finally, there are likely post-transcriptional mecha-

nisms of regulation of TREM2 expression which contrib-

ute to differential expression in different contexts.

TREM2 mRNA stability can be dynamically regulated.

The half-life of TREM2 mRNA in cultured human per-

ipheral blood mononuclear cells went from 11.3 h to 4 h

after toll-like receptor (TLR) ligation [127]. Furthermore,

Hu and colleagues [128] found that TREM2 mRNA

expression strongly correlated with surface levels of

TREM2 protein on monocytes, but only weakly corre-

lated with protein expression on granulocytes in the

plasma. This suggests that, in addition to differential

regulation of TREM2 transcription through transcription

factors and epigenetic markers, TREM2 expression can

be further differentially controlled at the mRNA and

protein level in distinct cell types through mechanisms

which are not resolved.

How TREM2 variants affect TREM2 expression is a

topic currently under investigation. As discussed above,

some TREM2 variants are known to reduce TREM2

expression. The nonsense mutations E14X [18] and

Q33X [129] were both found to eliminate TREM2 pro-

tein expression. TREM2 RNA levels were reduced in

patients harboring the variant T66M [23] and a splice

donor mutation in intron 3 [130]. Heterozygous expres-

sion of a variant that affects TREM2 splicing in intron 1,

which is associated with early onset dementia, also

affected the expression of the common variant allele of

TREM2, reducing it by more than half [131]. It is un-

clear how these variants result in reduced TREM2 tran-

script levels, though it has been suggested that

epigenetic changes may partially account for these effects.

In contrast, the R47H variant either did not change [57]

or trended toward increasing TREM2 transcript levels

[132] in individuals with AD. Although there were no

changes found in gene methylation upstream of TREM2’s

transcription start site in R47H carriers compared to con-

trols [123], variants tend to cluster around exon 2 where

TREM2 expression was found to be correlated with 5hmc

enrichment [122]. Whether variants affect regulation of

TREM2 RNA expression at the level of epigenetics, tran-

scription factor binding, RNA stability or altering the cell

phenotype in a manner that indirectly drives alterations in

TREM2 transcription is not yet clear. At the protein

level, in transfected cell lines T66M and Y38C TREM2

variant proteins were found to be degraded by the pro-

teasome, leading to decreased protein expression [133].

In AD patients with R47H variants, there was a trend

toward decreased TREM2 protein levels in one study

[57], but a trend toward an increase in another [132]. It

will be crucial to continue collecting data from TREM2

variant carriers to gain a clearer picture of how TREM2

expression is altered by different disease-associated var-

iants. In PLOSL patients with DAP12 mutations, there

was a variable effect on DAP12 expression levels, in

some cases increasing and in others decreasing expres-

sion [23]. It may be that TREM2 variants also alter

TREM2 expression in distinct ways.

Cell types in which TREM2 is expressed

TREM2 is expressed on many cells of the myeloid

lineage, as its name suggests, including dendritic cells

[101, 126, 130, 134–136], granulocytes [128], bone mar-

row and monocyte derived macrophages [126, 130, 135,

137, 138], and tissue macrophages like splenocytes [139],

Kuppfer cells [140], alveolar macrophages [141, 142],

and osteoclasts [19, 116, 143] (Fig. 2). TREM2 is not

reported to be expressed on lymphocytes [128]. Its expres-

sion on circulating monocytes remains controversial.

Initially it was thought that TREM2 was only expressed

after differentiation of monocytes into macrophages [130],

and others have provided further data to support a lack of

TREM2 expression or expression on only a small subset
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of monocytes in humans [101, 126, 135, 144] and mice

[145]. However, others have detected TREM2 expression

in whole blood [124, 146–148] and specifically on human

[85, 128] and mouse [149] monocytes. These disparate

findings may be due to differences in sensitivity of detec-

tion or other technical factors, but it will be important to

resolve moving forward.

It is clear that TREM2 is expressed in the brain and

most evidence documents that TREM2 is expressed

exclusively within the brain by microglia. All published

studies to date find that primary cultured microglia

express TREM2 [139, 150–153]. In vivo, most studies

detect TREM2 expression in mouse microglia [11, 101,

152–157], though some find that it is expressed by only

a subset of these cells [114, 158–161] and others could

detect TREM2 RNA but not protein expression in

mouse microglia [162]. Furthermore, studies demon-

strated that when microglia are acutely depleted from

the brain through CSF1R antagonist treatment in vivo,

[163] through CD11b-HSVTK depletion in brain slices

[155], or chronically in PU.1 knockout mice [154],

TREM2 is no longer detectable in the CNS. In humans,

experimental outcomes have been more variable, with

some detecting high levels of TREM2 expression across

all microglia [156], others finding lower levels of TREM2

expression [164] and others not detecting microglial

expression of TREM2 [25]. With a few exceptions, most

evidence is in strong agreement that TREM2 is expressed,

at least under normal physiological conditions, specifically

in microglia within the CNS.

Fig. 2 TREM2 can be present as a full-length protein (shown at top) or as a soluble product. This can occur through proteolytic cleavage by ADAM10
followed by γ-secretase to produce soluble TREM2 (sTREM2), a C-terminal fragment (CTF) and an intracellular domain (ICD). TREM2 can also be alterna-
tively spliced to produce soluble isoforms. One alternative transcript has been validated in mice, while two have been validated in humans and four
others are predicted to occur [51, 132, 133, 161, 225, 228, 230, 232]
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TREM2 expression changes throughout neurodevelopment

and varies across brain regions

TREM2 expression in the CNS is also regulated through-

out development and its expression pattern varies across

different brain regions. TREM2 is first detectable in the

mouse CNS at E14 and continues to be expressed through

adulthood [154]. However, at P1, all brain myeloid cells

express TREM2 RNA, but not all of these cells still

express detectable levels by P10, which has also been sup-

ported in vitro [165]. This early elevated TREM2 expres-

sion also occurs in other organs following macrophage

infiltration during organogenesis [137]. TREM2 expres-

sion is also regulated differentially across brain regions in

humans and mice. TREM2 was found to be highly

expressed in white matter [101, 165], hippocampus

[101, 156, 165] and spinal cord [18, 156], among other

regions. While this could suggest that particular micro-

environmental niches induce TREM2 expression locally

within distinct microglial populations, it may also simply

reflect the high density of microglia in these regions [101].

Inflammatory stimuli, injury and disease drive changes in

TREM2 expression

TREM2 expression has been shown to be dramatically al-

tered in the contexts of inflammation, injury and disease. In

vitro, application of classically pro-inflammatory molecules

(TNFα [117, 136], IL1β [107, 136, 166], ROS [166, 167],

IFNγ [168], TLR agonists, including lipopolysaccharide

Fig. 3 TREM2 is expressed in many immune cells, and is localized to microglia in the CNS. TREM2 expression has been assessed in a variety of
human and mouse cell types. These data represent TREM2 expression in these cells under homeostatic conditions, though, as discussed in the
next section, TREM2 expression can change in the contexts of inflammation or pathology. References shown in green are supportive of TREM2
expression in the cell type listed while those in red did not detect TREM2 expression using the listed method of detection. References in yellow

provide evidence of expression, but at low levels or in a small percentage of cells assayed. The graph represents the cell types in which TREM2
expression has been examined at a size relative to the number of studies and methods used to detect TREM2 expression in that cell type. They
are graphed along the y-axis according to the percentage of these findings which support TREM2 expression on these cells [11, 19, 25, 26, 85, 101, 116,
126, 128, 130, 134–137, 139–143, 145, 150–160, 162, 164, 165, 216, 219, 200]
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(LPS) [106, 114, 135, 136, 167–170], CpGs [171] and other

TLR ligands [114, 127, 138, 150], mitochondrial lysates

[172] and bacteria [173]) decreased TREM2 expression,

while anti-inflammatory molecules (vasoactive intestinal

peptide [174] and IL4 [168]) increased TREM2 expression.

In contrast, in vivo, inflammation and different disease

states almost universally increase TREM2 expression. Stim-

uli that induce an inflammatory response in the lung

increase TREM2 expression in alveolar macrophages

[141, 149, 173–178]. High fat diet [100, 179] increased

inflammation and TREM2 expression in adipose tissue,

liver and brain. TREM2 is also upregulated in numer-

ous other inflammation-related contexts, including sep-

sis [180], rheumatoid arthritis [181], corneal infection

[182], macular degeneration [117], glioma [183], oral

[184], esophaegeal [185], and liver [186] cancers, following

prosthetic joint implants [187], osteoporosis [188], colonic

mucosal injury [189], colitis [190], gastrointestinal mucosi-

tis [191] and muscular sarcoidosis [192]. In the CNS,

TREM2 expression is increased in the context of trau-

matic brain injury [98, 99], stroke [160, 193], spinal

nerve transection [194], ALS [64], PD [66], prion dis-

ease [155, 195], models of demyelination [151, 159,

196–198] and following beta-amyloid (Aβ) vaccination

[199]. Only one study found reduced TREM2 expres-

sion in in vivo inflammatory contexts, following LPS in-

jection and middle cerebral artery occlusion in mice

[114]. TREM2 has also been shown in almost all cases

to positively correlate with aging, both in mouse

models [200, 201] and in humans [101]. Soluble

TREM2, a product of full-length protein cleavage or alter-

native splicing, is detectable in CSF and its levels were also

positively correlated with age [12, 86, 202, 203], though

this was not reflected in blood [204]. Taken together, these

studies largely demonstrate that, in vitro, inflammatory

stimuli decrease TREM2 expression, while in vivo, inflam-

matory stimuli predominantly increase TREM2 expres-

sion, clearly suggesting that the dogma based on early

studies that TREM2 expression is universally reduced in

inflammatory contexts is not applicable to in vivo con-

texts. Why this occurs is not clear, but may reflect differ-

ences in cell recruitment, acute versus chronic signaling,

non-cell autonomous signaling pathways, or phenotypic

changes in myeloid cells that occur when they leave their

native environment.

The most comprehensive assessment of changes in

TREM2 expression has been performed in the context

of Alzheimer’s disease. Studies in AD patient brain tissue

almost exclusively show increased TREM2 expression

[122, 132, 150, 164, 205–208], and some [124, 128, 148]

but not all [146] found this was also reflected in

increased TREM2 levels in monocytes from AD patients.

TREM2 levels in the brains of AD mouse models are

also increased. One study reports a reduction in TREM2

RNA levels before the onset of pathology in Tg2576

mice [209], though after the onset of pathology, all amyl-

oid models of AD examined have increased TREM2

RNA and protein levels [162, 200, 210–214]. This upreg-

ulation of TREM2 expression occurs shortly after the

onset of pathology and largely seems to correlate with

amyloid burden [85, 157, 215] and the association of

myeloid cells with amyloid plaques [207, 208]. Tau models

of AD also show increased TREM2 levels [211, 216], how-

ever, TREM2 is only increased long after neurofibrillary

tangle development in these models [211], consistent with

TREM2 upregulation at late stages of disease progression

in postmortem AD brain tissue [207]. Several studies have

sought to determine what aspect of AD pathology drives

TREM2 expression. TREM2 is upregulated in myeloid

cells associated with plaques [158, 162, 212, 213, 217, 218],

and specifically, TREM2 is highly expressed on myeloid

cell processes in contact with plaques [219]. In support of

a plaque-driven upregulation in TREM2 expression, Varvel

and colleagues [217] depleted microglia from the brains of

an AD mouse model and allowed the brain to repopulate

with new myeloid cells. These new cells that repopulated

the brain initially failed to associate with plaques, but

eventually became plaque-associated, and coordinately

upregulated TREM2 expression. Furthermore, stereotactic

injection of beta-amyloid 42 (Aβ42) into the cortex and

hippocampus of wild-type mice was sufficient to induce an

upregulation in TREM2 transcripts within 24 h [214].

Together, these findings suggest that amyloid can increase

TREM2 expression in myeloid cells. To determine

whether this effect was cell-autonomous, cultured micro-

glia were treated with Aβ, though these studies have so far

produced inconsistent results with respect to TREM2

expression [106, 214]. Significantly, Melchior and col-

leagues [158] found that there was no effect on cultured

microglia treated with beta-amyloid 40 (Aβ40) on TREM2

levels, but if they added Aβ40 to mixed glial cultures, this

did result in upregulation of TREM2 on microglia by flow

cytometry. This suggests that, at least this Aβ species may

drive TREM2 expression through feedback from other cell

types, though the signals that mediate Aβ-induced upregu-

lation of TREM2 on myeloid cells are not yet known.

TREM2 expression by peripherally derived macrophages in

the AD brain

Not all myeloid cells associated with plaques express

TREM2 [158, 162]. Investigation of which subset of mye-

loid cells upregulated TREM2 in the AD brain has yielded

conflicting results. Some findings suggest TREM2+ cells

may be peripherally derived macrophages rather than

brain resident microglia. Jay and colleagues [162] found

that TREM2 was expressed on CD45hi myeloid cells

which expressed the monocyte marker Ly6C and not the

microglial-specific marker P2RY12. Following toxoplasma
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gondii infection in 5XFAD mice, Mohle and colleagues

[220] found that TREM2 was expressed most highly by

C-C chemokine receptor type 2 (CCR2)+Ly6CloF4/80+

cells in the brain, a marker signature of peripherally

derived macrophages. TREM2 expression in other disease

models, including basal cell carcinoma [138], sciatic nerve

transection [221] and colonic mucosal injury [189], was

found to be upregulated coincident with the peak of

macrophage infiltration into the tissue. In contrast, others

have detected TREM2 expression on “dark” microglial

cells in the brain, which are 4D4+ and 4C12−, a marker

signature consistent with resident microglia [215]. Wang

and colleagues [222] also performed experiments in which

age-matched CD45.1 WT donors were parabiosed with

CD45.2 AD mouse models and were not able to detect

CD45.1 cells in the brains of the AD mice. Indeed, the

contribution of peripherally derived macrophages to NDD

pathologies has a long and controversial history. However,

if TREM2 is expressed on these cells, it suggests they may

play a key role in modulating pathology, and thus this

issue should continue to be explored.

TREM2 structure and signaling
The structure of full-length TREM2

TREM2 is a single pass transmembrane protein whose

ligand binding domain includes an extracellular Ig-like

domain [223] with N-linked glycosylation sites [133, 136,

170, 224], phosphorylation sites and disulfide bonds

which are thought to perform important structural roles.

The transmembrane domain anchors TREM2 to the

membrane and contains the intramembraneous lysine

residue necessary for association with its intracellular

membrane adaptor, DAP12. This is followed by a short

cytoplasmic tail with no established function. Disease-

associated variants of TREM2 alter many of these struc-

tural elements (Fig. 1). Many variants are found in exon

2 and may change the structure of its ligand-binding

domain, impacting the affinity of TREM2 for different

ligands. For example, the Y38C variant associated with

PLOSL and FTD is predicted to alter an important

flanking sequence of the cysteine residues which form

TREM2’s disulfide bonds [36, 223]. Likewise, glycosyla-

tion is affected in cells transfected with Y38C and

T66 M TREM2 variants [225], though not in several

other variants examined [48]. Glycosylation of the R47H

variant was also found to be reduced [225], though not

to the same extent as the other TREM2 variants in vitro.

In humans expressing the R47H variant there were no

significant differences in the level of glycosylation [132]

but there were differences in the pattern of glycosylation

[133, 224]. TREM2 variants can also affect other import-

ant structural motifs of the TREM2 protein such as those

required for DAP12 association, and overall protein fold-

ing and stability. T66M and Y38C variants [223] along

with V126G are predicted to be important for protein

packing. Consistent with impaired protein folding, T66M

and Y38C variants exhibit enhanced proteasomal degrad-

ation [129]. The R47H variant has been predicted to im-

pair protein stability [226], but transfected R47H-TREM2

constructs actually have an increased half-life relative to

WT TREM2 and are resistant to proteasomal degradation

in the endoplasmic reticulum (ER) [224]. NDD-associated

TREM2 variants located on the surface of the protein

(R62H, T96K, D87N and R47H), are not predicted to sub-

stantially alter TREM2 structure [223, 227] but instead

affect ligand binding [223]. As the structure of TREM2

and disease-associated variants continue to be resolved,

we will gain better insight into the organization of struc-

tural features essential for TREM2 function.

The structure and production of soluble TREM2

TREM2 can also be produced as a soluble protein (Fig. 3).

Soluble TREM2 (sTREM2) has been detected in the

supernatants of mouse [225] and human cells in culture

[198, 225]. It has been proposed that sTREM2 could be

produced by both alternative splicing and proteolytic

cleavage. Insertions [161] or frameshifts [228] preceding

exon 4 terminate the transmembrane domain and are pre-

dicted to yield a soluble product. In human brain tissue, at

least three TREM2 isoforms have been detected [51], with

isoform 1, encoding the full-length protein, being the most

highly expressed [122]. Meanwhile, the transcript encod-

ing a 219-residue splice isoform is expressed to a lesser

extent than isoform 1 in the hippocampus of AD patients

[132], whereas the degree of expression of the 222-residue

splice isoform has yet to be resolved. Based on RNA se-

quencing data in AD mice, 15–20% of transcripts were

predicted to be alternatively spliced [208]. Notably, these

alternative transcripts have been identified in human

monocytes [228], and in AD brain tissue [51, 132]. Evi-

dence of elevations in expression of TREM2 exons 3 and 4

in advanced AD cases by microarray-based gene expres-

sion analysis [229] is suggestive of TREM2 alternative spli-

cing in AD [51, 132, 228]. The expression of full length

and splice isoforms of TREM2 are strongly correlated in

AD tissue, suggesting all TREM2 isoforms may be coordi-

nately regulated [132]. DNA methylation within the body

of the gene has been shown to impact alternative spli-

cing [123], and as TREM2 can be methylated within

exon 2 [122], it is possible that context-dependent changes

in methylation may also result in altered splicing. However,

direct evidence that alternatively spliced mRNAs are trans-

lated is lacking.

The sequential proteolytic processing of TREM2 has de-

finitively been shown to generate sTREM2 [132, 225, 230].

In vitro inhibitor studies revealed full-length TREM2 is

proteolytically cleaved by a disintegrin and metalloprotein-

ase domain-containing protein (ADAM10) resulting in
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shedding of the ectodomain [136, 225, 230]. Detection of

TREM2 C-terminal fragments (CTFs) within cell lines

[133, 225, 230] and human brain extracts [231] is suggest-

ive of a two-step proteolytic cleavage event of TREM2.

Following ectodomain shedding by ADAM10, the

remaining membrane-associated TREM2 C-terminus

undergoes intramembrane proteolysis by γ-secretase to

release its intracellular domain [230]. γ-secretase cleavage

of TREM2 results in accumulation of TREM2 CTFs, with-

out a corresponding increase in full-length TREM2 at

the plasma membrane upon γ-secretase inhibition

[133, 230, 232]. It is not known how this process is

regulated, but it is known that TREM2’s adaptor protein

DAP12 is required for sTREM2 production, at least in

some contexts [149].

Whether the production of sTREM2 in AD occurs by

alternative splicing or ectodomain shedding is unclear. It

may be cell-type and context dependent as different cell

types showed either an up- (dendritic cells) or downreg-

ulation (microglia, monocytes) of the TREM2 splice

transcript levels when stimulated by LPS [161, 228].

IL13 and IL4 were also shown to enhance sTREM2 pro-

duction in bone marrow derived macrophages [149].

This is consistent with studies examining other members

of the TREM family as TREM1 [233–235] and TREM-

like transcript-1 [236] which also produce cell-specific

protein products.

TREM2 variants linked to AD and other neurodegenera-

tive diseases can alter soluble TREM2 generation. TREM2

variants can drive novel TREM2 splicing [28, 32] such as

the PLOSL-associated TREM2 variant c.482 + 2 T > C in

which conversion of a single nucleotide at a splice-donor

consensus site within intron 3 results in the deletion of

exon 3 in addition to exon 2 and/or exon 4 [18]. This is

proposed to produce soluble protein products [28] lacking

either the transmembrane (TM) domain or both the TM

and ectodomain. While most TREM2 variants are

expressed in all isoforms of TREM2, there are disease-

associated variants expressed only in the alternatively

spliced isoforms of TREM2 [15, 16, 51, 58, 83]. Several

reports have also demonstrated that TREM2 variants

T66M and Y38C yield significant changes in sTREM2

release by cultured cells [86, 225]. This was also evident in

individuals homozygous [203, 225] and heterozygous [86]

for the T66M variant, exhibiting a loss or reduction in CSF

levels of sTREM2, respectively. Other case reports showed

disease-associated TREM2 variants lowered CSF sTREM2

levels compared to a non-carrier group [86]. While some

have reported decreased levels of sTREM2 and TREM2

intracellular domain (ICD) production in vitro with the

R47H variant [224], the TREM2 R47H variant acted simi-

larly to wild-type in sTREM2 production in other in vitro

assays [225] and AD patients carrying the R47H variant

had elevated levels of CSF sTREM2 [86]. There was a

trend for higher transcript levels of a 219-residue TREM2

splice variant in cortices of late-stage AD cases with the

R47H risk allele compared to significant elevation in this

splice isoform in non-carrier AD cases [132]. These data

altogether suggest that different TREM2 variants have dis-

tinct effects on sTREM2 levels.

Subcellular localization of TREM2

In addition to altering proteolytic cleavage, the localization

of TREM2 within the cell can greatly impact TREM2

signaling, and its trafficking appears to be a highly

dynamic process. In homeostatic conditions, TREM2

seems to be primarily found intracellularly [237], associat-

ing with the trans-Golgi network [156, 200, 238] and in a

population of exocytic vesicles [238]. These vesicles

appear to be continuously shuttled to the membrane, a

process which can be rapidly induced by increases in Ca2

+ in response to ionomycin [238]. It is not clear what

other specific stimuli or disease contexts result in changes

in TREM2 localization within the cell, but this will be

critical to understand TREM2’s functional role in these

contexts. TREM2 is recycled from the membrane in

clatherin-coated vesicles in a beclin-1 [239] and Vps35-

dependent manner [239, 240]. Vps35 mediates recycling

of TREM2 from the membrane via retromer complexes

[240]. When this process is blocked, TREM2 increases its

association with the lysosome and is degraded [240].

TREM2 variants can impact TREM2 localization within

the cell. In cells in which TREM2 variants were trans-

fected, T66M and Y38C [48, 133, 223, 225, 237] as well as

other variants [48] significantly reduced TREM2 surface

expression. These variants increased the localization of

TREM2 with the ER [133, 225], which may indicate

impaired protein folding. The R47H variant was found to

either not alter surface expression [48, 133] or reduce sur-

face expression of TREM2 to a lesser extent [225]. Unlike

the other variants, R47H TREM2 was mostly localized to

the trans-Golgi network rather than the ER, comparable

to the WT receptor [133, 225]. However, Yin and col-

leagues [240] did find that the R47H variant had reduced

association with Vps35, resulting in increased lysosomal

degradation following recycling of the receptor from the

surface. Overall, this suggests that variants may, in part,

impact TREM2 function by altering the localization of

TREM2 within the cell. While TREM2 has been proposed

to play a functional signaling role exclusively on the cell

surface, this could also impact possible functional roles of

TREM2 in other cellular compartments.

TREM2 ligands

Despite substantial efforts, the identity of the biological

ligands of TREM2 remains controversial (Fig. 4).

TREM2 is known to modulate myeloid cell activity in

response to microbial products [241], which led several

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 11 of 33



groups to test bacteria as a possible source of TREM2

ligands. Using a TREM2-Fc fusion protein that consists

of the extracellular ectodomain of TREM2 attached to

the Fc-portion of human IgG, TREM2 was found to bind

to some bacteria [242, 243], including Gram-positive (S.

aureus) and Gram-negative species (E. coli, F. tularensis),

but not S. cerevisiae [244, 245], Salmonella or Typin-

murin [246]. TREM2 was specifically found to bind highly

anionic bacterial products [244] and pertussis [247] and

cholera [248] toxins. In addition to microbial products,

TREM2 was also reported to bind to high molecular-

weight nucleic acids [160] and heat-shock protein 60

[249], that were further shown to initiate TREM2 signaling

in reporter cell lines. While some of these interactions

were found to be of relatively low affinity [249], recogni-

tion of many molecules like carbohydrates and glycans

induce only minimal biological signaling at low densities,

but at high densities when receptors are forced into closer

contact, can create strong biological effects [250]. Indeed,

glycosaminoglycans and specifically heparin sulfate were

found to modulate TREM2 binding [223] and it has been

suggested that this may result in clustering of TREM2 on

the membrane, thus potentially modulating TREM2

binding to other ligands [251].

Fig. 4 TREM2 signaling and function. TREM2 has been proposed to bind to a variety of different ligands, categorized here by lipids, lipoproteins
and ligands associated with damage- or pathogen-related molecular patterns. These ligands bind to the TREM2 receptor. Following ligand binding,
TREM2 can associate with DAP12 homodimers or DAP12/DAP10 heterodimers to mediate downstream signaling. This signaling requires
phosphorylation of the adaptor, following which activating (shown on left in green) or inhibitory (shown on right in red) signaling components
can bind. These activating components have been shown to initiate different downstream pathways that lead to cell proliferation and differentiation,
survival, phagocytosis, chemotaxis and inflammation. While many other signaling components are thought to play a role downstream of TREM2
activation, only those validated as part of the signaling pathway responsible for the listed functions have been included here. Association with
inhibitory components is thought to prevent activation of these downstream pathways. Lipids: PE [254, 96], PS [96, 144, 196, 222, 254], PA [96, 222,
254], PG [254, 222, 96], PC [144, 196, 222, 96, 254], PI [196, 222, 96], CL [96, 254, 222], SM [196, 222, 96, 254], LA [254, 222], SA [144, 196, 222, 96], Apo-/li-
poproteins: ApoE [95, 96, 94], ApoJ [94], ApoA-1 [94, 96], ApoA-II [94, 96], LDL, HDL [94, 144, 93], PAMP/DAMPs: [244, 245], (−) bacterial products (LPS,
LTA) [244], Nucleic Acids [160], Heat Shock protien 60 [249], Apoptotic cells [95, 153, 160, 96, 222], Macropahages [252], Astrocytoma cells [244]

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 12 of 33



Unidentified TREM2 ligands were also detected by

TREM2-Fc binding to the cell surface of macrophages

[252], human astrocytoma cells [244], dendritic cells

[253], N2A cells [153, 223], THP-1 cells [223] and apop-

totic cells [160]. In support of these findings, TREM2

deficiency partially impairs microglial recognition of

apoptotic cells [94, 153, 160]. Recent studies have dem-

onstrated that TREM2 binding to these cells is sensitive

to proteinase K, suggesting the receptor binds to protein

[223], perhaps complexed with proteoglycans.

It had previously been shown that members of the

TREM family recognized lipid ligands [254], and lipids

may also help mediate the interaction of TREM2 with

ligands on the cell surface. Polar lipids found on the

cell surface were assessed as possible TREM2 ligands

[223, 242, 254], using lipid arrays [96] and reporter

assays [196, 222]. While anionic lipids seemed to produce

among the highest levels of response, additional factors

that influence the particular lipids that TREM2 recognizes

requires further study. This lipid binding may allow

TREM2 to sense changes in the local environment as

exemplified by TREM2-positive cells binding to external-

ized phosphatidylserine on apoptotic cells [153] and myelin

debris [196].

Some studies suggest that TREM2 may bind lipids in

cis with other protein-based interactions [223]. TREM2

has also been reported to bind to lipoproteins, including

Apolipoprotein A1 (ApoA-I), clusterin (CLU), and low

density lipoprotein (LDL), though ApoE has been most

widely demonstrated to bind to soluble TREM2-Fc. This

binding seems to occur independent of ApoE isoform

[94–96, 255] and be dependent on residues 130–149

[255]. Because TREM2 binds to lipids, the lipidation sta-

tus of ApoE and other apolipoproteins could dictate their

binding affinity to TREM2. Several studies [95, 96, 255]

demonstrate that TREM2-ApoE binding is not dependent

on lipid loading. However, others have found that lipida-

tion was necessary to drive TREM2 binding [94]. Lipid

association is reported to be necessary for TREM2 binding

to ApoE, ApoA-I and ApoA-II from cynomolgus macaque

CSF and serum [96]. ApoE binding to TREM2 was found

to induce TREM2 signaling in NFAT reporter cell lines

[255], though how its binding to TREM2 would alter

signaling in vivo remains to be determined. Because ApoE

can bind to apoptotic cells [95] and amyloid plaques

[95, 96], it has been proposed that an interaction

between TREM2 and ApoE may indirectly allow it to

mediate recognition and phagocytosis of these sub-

strates. This may be important in the recognition of

AD-related stimuli by TREM2, because TREM2 was

found not to bind to plate-bound Aβ [222], but did bind

to areas around amyloid plaques in an AD mouse model

[158]. However, the possibility of TREM2 binding directly

to Aβ, in addition to these indirect interactions, has not

been fully excluded. Together, these data indicate that, in

addition to protein – proteoglycan complexes, TREM2

may also bind to lipids and protein-lipid complexes.

AD-associated TREM2 variants including R47H,

R62H, D87N and T96K, are found on the surface of the

protein, and impact ligand binding [223]. Studies

employing a TREM2 R47H-Fc chimeric protein revealed

the R47H mutation significantly reduces TREM2 binding

to cells [223], ApoE [96] including all three isoforms

[95] and its lipidated form [94], other lipids [144, 222],

apolipoproteins [94, 96] and lipoproteins [144]. TREM2

variants at either the same residue (R47A, R47E and

R46A) [96] or with a similar R-to-H substitution (R62H)

[94, 144] as R47H similarly disrupted TREM2 recognition

of apolipoproteins [94] or cells [223]. However, R62H and

R52H variants demonstrated relatively comparable lipid

detection to WT TREM2 [144]. Other variants residing

within the TREM2 ectodomain (Y38C, T66M, K48M)

effectively abolished TREM2 binding to proposed ligands

[94], while those located on the ectodomain proximal to

the stalk region of TREM2 (D87N, T96K) exhibited

enhanced interactions with some ligands [144, 223], while

decreasing association with others [94]. TREM2 variants

within the stalk region (H157Y, E151K, R136W) or intra-

cellular domain (L211P) had no significant impact on

ligand binding. The differences among these disease-

conferring TREM2 variants’ recognition of cells, lipids,

lipoproteins and apolipoproteins may alter how they

impact downstream signaling. However, it remains unclear

whether the ligands identified thus far are the relevant

binding partners of TREM2 in vivo and mediate the

receptor’s ability to respond to damage or infection in

the CNS. Future work establishing the full array of

physiological TREM2 ligands, and how variants impact

these interactions will be instrumental in elucidating

the role of TREM2 on myeloid cells in response to

different pathologic stimuli.

TREM2 associates with the intracellular adaptor DAP12

Because the major isoform of TREM2 has only a short

cytoplasmic tail, it requires the intracellular adaptor

DAP12 [136, 256] to mediate several of its signaling

functions [139, 143]. Along with TREM2, DAP12 is

required for signaling of other TREM family members

[242], MDL-1, and Siglecs and can be used as an adaptor

for other receptors critical for regulating myeloid cell

function including CSF1R and toll like receptors [257].

In some contexts, cross-talk among these receptors has

been shown to occur at the level of DAP12 availability.

In order to associate with the membrane, DAP12

requires the presence of its receptors [256]. Indeed, DAP12

is clustered at the same area of the membrane where

TREM2 is highly upregulated on myeloid cell processes in

contact with plaques in an AD mouse model [258]. At the
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membrane, DAP12 can associate with other DAP12

molecules to form homodimers through cysteine resi-

dues in its short extracellular domain [259]. In some

contexts, DAP12 can also heterodimerize with DNAX

activation protein of 10 kDa (DAP10) [260] which can

modify downstream signaling cascades. It is not known

whether DAP12 complexes constitutively associate with

TREM2 or whether this is induced upon ligand binding

in vivo but recent data using a split luciferase assay

found that TREM2-DAP12 association in transfected

HEK cells was primarily driven upon TREM2 stimula-

tion [237]. Interestingly, the T66M TREM2 variant but

not R47H or S116C variants enhanced the constitutive

association with DAP12 in this system [237]. Regard-

less, activation of TREM2 and other DAP12-associated

receptors results in tyrosine phosphorylation of DAP12

within its immunoreceptor tyrosine-based activation

motifs (ITAM) by src family kinases casein kinase II at

residues 85–88 and at residues 79–81 by PKC [259]. This

phosphorylation occurs only when DAP12 is receptor-

associated [139] and serine / threonine phosphorylation of

the ITAM motifs are required for signaling [139].

TREM2 signaling downstream of DAP12

These phosphotyrosine residues on the DAP12 ITAM

serve as docking sites for a number of molecules that

initiate signaling cascades that activate an immune

response. There are several immune stimulating mole-

cules that associate with DAP12 in response to TREM2

activation (Fig. 4). Crosslinking TREM2, commonly used

to mimic TREM2 activation, can result in recruitment of

DAP10, PI3K or LAB to the TREM2-DAP12 complex.

In turn, these molecules are activated through tyrosine

phosphorylation, principally by ITAM-associated Syk

and go on to activate downstream signaling components,

including Akt, Rac, Vav and MAPKs, including ERK

[129, 136, 139, 159, 182, 260–263]. These initiate

changes in gene expression and cytoskeletal rearrange-

ment which mediate many downstream cellular func-

tions associated with immune cell activation [264].

While ITAM domains are typically activating, they can

be inhibitory in certain contexts [265, 266]. When the

ITAM motifs of DAP12 are partially phosphorylated

[267], inhibitory phosphatases SHIP, SHP and the

adaptor downstream of kinase 3 (DOK3) are recruited to

the TREM2-DAP12 signaling complex. These molecules

inhibit immune activation [265, 268–270], possibly

through blocking DAP10, PI3K, and Syk association with

the TREM2-DAP12 complex and preventing activation

of ERK, Vav3 and calcium mobilization [260].

Whether signaling through DAP12 results in activation

or inhibition of the immune response seems to be receptor-

and stimulus-dependent. Activation of TREM2 and mye-

loid DAP12-associating lectin 1 (MDL1) but not SIRPβ

enhanced association of the inhibitory SHIP1 with DAP12

[260]. Similarly, macrophage colony stimulating factor

(MCSF) alone but not MCSF and RANKL induced

localization of SHIP1 to DAP12 [260]. Even different levels

of the same stimulus can induce association of TREM2-

DAP12 with different downstream signaling components.

For example, Peng and colleagues [270] found that a low

dose, but not a high dose of LPS resulted in association of

DAP12 with DOK3. This served to dampen the cellular

response to LPS, as DOK3 deficiency increased down-

stream signaling components, cytokine production and

death of mice administered an otherwise sub-lethal dose of

LPS. However, at high doses of LPS treatment, DOK3 did

not associate with DAP12. SHIP1 was also shown to

moderate the response of TREM2-induced proliferation.

When SHIP1 deficient preosteoclasts were exposed to an

activating TREM2 antibody, osteoclast formation was

upregulated an additional 4-fold [260].

Whether DAP12 serves to activate or inhibit the

immune response depends on the receptor it is associ-

ated with, the stimulus used to activate that receptor

and the strength of that stimulus. It may also depend on

availability of different downstream signaling compo-

nents locally at the membrane, their relative expression

in the cell [262] or other environmental factors [271].

Much of the signaling data thus far was performed in

cultured osteoclasts, and future studies may find that

other cell types use distinct signaling mechanisms.

Whether TREM2 signaling is activating or inhibitory in

the context of disease is also not known, and a greater

understanding of the different TREM2 pathways that are

relevant in disease will be instructive. Interestingly,

SHIP1 variants also confer risk for AD, and it is thought

that these variants result in a change in the transcrip-

tional start site of SHIP1 resulting in a protein that lacks

its SH2 domain which is necessary for association with

ITAMs and immunoreceptor tyrosine-based inhibitory

motifs (ITIMs) [272]. This suggests that these inhibitory

components that associate with TREM2 deserve atten-

tion moving forward in understanding immune-related

pathways that are important in AD.

Other TREM2 signaling complexes

There is a general consensus that TREM2 likely acts as a

homodimer or homomultimer to induce downstream

signaling. This is a common mechanism of activation of

other receptors with similar structures to TREM2 in

which ligand binding induces complex formation and

initiates downstream signaling cascades. Almost all stud-

ies examining TREM2 signaling have provoked TREM2

dimerization using antibody-mediated crosslinking to

induce signaling [136]. However, there is also evidence

that TREM2 can associate with other receptors, includ-

ing PlexinA1 [273, 274]. Other studies are suggestive
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that TREM2 could also bind to TREML1 [236] through

co-IP experiments or CSF1R due to their close linkage

in network analyses [101] and the strong commonalities

in their downstream pathways [222, 275]. While these

last two interactions remain to be validated, it is

certainly possible that TREM2 also acts through these

alternative heteromeric complexes. Whether this is regu-

lated by the cell type or context, and whether this is an

important role of TREM2 endogenously in the context

of NDDs, remain to be determined.

Biological actions of sTREM2

The biological roles of sTREM2 have been controversial.

Initially sTREM2 was postulated to act as a decoy recep-

tor opposing full-length TREM2 function. A soluble ver-

sion of a closely related TREM family member, sTREM1,

modeled by a TREM1-Fc fusion protein, competes with

its membrane-bound form to block TREM1 signaling

[276] and produces opposing effects on inflammation

and survival following LPS injection in mice [277]. Soluble

TREM2 may similarly act as a decoy receptor to negatively

modulate TREM2 signaling [198, 225]. In support of this,

in vitro a chimeric TREM2-Fc protein used to model

soluble TREM2 inhibited osteoclastogenesis, a process

that requires TREM2-DAP12 signaling [278].

Recent studies suggest that sTREM2 may have its own

biological function. Exogenously applied sTREM2 was

internalized by cultured bone marrow derived macro-

phages, and promoted survival in cells lacking TREM2

expression [149]. However, sTREM2 failed to rescue

phagocytosis in TREM2 deficient bone marrow macro-

phages in culture [279]. Recent data also demonstrate

that treatment of microglial cell lines with TREM2-Fc or

a HEK-cell produced sTREM2 peptide increases survival,

in line with full-length TREM2 function [14]. This study

also found that sTREM2 strongly induced an inflamma-

tory response in culture models of microglia. These data

suggest that there are important biological roles of

sTREM2 other than acting as a decoy for the full-length

TREM2 receptor. The mechanisms underlying sTREM2

function are not yet well understood, but interestingly,

does not require the presence of full-length TREM2 or

its intracellular adaptor DAP12 [14].

The signaling role of TREM2 CTFs is also starting to

be explored. In the absence of γ-secretase activity,

membrane-associated TREM2 CTFs have been proposed

to either promote TREM2 anti-inflammatory signaling

in response to LPS [280], or impair TREM2 signaling by

sequestering DAP12 from interacting with full-length

receptors [230], reducing DAP12 phosphorylation and

downstream PLCγ activation [230, 232] along with

TREM2-mediated phagocytosis [232]. Production or

stabilization of CTFs on the membrane may also provide

a point of cross-talk through which TREM2 could

modulate the signaling of other DAP12-associated

receptors. It is clear that further study will be necessary

to gain insight into how these soluble TREM2 products

impact signaling both of TREM2 and other pathways

critical to innate immunity.

TREM2 function
TREM2 regulates myeloid cell number

While TREM2 expression and signaling are context-

dependent, there are some commonalities in TREM2

function that have been found across the diverse cell

types and environments in which it has been studied

(Fig. 4), one of which is regulating myeloid cell number.

The impact of TREM2 on myeloid cell number outside

of the context of disease or stimulus is not completely

clear. While knocking down TREM2 in primary micro-

glia lead to reduced cell number [106], it had no effect

on osteoclasts derived from peripheral blood mono-

nuclear cells (PBMC’s) from PLOSL TREM2 E14X

carriers lacking TREM2 expression [19] and microglial

numbers were the same up to 1 year of age in mouse

models lacking TREM2 expression. However, crosslink-

ing TREM2 did promote an increase in osteoclast num-

ber in culture [143]. What is clear is that TREM2 has an

effect on increasing myeloid cell number in response to

inflammation or disease. TREM2 deficiency was shown

to prevent increases in the brain myeloid cell popula-

tions in response to traumatic brain injury [98], ischemia

[160, 193], aging [196], and in the initial response to

demyelination [196], though it did increase the number

of cells in a model of sepsis [170].

TREM2 deficiency also prevented local increases in

myeloid cells around plaques in AD. Amyloid plaques

are typically surrounded by a rapidly recruited [281, 282]

cluster of activated myeloid cells in AD human brain

tissue [283, 284] and in AD mouse models [285]. Recent

evidence demonstrates reduced myeloid cell accumula-

tion around amyloid plaques in TREM2 hemizygous

[222, 258, 286], and TREM2- [145, 162, 222, 258, 287]

and DAP12-deficient [258] AD mouse models, as well as

in postmortem AD human brain tissue from individuals

harboring the TREM2 R47H variant [60]. These data

illustrate that TREM2, and its adaptor protein, DAP12,

are required for myeloid cell accumulation around amyl-

oid plaques. While Wang and colleagues [145, 222]

found that TREM2 deficient AD mice had a decrease in

total brain myeloid cells, others found that this was

primarily driven by the specific loss of plaque-associated

myeloid cells [258, 287]. Together, this suggests that

TREM2 is important for myeloid cell expansion in

response to disease. Evidence suggests that in various

contexts, TREM2 is important for myeloid cell survival,

proliferation and chemotaxis, all of which could lead to

disease-associated increases in myeloid cell number.
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TREM2 enhances myeloid cell survival

TREM2 has been shown in multiple contexts to be

important for cell survival. Osteoclasts [261] and bone

marrow derived macrophages [149] from TREM2 defi-

cient mice, and liver cancer [186] and glioma cell lines

[183] in which TREM2 was knocked down had increased

levels of caspase 3, Bcl-2-associated X protein (bax),

Annexin V and TUNEL positivity, all suggesting that

TREM2 deficiency enhanced apoptosis. Similarly,

primary microglia and the BV2 microglial cell line with

reduced TREM2 expression had decreased survival,

along with decreased levels of elements of the survival-

related Wnt/β-catenin pathway [13]. Conversely, TREM2

activation through receptor crosslinking increased

survival of monocyte-derived dendritic cells [136] and

osteoclasts [260]. In culture, microglia derived from

TREM2 deficient mice did not show more cell death at

baseline, but when levels of CSF1, an important factor

for the maintenance of microglial survival, were reduced,

TREM2 deficient microglia were more likely to undergo

apoptosis [222]. This was also found to be the case in

bone marrow derived macrophages [149]. In an AD

mouse model, TREM2 deficiency also increased the

number of plaque-associated myeloid cells which were

TUNEL+ [222]. Taken together, these studies suggest

that TREM2 is protective against apoptosis, especially

under stressful cellular conditions.

TREM2 enhances myeloid cell proliferation and

differentiation

TREM2 may also increase cell number through promoting

myeloid cell proliferation. In glioma cell lines [183], liver

cancer cell lines [186], and primary microglia [13],

reduced levels of TREM2 led to cell cycle arrest. The

number of proliferating myeloid cells were also decreased

in vivo in response to demyelination [288], colonic muco-

sal injury [189] and in AD mouse models [145, 287]

lacking TREM2 expression. While the mechanisms of

this regulation of proliferation are not clear, TREM2

deficiency in cultured osteoclast precursors prevented

CSF1-mediated proliferation [261], a process also crit-

ical for proliferation of many macrophage populations,

including brain myeloid cells. It has been suggested that

TREM2 may interact with the CSF-1 receptor to medi-

ate these effects. In dendritic cells derived from PLOSL

patient PBMCs expressing Q33X and V126G TREM2

variants, gene expression profiling identified “negative

regulation of proliferation” as a genetic pathway which

was significantly increased in variant carriers compared

to controls [135]. In addition to being important for

directing proliferation of the cells in which it’s expressed,

TREM2 might also promote a myeloid cell phenotype that

directs proliferation of other cells in the surrounding

microenvironment. TREM2 is highly upregulated during

organogenesis when macrophages release factors to pro-

mote proliferation of surrounding cells [137], in tumor

associated macrophages where analogous macrophage-

driven trophic support occurs [183], and following CNS

trauma where myeloid cells serve as an important source

of neurotrophic support during tissue repair [289]. Inter-

estingly, TREM2 is strongly upregulated by neural stem

cells [290] and ESC-derived oligodendroglial precursors

[291]. A relationship between TREM2 expression and

neurogenesis has not yet been explored, but given the

influence of TREM2 of proliferation on other cell types,

this may warrant further examination.

TREM2 may also influence cell differentiation. Differen-

tiation was impaired in osteoclasts derived from PLOSL

patients expressing TREM2 variants [19] and in RAW

macrophages deficient for TREM2 through a PlexinA1-

dependent pathway [274]. However, Otero and col-

leagues [261] demonstrated that mouse-derived TREM2

deficient preosteoclasts differentiated into osteoclasts

faster. Though the role of TREM2 in cell differentiation

is not completely clear, this step in cell phenotype

determination may also contribute to the changes in

cell numbers and population observed in the context of

TREM2 deficiency.

TREM2 regulates myeloid cell chemotaxis

Another potential contributor to TREM2’s role in

expanding the myeloid cell population in the context of

disease or inflammation is by modulating chemotaxis or

migration of these cells. In culture, knocking down

TREM2 reduced chemotaxis of glioma cells in a Boydon

chamber assay in response to serum [183], and in the

BV2 microglial cell line in a scratch assay [158]. Microglia

from TREM2 deficient brain slices exhibited reduced

chemotaxis into co-cultured brain tissue from old or AD

mouse models [292]. In addition, TREM2 deficient mice

had fewer microglia migrate to the site of apoptotic

neuron injection in the brain and had slower process

extension toward a brain laser lesion as measured using

two photon microscopy [292]. Conversely, TREM2

crosslinking increased CCR7-dependent chemotaxis

[136, 139, 143]. TREM2 was also found to be co-enriched

with genes involved in purinergic signaling, a key pathway

directing microglial chemotaxis in network analyses [101],

though whether TREM2 regulates P2R-receptor mediated

chemotaxis has not been examined experimentally. How-

ever, others did not see a deficit in chemotaxis in PLOSL

patient-derived osteoclasts [19]. Kiialainen and colleagues

[135] found that PBMC’s cultured from patients with

PLOSL-associated TREM2 variants had both up- and

down-regulated components of the chemotactic response.

It may be that different components of the chemotactic

pathway and therefore different types of chemotaxis are

differentially regulated by TREM2.
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Studies have examined the effect of TREM2 on spe-

cific chemotactic pathways that are involved in tissue

infiltration by myeloid cells. Wang and colleagues [183]

found that TREM2 deficient glioma cell lines downregu-

lated CXCL10, CXCR3, MMP2 and MMP9 which are all

important in tissue invasion. In network analyses,

TREM2 was significantly co-enriched with DOCK2 and

DOCK8 which are involved in tissue transmigration

[101] and mice deficient for TREM2 had reduced

leukocyte infiltration following experimental induction

of colitis [190]. There was also decreased neutrophil

recruitment to mouse lungs in response to bacterial

infection in TREM2 deficient mice [173]. In vitro, cells

lacking TREM2 expression had reduced chemotaxis

toward CCL2 [292]. Mice lacking DAP12 were found to

have significantly reduced recruitment of peripheral

macrophages in vivo in response to cigarette smoke or

intranasal C-C motif chemokine ligand 2 (CCL2) admin-

istration, and these DAP12-chemotactic deficits were

found to be rescued by reintroducing a TREM2-DAP12

fusion construct [141]. TREM2 deficient mice also had

reduced levels of CCL2 [292] and fewer peripheral

immune cells in their brain following middle cerebral

artery occlusion (MCAO) [193]. There was a trend

toward a correlation between CCL2 and sTREM2 levels

in the CSF of human AD patients, which may suggest

that TREM2 plays a role in mediating CCL2-mediated

chemotaxis of cells in the context of AD as well. How-

ever, other studies have found no link between TREM2

and monocyte trafficking into inflammatory tissues

[149]. Future studies will be necessary to assess which

chemotactic pathways are influenced by TREM2 and

whether that includes pathways related to peripheral

immune cell infiltration into the CNS in NDDs.

TREM2 regulates phagocytic function

A well-characterized function of TREM2 is to enhance

phagocytosis. TREM2 is expressed in a subset of myeloid

cells within the CNS that have high phagocytic capacity

[215]. Across numerous in vitro studies, loss of TREM2

results in reduced phagocytosis of a variety of substrates,

including apoptotic neurons or neuronal cell lines

[95, 139, 153, 160], bone [19, 293], bacteria and bacterial

products [170, 225, 237, 249] and lipids [94, 129]. Con-

versely, TREM2 activation or overexpression enhanced

uptake of these substrates [139, 159, 214]. TREM2 expres-

sion correlated with Aβ40 uptake in BV2 cells in which

TREM2 was knocked down or overexpressed [158]. Aβ42

uptake was also reduced in TREM2 deficient primary

microglia [214, 225] and in the N9 microglial cell line

expressing a non-functional TREM2 when plated onto

brain slices from AD mouse models [279]. In agreement

with these findings, in vivo, TREM2 deficient mice have

reduced localization of Aβ within CD68+ phagosomes in

AD mouse models [258] and reduced uptake of deposited

Aβ three hours after injection into the brain [145]. To-

gether, these findings suggest that TREM2 is important

for Aβ uptake by brain myeloid cells. However, in culture,

TREM2 expression was no longer found to correlate with

Aβ uptake after pretreatment of cells with LPS [158]. A

similar effect was observed in a mouse model of sepsis

where injection of myeloid cells overexpressing TREM2

enhanced bacterial phagocytosis and survival, but not if

the mice were pretreated with LPS [180]. These findings

suggest that the mechanisms of TREM2-dependent

phagocytosis can be modified by other signals in the

microenvironment. Interestingly, the other modulatory

components present in the brain microenvironment

change throughout the course of NDDs, which could

explain some of the differences in TREM2 function at

different stages of disease progression. Outside of AD,

TREM2 is important for clearance of myelin in experi-

mental autoimmune encephalomyelitis (EAE) [159] and

peri-infarct tissue in mice following MCAO [160]. How-

ever, it does appear that the effect of TREM2 on phagocyt-

osis can be cell type specific. Sharif and colleagues [173]

found that bone marrow macrophages derived from

TREM2 deficient mice had reduced phagocytosis, but

TREM2 deficient alveolar macrophages had increased

uptake of bacteria in vitro and in vivo. R62H [94] and

R47H TREM2 variants had impaired phagocytosis [240].

This was also true in HEK cells transfected with TREM2-

DAP12 fusion constructs expressing R47H, T66M and

Y38C variants [225]. Interestingly, while all of these vari-

ants impaired uptake of polystyrene beads, T66M and

Y38C but not R47H impaired uptake of E. coli particles

[225], suggesting that different TREM2 variants could

affect recognition of specific phagocytic substrates as well

as induce changes in basal phagocytic activity reflected in

the fluid phase uptake of beads. More studies will be

required to parse out the role of TREM2 in basal phagocyt-

osis and cargo-driven phagocytosis of specific substrates.

The mechanism underlying TREM2-dependent uptake

of various substrates is not clear. While transfection of a

TREM2-DAP12 construct into CHO cells was shown to

be sufficient for uptake of Neuro2A cells [153], it may

be that TREM2 does not have to directly bind to its

phagocytic substrates, as TREM2 binding to Hsp60 was

sufficient to increase phagocytosis of bacteria [249]. If

TREM2 does not directly bind to these substrates, then

it must interact with other phagocytic pathways. It is

possible that TREM2 impacts fluid-phase phagocytosis

rather than cargo driven phagocytosis. TREM2 may also

interact with other phagocytic receptors. For example,

MerTK is essential for the phagocytosis of apoptotic

cells [294] and is upregulated on the same cell popula-

tion as TREM2 in AD [213]. Network analyses have also

shown that TREM2 is co-enriched with genes involved
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in FCγR and complement-mediated phagocytosis [101].

In support of an association between TREM2 and Fc-de-

pendent phagocytic pathways, stimulating cells lacking

TREM2 function with an antibody against the desired

phagocytic substrate did increase internalization of the

substrate, but did not rescue it back to WT levels [279].

TREM2 deficient alveolar macrophages were found to

increase phagocytosis and this was found to be

dependent on the upregulation of first component of

complement q (C1q) in these cells [173], which acts to

opsonize phagocytic substrates. It may also be that

sTREM2 plays a role in binding and directing phagocyt-

osis of substrates by these other pathways, as ADAM

inhibitors reduced sTREM2 production and decreased

phagocytosis of E. coli [225].

Some have also suggested that these findings may

reflect changes in degradation of phagocytic substrates

rather than their uptake. Forabosco and colleagues [101]

found that genes associated with lysosome activity were

co-enriched with TREM2 across the brain and in

monocyte-derived macrophages. In PLOSL patients,

there is an accumulation of large CD68+ myeloid cells,

suggesting that phagocytic uptake by these cells may be

intact [25]. In a cuprizone model of demyelination,

TREM2 deficiency was found not to impair uptake of

myelin debris, but that this debris remained in cells

longer than in controls, suggesting that degradation was

specifically impaired [288]. This was also found to be

true in TREM2 deficient macrophages which were able

to take up bacteria at comparable levels to cells expressing

WT TREM2 but were unable to kill and degrade them

[263]. However, Jiang and colleagues [214] found that in

primary microglia in which TREM2 was knocked down,

Aβ42 degradation was unaffected. Together, the exact role

of TREM2 in phagocytosis and other means of cellular

uptake and degradation of substrates from the microenvir-

onment remain unclear, though it clearly does play an

important role in these processes.

TREM2 modulates inflammatory responses

TREM2 interacts with many other inflammation-related

pathways. While TREM2 has been touted as being anti-

inflammatory, it seems that the interaction between

TREM2 and other inflammation related pathways is

actually more complex. Depending on the precise stim-

uli, the strength [260] and duration [4] over which they

are presented, the cell type and the context, TREM2 can

play different roles in the inflammatory response. In sup-

port of this, network analyses found that TREM2 was

co-enriched with both classically pro- and anti-

inflammatory gene clusters in the brain [101]. Likewise,

a microarray analysis of macrophages derived from a

PLOSL patient PBMC’s showed components of the

inflammatory response and innate immune response

were both up- and down-regulated, respectively, relative

to controls [135]. Outside of the context of injury or dis-

ease, the transcriptional profiles of TREM2 deficient

[222] or overexpressing [214] myeloid cells compared to

controls was fairly similar. It is in the context of disease

where TREM2 seems to heavily influence changes in

inflammation-related pathways.

TREM2 has been classically described as being anti-

inflammatory and several in vitro and in vivo studies are

supportive of an anti-inflammatory role for TREM2 in

certain contexts. Knocking down TREM2 in cell lines

increases levels of proinflammatory mediators such as

iNOS, TNFα, IL1β and IL6 [240] in response to apoptotic

neuronal membrane components [139], TLR ligands

[168], including LPS [159, 169, 170, 280] and Aβ42 [157].

A transient knock down of TREM2 in the P301S tau

model and in the SAMP8 model of accelerated aging also

increased inflammatory cytokine production [201, 216].

TREM2 deficiency also resulted in increased levels of

IFNγ, TNFα and iNOS [189] following colonic mucosal

injury and TREM2 knockdown or antibody-mediated

inhibition increased expression of many inflammation-

related cytokines following corneal infection [182]. More-

over, overexpressing TREM2 in cell lines, amyloid [214]

and tau models of AD [295] reduced levels of these

pro-inflammatory transcripts. Together, these studies

suggest that in some contexts, TREM2 can attenuate

inflammatory responses.

However, many other studies also support that

TREM2 can mediate or amplify inflammatory responses.

For instance, TREM2 knockdown impaired ROS produc-

tion [246, 263]. TREM2 deficient microglia are more

ramified in culture, a morphological signature of reduced

activation [160]. TREM2 deficient AD mouse models have

reduced levels of inflammation-related transcripts in both

unbiased RNA sequencing approaches [222] and in the

genes IL1β and IL6 in targeted analyses [162, 287].

Plaque-associated cells in AD mouse models deficient

[222] or haploinsufficient [286] for TREM2 also had

decreased cell soma size, surface area and increased

process length, indicative of reduced activation [222].

Recent work using single cell sequencing approaches indi-

cates that TREM2 is required specifically for a second

phase of the myeloid cell response in AD which allows

cells to fully adopt a neurodegeneration-associated pheno-

type [296]. This may be true in diverse disease contexts as

pro-inflammatory cytokine levels were also reduced in

TREM2 deficient mice following traumatic brain injury

[98], ischemia [193], lung infection [149, 173] and demye-

lination [196], where TREM2 deficient brain myeloid cells

exhibited a less activated morphology [288]. Conversely,

activation of TREM2 in a macrophage cell line increased

NO release [136], agonizing TREM2 following spinal

nerve transection increased TNFα and IL1β [194] and
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overexpression of TREM2 increased expression of IL6,

TNFα and MCP1 in mouse adipose tissue [129]. Because

these studies examined gene expression in whole tissue, it

is not clear whether these changes are due to changes in

immune cell phenotype or alteration in cell number in the

affected tissues. However, taken together, these findings

clearly indicate that TREM2 can also promote inflamma-

tory responses in certain contexts. This body of data

strongly opposes the often-cited descriptor of TREM2 as

an anti-inflammatory receptor. Future studies will be

required to delineate the molecular and environmental

determinants that govern how TREM2 contributes to the

inflammatory response in different contexts.

While the number of studies have been limited,

TREM2 variants associated with NDDs also seem to

have mixed effects on inflammatory responses. The

R47H variant impaired inflammatory responses in BV2

cells [240], yet R47H carriers with AD had increased

expression of genes related to inflammatory pathways

compared to non-carriers [57]. A variant within intron 2

of TREM2, which is prevalent in African American indi-

viduals, was found to be significantly associated with

levels of C-reactive protein (CRP), a systemic marker of

inflammation, whose expression is primarily driven by

IL6 and IL1β [110]. However, it is not clear whether this

represents a direct relationship between this TREM2

variant and systemic inflammation.

In addition to impacting the inflammatory responses

of myeloid cells, TREM2 also seems to be able to indir-

ectly feedback onto the inflammatory response in other

cells within the microenvironment, including astrocytes.

Astrocytosis, measured by glial fibrillary acid protein

(GFAP) levels, was reduced across all stages of path-

ology examined in TREM2 deficient AD mouse models

[162, 287], in areas of active demyelination [288] and

trended toward a reduction in GFAP area in mice

following ischemia [160]. However, GFAP levels were

unchanged in TREM2 deficient mice at acute and

chronic time points following traumatic brain injury

[98], suggesting that TREM2 must work in tandem with

context-dependent signals to alter astrocyte activation.

One of the characteristic features of PLOSL is astrocy-

tosis [22] and in a PLOSL patient with a TREM2 vari-

ant, GFAP levels were significantly increased in frontal

lobe tissue [28]. This suggests that TREM2 can play

multiple roles in regulating astrocyte activation depend-

ing on the precise context.

Other functions of TREM2

While regulating cell number, phagocytosis and inflam-

mation are the best studied roles for TREM2, other

studies have suggested additional roles for the receptor,

such as regulation of synaptic pruning and monitoring

of synaptic function [297]. Because of the cross-talk

between TREM2 and complement pathways and a clear

role of TREM2 and complement in phagocytosis in dis-

ease [298], it would be of interest to assess whether

TREM2 influences synaptic function by modulating syn-

aptic pruning, either normally during development or

aberrantly in the context of NDDs. Others have sug-

gested that, due to the close apposition of TREM2+ cells

to oligodendrocyte precursors during development, they

may support their function [154]. TREM2 has also been

shown to be important for angiogenesis following stroke

[160]. Because of TREM2’s proposed lipid-related ligands,

and the strong links between lipid metabolism and NDDs,

it would not be surprising if TREM2 also played roles in

this pathway. In support of this, lipid metabolism was the

most strongly altered pathway in TREM2 deficient mouse

brains following cuprizone-induced demyelination [288].

How TREM2 affects these normal functions within the

brain has not been studied, but may represent important

future areas of investigation.

Outside of the brain, studies have proposed additional

roles for the TREM2 receptor. TREM2 has been pro-

posed to play a role in adaptive immunity. Myeloid cells

expressing higher levels of TREM2 were able to increase

T cell proliferation better than those expressing lower

TREM2 levels [158]. TREM2 was also found to be co-

enriched with genes related to adaptive immunity in

gene network analyses [101]. However, others have

found that activating TREM2 through crosslinking did

not upregulate molecules involved in antigen presenta-

tion [159, 299], suggesting that TREM2-mediated stimu-

lation of adaptive immune responses may be indirect or

require additional environmental factors. TREM2 also

seems to be important for cell maturation [136] and in

particular multinucleation of osteoclasts [19, 143, 293].

It is not yet known how TREM2 might mediate these

additional functions.

TREM2 and NDD pathology
TREM2 impacts amyloid pathology in AD

The observed changes in TREM2 expression, signaling

and function with disease-associated genetic variants

ultimately translate to changes in NDD pathology. Many

studies have focused on how TREM2 and disease-

associated variants impact AD-related pathologies. Stud-

ies examining loss of TREM2 function in amyloid mouse

models initially appeared to support contradictory con-

clusions. Some groups found that TREM2 deficiency

reduced [162, 258] while others found that it increased

[222] amyloid pathology. However, recent evidence has

harmonized these results by demonstrating that TREM2

deficiency has a changing role throughout AD progres-

sion, reducing amyloid pathology early but increasing it

at later stages of disease [287]. Studies overexpressing

TREM2 in AD mouse models also found a temporal
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effect of this overexpression, which reduced pathology

early in disease progression [214] but no effect at a later

time point [300]. This is supported by Korvatska and

colleagues [60] who demonstrate accelerated disease

progression in R47H carriers compared to non-carriers

with AD. This may also explain discrepancies in human

studies of R47H carriers who found no association

between R47H carriers and non-carriers in amyloid

deposition [49] and others who found that R47H carriers

had significantly more plaques compared with non-

carriers [57]. This changing role for TREM2 throughout

progression of amyloid pathology may also reflect a

dynamic role for myeloid cells themselves. As Hickman

and El Khoury [11] posit, these brain myeloid cells may

be protective early through clearance of Aβ, but detri-

mental later in disease progression when they enhance

the inflammatory response without being effective

phagocytes. Alternatively, it could reflect how TREM2

impacts the phenotype and abundance of distinct mye-

loid cell subsets, or perhaps other microenvironmental

cues which change TREM2 downstream signaling to

favor alternative pathways. While mouse models so far

have recapitulated several aspects of TREM2 localization

and function observed in human brain tissue, it is worth

noting that there is a caveat to studying TREM2 in mouse

models of AD with PSEN mutations since γ-secretase is

also important for TREM2 CTF cleavage [232]. It is not

clear whether changes in γ-secretase activity would be

likely to greatly alter TREM2 function in vivo, but this

should be a consideration when interpreting these studies.

Interestingly, there also appears to be a difference in

the mechanism by which TREM2 affects pathology early

and late in disease progression. Early, TREM2 deficiency

decreases the number of plaques, while later in disease

progression, increase in pathology is instead driven by

increased plaque size [287]. While it’s not clear exactly

how TREM2 could modulate Aβ proteostasis early in

disease progression to impact plaque number. TREM2

was shown to impact APP processing in a genome-wide

siRNA screen [301], though since it is not neuronally

expressed, this would likely occur through indirectly

altering neuronal phenotype. Conversely, later in disease,

the association of myeloid cells with plaques has been

proposed to limit plaque growth by forming an insulated

microenvironment or barrier [258, 302]. TREM2 defi-

ciency appears to impede the formation of this barrier,

and in doing so, cause a shift from compact to diffuse

plaques [258].

TREM2 modulates neuritic dystrophy in AD

TREM2 has also been studied in AD in the context of

modifying neuritic dystrophy. Several studies have found

increased neuritic dystrophy around plaques in TREM2

deficient mice [145, 258] and in human R47H carriers

with AD [57]. TREM2 overexpression in 7-month but

not 18-month-old APP/PS1 mice had increased levels of

synaptophysin, suggesting that enhanced TREM2

expression may protect against Aβ-driven synapse loss

[157, 300]. One possible mechanism for this lies in the

larger, more diffuse plaques with high soluble Aβ affinity

[258] observed in TREM2 deficient mice late in disease

progression [287]. The relative toxicity of soluble Aβ is

well documented, including its roles in blocking long-

term potentiation [303] and inducing tau hyperpho-

sphorylation and aggregation [304, 305]. Together, these

data suggest that functional TREM2 is necessary for

microglial clustering around amyloid plaques and may

thereby form a barrier around plaques which limits

neuritic dystrophy. However, not all data support a pro-

tective role of plaque-associated myeloid cells on AD

pathology. Microglia can serve as synaptotoxic agents in

AD through complement-mediated synaptic pruning

[298]. In this way, the loss of plaque-associated myeloid

cells due to TREM2 deficiency could be beneficial.

Others suggest that it may not be that more dystrophic

neurites are formed around plaques in TREM2 deficient

mice and R47H carriers, but that TREM2 deficient mye-

loid cells are not as effective at clearing them [215].

Further evidence will be required to assess the formation

and clearance of dystrophic neurites across stages of AD

in the context of TREM2 deficiency or TREM2 variants

to assess these possible mechanisms.

TREM2 affects tau hyperphosphorylation and aggregation

in AD

The impact of TREM2 on tau pathology in AD has also

been examined. The effect of TREM2 on phosphorylated

tau (p-tau) accumulation in dystrophic neurites in AD is

not clear, with some studies showing an increase [145,

222] and others showing a decrease [162] in hyperpho-

sphorylated tau markers surrounding plaques in TREM2

deficient amyloid mouse models of AD. These different

outcomes are likely related to disease progression

dependent effects on the amyloid pathology driving this

accumulation. Less work has been done in tau models of

AD, but overexpressing TREM2 under the CD11b pro-

moter in the P301S tau model of AD resulted in reduced

hyperphosphorylated tau levels, coordinate with a

decrease in activation of two of the known tau kinases,

cyclin dependent kinase 5 (CDK5) and GSK3β [295].

Opposite effects were observed in P301S mice in which

TREM2 was knocked down [216]. In humans, TREM2

protein levels in the temporal cortex of AD patients cor-

related with tangle score and paired helical filament

(PHF) levels [164] and sTREM2 levels in CSF are corre-

lated with CSF tau levels early in clinical AD progression

[202], suggesting an important relationship between

TREM2 and tau pathology in humans. R47H patients

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 20 of 33



had higher levels of CSF p-tau [53, 61], and a variant

located upstream of TREM2 was associated with

increased tau pathology in the brain [109]. Together,

these findings suggest that TREM2 variants may also

have an impact on tau-related pathologies in AD, though

the mechanisms governing this association are less clear.

TREM2 affects synaptic and neuronal loss in AD

Studies have also examined how TREM2 and its variants

impact neuronal and tissue loss and cognition in AD.

TREM2 protein levels in the temporal cortex of AD

patients were positively correlated with cleaved caspase

3 and negatively correlated with the presynaptic marker

SNAP25 [164], suggestive that loss of TREM2 could

impact synapse pathology. There was also a significant

reduction in neurons in layer V of the cortex in TREM2

deficient amyloid models of AD [222] and a substantial

rescue of neuronal loss when TREM2 was overexpressed

in amyloid [157] and tau [295] AD mouse models. These

changes in neuron number also correlated with a rescue

in behavioral deficits [157, 295]. Interestingly, however,

TREM2 expression levels on peripheral monocytes cor-

related with lower MMSE [128] and MoCA scores as

well as reduced gray matter volume [148]. R47H variant

carriers with AD also had reduced gray matter volume

[63] in the temporal cortex and hippocampus [61].

There was also a trend toward a reduction in hippocam-

pal volume [306] and significant decreases in other brain

regions [63] in R47H carriers even in the absence of

clinical AD. Though no changes in cognitive function

were reported in middle-aged R47H carriers [307], the

variant did correlate with cognitive deficits in older

adults with R47H variants [6]. This was also true in

healthy individuals heterozygous for NHD variants

[308]. These findings suggest that TREM2 variants may

have direct effects on neuronal loss, even in the absence

of AD pathology.

The effect of TREM2 on other NDD pathologies

Although not as extensively studied as in AD, the impact

of TREM2 on other NDD-related pathologies has also

been assessed. PLOSL patients have severe white matter

dystrophy [22] and oligodendrocytes that survive in

PLOSL patient white matter express markers of cell stress

[309] suggesting a role for TREM2 deficiency in white

matter degeneration. In cuprizone-mediated demyelination

models, TREM2 deficiency impaired recovery and in-

creased levels of axonal degeneration markers [288, 289].

In addition, injecting mice with TREM2 transduced mye-

loid cell precursors prevented EAE-induced demyelination

and ameliorated motor phenotypes [159]. In addition to af-

fecting oligodendrocyte survival and recovery following de-

myelination, TREM2 variants in PLOSL have also

elucidated other roles of TREM2 in NDDs. PLOSL patients

often experience seizures [22, 310], resulting in excito-

toxicity. One patient with a predicted loss-of-function

TREM2 PLOSL mutation had a reduction in many syn-

aptic components, including nine GABA receptor sub-

units, which could play a role in mediating this

enhanced excitability [28]. However, the mechanism

underlying this phenomenon is not well understood

and requires further study.

The effect of TREM2 on inflammation-related pathologies

TREM2 has also been shown to modify tissue loss and

behavior in several neuroinflammatory contexts. TREM2

deficiency reduced hippocampal volume loss and

improved some behavioral outcomes at chronic time

points following traumatic brain injury [98]. In contrast,

TREM2 deficient mice had increased infarct volume in

one MCAO model [160], though no change in another

study [193]. Treatment with a TREM2 agonist induced

pain behavior in mice in a DAP12-dependent manner

even in the absence of nerve injury [194]. Outside of the

brain, TREM2 deficiency results in increased body

weight and glucose and insulin intolerance in mice fed a

high fat diet [129]. TREM2 variant carriers may also

have increased risk of systemic infection [311] and

TREM2 deficiency is detrimental in the context of bac-

terial infection [149, 170, 180, 263]. Overall, in the brain

and the periphery, despite great advances in assessing

how TREM2 alters pathology, there is still no clear pic-

ture of how TREM2 mediates these diverse functional

impacts across inflammatory and disease contexts. This

will require a greater understanding of TREM2 expres-

sion, signaling and function and how these features

change in the context of pathology. While these studies

do point toward some common mechanisms by which

TREM2 might modify aspects of pathology relevant to

multiple NDDs, it is clear that the role of TREM2 in

NDDs is not simple.

The clinical relevance of TREM2
TREM2-related biomarkers

Since the identification of NDD-associated TREM2 vari-

ants, and the detection of sTREM2 in the CSF and

plasma of AD patients, there has been much excitement

about how this may translate into immune-related NDD

biomarkers and therapeutics. Elevated levels of sTREM2

were first detected in the CSF of patients with multiple

sclerosis (MS) and other inflammatory neurologic dis-

eases [312] and were found to be significantly elevated

in MS patients [313]. These findings served as an im-

petus to examine whether CSF sTREM2 might also be

changed in AD patients. Groups have reported eleva-

tions [314], reductions [225] or non-significant changes

[203] in CSF sTREM2 in AD cohorts not stratified by

disease stage (Table 1). However, as shown in Table 1,
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studies that did divide subjects by stage of disease progres-

sion, CSF sTREM2 levels were found to be significantly

higher in patients with AD-related mild cognitive impair-

ment [202, 315, 316] and mild dementia [202, 225]

compared to controls and AD cases [202]. Cross-sectional

studies in patients with dominantly inherited AD con-

firmed a significant increase in CSF sTREM2 starting

5 years before expected onset of clinical dementia, but

found no significant differences between AD patients and

controls beyond 5 years after symptom onset [12].

Together, these studies suggest a specific elevation in CSF

sTREM2 levels in the early symptomatic stages of AD.

Interestingly, sTREM2 was also found to be significantly

elevated specifically in early stages of ALS pathology

before returning to baseline at late stages of disease [317].

While it’s not clear whether these disease-stage

dependent effects are due to a common mechanism, it

will be interesting to see whether this pattern continues

to be consistent across NDDs.

The detection and reported changes with disease pro-

gression in CSF levels of sTREM2 have raised questions

of its origin and biological meaning in health and dis-

ease. In AD patients, CSF sTREM2 was not associated

with changes in CSF Aβ42 [86, 202, 314, 316] but posi-

tively correlated with CSF biomarkers total tau [86, 202]

and phosphorylated tau [202, 314, 316], including in

cross-sectional cohorts with dominantly inherited AD

[202]. Several groups have proposed that CSF sTREM2

levels may signify microglial activation in response to

AD-related pathology [86, 202, 313, 314, 316]. Evidence

of CSF sTREM2 positively correlating with glial protein

YKL-40 in CSF [314, 316], another proposed AD immune

biomarker, in addition to immunosuppressive agents caus-

ing a reduction in CSF sTREM2 levels [313] are consistent

with this theory. Changes in sTREM2 appear to be inde-

pendent of ApoE4 status [318–320]. Further work asses-

sing how sTREM2 generation changes with microglial

phenotype will be needed to definitively validate sTREM2

as an indicator of microglial activation. A recent clinical

study proposes a neuroprotective role for sTREM2,

reporting higher gray matter volume in areas susceptible

to AD pathology for mild cognitive impairment (MCI)

and AD patients with high CSF sTREM2 levels [316]

though this correlation was not found in all studies.

Higher levels of CSF sTREM2 at late stages of ALS also

correlated with longer survival [317]. These findings, in

combination with the positive correlation between CSF

tau and sTREM2, could indicate that elevated sTREM2

production occurs as a protective response to neurode-

generation, though there is no definitive consensus yet as

to the biological significance of sTREM2.

The current data on sTREM2 illustrate limitations for

its use as an NDD biomarker. Several NDDs including

MS, AD and FTD, are associated with elevated sTREM2

in CSF [86, 314], suggestive of a common innate

immune mechanism in these distinct pathologies. It has

also been suggested as a biomarker for welding fume

exposure [142] and, as discussed above, can be regulated

in many other inflammation-related contexts. This lack

of disease and context specificity in sTREM2 changes

raises concerns for its utility as a diagnostic tool for AD.

Recent data show CSF sTREM2 levels are altered differ-

entially throughout AD progression. These observations

raise questions about its utility as a diagnostic readout

for AD disease status in diverse neurologic cohorts,

though does suggest that sTREM2 levels could be help-

ful in identifying stage of AD in coordination with other

biomarkers [321]. Moreover, Heslegrave and colleagues

[314] acknowledged that sTREM2 levels in AD patients

and controls, while significantly different, substantially

overlap, thereby further limiting its diagnostic utility.

Transcriptome-based studies found dysregulation of sev-

eral innate immune genes in blood from AD patients

[320], which led others to assess whether TREM2

expression might also be changed in blood. While stud-

ies did find a correlation between TREM2 expression on

blood monocytes and an AD diagnosis [128], sTREM2

in plasma was shown to not correlate with CSF sTREM2

levels [86] and plasma samples yielded non-significant

differences in sTREM2 of AD and FTD patients com-

pared to healthy controls [86, 225]. While sTREM2

alone does have clear limitations as a biomarker, it may

have a potential application as part of a biomarker panel

to assess the immune response in AD and other neuro-

degenerative diseases.

TREM2-directed therapeutics

In addition to its potential as a biomarker, many have

suggested that TREM2-directed therapeutics may prove

to be a novel target for NDDs. There are several factors

to consider in developing TREM2 therapeutics. First,

while TREM2 variants confer as strong a risk for devel-

oping AD as one copy of the ApoE4 allele, the minor

allele frequency of TREM2 variants are substantially

lower, with less than 1% for TREM2 to approximately

20% for ApoE4 [7, 55]. Thus, though some have sug-

gested that therapeutics might want to restore WT

TREM2 function in these variant carriers as a potential

therapeutic, correcting TREM2 variants are not likely to

be a broadly applicable therapeutic approach. Rather,

studying TREM2 variants that confer risk for NDDs will

illuminate components of the immune response cen-

trally important in immune modulation of pathology,

and serve as a prerequisite to developing targeted

immune-directed therapeutics. So far, the field has iden-

tified potential changing roles for immune cell function

throughout progression of AD, and possibly identified a

key role for peripherally derived immune cells in AD
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pathology, which would greatly aid in therapeutically

targeting the immune cells relevant to AD pathology.

Common functions of TREM2 have been identified

across multiple NDDs which suggest therapeutic targets

could be relevant to multiple disease contexts. However, we

have not found a simple explanation for what TREM2 does

across cell types and contexts. Based on its disease progres-

sion dependent effects, it does not appear that simply

activating or inhibiting TREM2 would be beneficial even in

the context of AD. There may also be sex-dependent effects

of TREM2, as some [86] but not all [202] have shown

differences in sTREM2 levels in CSF between male and

female subjects. Likewise, a TREM2 variant was associated

with markers of systemic inflammation specifically in

women not men, and was hormone-independent [110].

With the lack of strong biomarkers to stage NDDs and the

variability in clinical progression among patients, it is not

likely that increasing or decreasing TREM2 will be the

universal solution to NDD pathologies.

Conclusion
Rather, understanding when, where and how TREM2 is

working is more likely to provide insights into immune

function that can be modulated throughout disease pro-

gression. However, the emphasis on understanding

TREM2 in NDDs began just 4 years ago and we still have

a long way to go to understand TREM2’s expression, sig-

naling, function and effects on these various pathologies.

It will also be essential to start to dissect how the diverse

array of TREM2 variants result in NDD risk. While this

understanding of TREM2 variants may not directly trans-

late into TREM2-directed biomarkers or therapeutics at

this time, the insight into how the immune system actively

participates in NDD pathology promises to provide many

avenues for a new class of immune-directed therapeutic

targets for NDDs.

Abbreviations

5hmc: 5-hydroxymethylcytosine; AD: Alzheimer’s disease; ADAM10: A
disintegrin and metalloproteinase domain-containing protein 10; Akt: Protein
kinase B; ALS: Amyotrophic lateral sclerosis; ApoA: Apolipoprotein A (1, 2);
APOE: Apolipoprotein E; APP: Amyloid precursor protein; Aβ: Amyloid-beta (40,
42); BAX: Bcl-2-associated X protein; C1q: First component of complement (C1),
q; CCL2: C-C motif chemokine ligand 2; CCR: C-C chemokine receptor type (2,
7); CD33: Siglec-3; CD68: Cluster of differentiation 68; CDK5: Cyclin dependent
kinase 5; CHO: Chinese hamster ovary; CJD: Creutzfeldt-Jakob disease;
CLU: Clusterin, or Apolipoprotein J; CNS: Central nervous system;
CpG: [5′-C-phosphate-G-3′]; CRP: C-reactive protein; CSF: Cerebrospinal
fluid; CSF1: Colony stimulating factor 1; CSF1R: Colony stimulating factor
1 receptor; CTF: C-terminal fragment; CXCR3: C-X-C motif chemokine receptor 3;
CXCL10: C-X-C motif chemokine ligand 10; DAP10: DNAX activation protein of
10 kDa; DAP12: DNAX activation protein of 12 kDa; DOCK: Dedicator of
cytokinesis (2, 8); DOK3: Downstream of kinase 3; EAE: Experimental autoimmune
encephalomyelitis; ER: Endoplasmic reticulum; ERK: Extracellular signal-regulated
kinase; Fc: Fragment crystallizable region; FCγR: Fc region of human IgG;
FTD: Frontotemporal dementia; FTLD: Frontotemporal lobar dementia;
GABA: Gamma-aminobutyric acid; GFAP: Glial fibrillary acid protein;
GSK3β: Glycogen synthase kinase 3 beta; GWAS: Genome wide association
studies; H3Kme: Histone H3 lysine methylation (2, 3); Hsp60: Heat shock
protein 60; HSVTK: Herpes simplex virus-1 thymidine kinase; ICD: Intracellular

domain; IFNγ: Interferon gamma; Ig: Immunoglobulin (G); IL1β: Interleukin 1
beta; IL: Interleukin (4, 6, 13); iNOS: Inducible nitric oxide synthase;
ITAM: Immunoreceptor tyrosine-based activation motif; ITIM: Immunoreceptor
tyrosine-based inhibitory motif; LAB: Linker for activation of B cells;
LDL: Low-density lipoprotein; LOAD: Late onset Alzheimer’s disease;
LPS: Lipopolysaccharides; MAF: Minor allele frequency; MAPK: Mitogen-activated
protein kinase; MCAO: Middle cerebral artery occlusion; MCI: Mild cognitive
impairment; MCP1: Monocyte chemoattractant protein-1; MCSF: Macrophage
colony stimulating factor; MDL-1: Myeloid DAP12-associating lectin-1;
MMP: Matrix metallopeptidase (2, 9); MMSE: Mini-Mental State Examination;
MS: Multiple sclerosis; MS4A: Membrane-spanning 4-domain family, subfamily
A; N2A: Neuro 2A; NDDs: Neurodegenerative diseases; NFAT: Nuclear factor of
activated T-cells; NfκB: Nuclear factor kappa-light-chain enhancer of activated
B cells; NHD: Nasu-Hakola disease; Nkp44: Natural cytotoxicity triggering
receptor 2; NO: Nitric oxide; P2RY12: Purinergic receptor P2Y, G-protein
coupled, 12; PBMC: Peripheral blood mononuclear cell; PD: Parkinson’s disease;
PGRN: Progranulin; PHF: Paired helical filament; PI3K: Phosphoinositide 3-kinase;
PKC: Protein kinase C; PLCγ: Phospholipase C gamma; PLOSL: Polycystic
lipomembraneous osteodysplasia with sclerosing leukoencephalopathy;
PSEN: Presenilin; p-tau: Phosphorylated tau; Rac: Related to A and C protein
kinases; RANKL: Receptor activator of nuclear factor kappa-B ligand; ROS: Reactive
oxygen species; RXR: Retinoid X receptor; SAMP8: Senescence accelerated
mouse-prone 8; SHP: SH-2 domain-containing protein phosphatase; SHIP1: SH-2
domain-containing inositol 5′ polyphosphatase 1; SIRPβ: Signal-regulatory protein
beta; SNAP25: Synaptosomal-associated protein 25; SNPs: Single nucleotide
polymorphisms; sTREM: Soluble triggering receptor expressed on myeloid cells
(1, 2); Syk: Spleen tyrosine kinase; TLR: Toll-like receptor; TM: Transmembrane;
TNFα: Tumor necrosis factor alpha; TREM: Triggering receptor expressed on
myeloid cells (1, 2, 3); TREML: Triggering receptor expressed on myeloid cells-like
transcript (1, 2, 3, 4, 6); TUNEL: Terminal deoxynucleotidyl transferase dUTP nick
end labeling; UTR: Untranslated region; Vav: Vav guanine nucleotide exchange
factor; Wnt: Wingless-type MMTV integration site family; WT: Wild-type; YKL-
40: Chitinase-3-like protein 1

Acknowledgements

We thank Erin G Reed-Geaghan for providing her insight and critical feedback.
Her contributions substantially improved the conceptual organization and
clarity of the manuscript.

Funding

This work was supported by the Alzheimer’s Association (BFG-15-364,590 to
GEL), NIA grant RF1 AG051495 (to GEL), NIA grant R01 AG050597 (to GEL),
NIA National Research Service Award F31 AG048704 (to TRJ).

Availability of data and materials

Not applicable.

Authors’ contributions

TRJ and VEV wrote the manuscript. GEL provided critical feedback.
All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 31 May 2017 Accepted: 20 July 2017

References

1. Guerreiro R, Hardy J. Genetics of Alzheimer’s Disease. Neurotherapeutics.
2014;11:732–7.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 25 of 33



2. Grupe A, Abraham R, Li Y, Rowland C, Hollingworth P, Morgan A, Jehu L,
Segurado R, Stone D, Schadt E, et al. Evidence for novel susceptibility genes
for late-onset Alzheimer’s disease from a genome-wide association study of
putative functional variants. Hum Mol Genet. 2007;16:865–73.

3. Karch CM, Goate AM. Alzheimer’s Disease Risk Genes and Mechanisms of
Disease Pathogenesis. Biol Psychiatry. 2015;77:43–51.

4. Wes PD, Sayed FA, Bard F, Gan L. Targeting Microglia for the Treatment of
Alzheimer’s Disease. Glia. 2016;64:1710–32.

5. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E,
Cruchaga C, Sassi C, Kauwe JSK, Lupton MK, et al. TREM2 Variants in
Alzheimer’s Disease. N Engl J Med. 2013;368:117–27.

6. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J,
Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al. Variant of TREM2 Associated
with the Risk of Alzheimer’s Disease. N Engl J Med. 2013;368:107–16.

7. Cuyvers E, Sleegers K. Genetic variations underlying Alzheimer’s disease:
evidence from genome-wide association studies and beyond. Lancet
Neurol. 2016;15:857–68.

8. Neumann H, Daly MJ. Variant TREM2 as Risk Factor for Alzheimer’s Disease.
N Engl J Med. 2013;368:182–4.

9. Neumann H, Takahashi K. Essential role of the microglial triggering receptor
expressed on myeloid cells-2 (TREM2) for central nervous tissue immune
homeostasis. J Neuroimmunol. 2007;184:92–9.

10. Ransohoff RM. How neuroinflammation contributes to neurodegeneration.
Science. 2016;353:777–83.

11. Hickman SE, El Khoury J. TREM2 and the neuroimmunology of Alzheimer’s
disease. Biochem Pharmacol. 2014;88:495–8.

12. Suarez-Calvet M, Caballero MAA, Kleinberger G, Bateman RJ, Fagan AM,
Morris JC, Levin J, Danek A, Ewers M, Haass C, Dominantly Inherited
Alzheimer N. Early changes in CSF sTREM2 in dominantly inherited
Alzheimer’s disease occur after amyloid deposition and neuronal injury. Sci
Transl Med. 2016;8:178.

13. Zheng H, Jia L, Liu C-C, Li Zhong ZR, Yang L, Chen X-F, Fryer JD, Wang X,
Zhang Y-w, Xu H, Bu G. TREM2 promotes microglial survival by activating
Wnt/β-catenin pathway. J Neurosci. 2017;37(7):1772–84.

14. Zhong L, Chen X-F, Wang T, Wang Z, Liao C, Wang Z, Huang R, Wang D, Li
X, Wu L, et al. Soluble TREM2 induces inflammatory responses and
enhances microglial survival. J Exp Med. 2017;214(3):597–607.

15. Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P,
Rogaeva E. Mutation analysis of the MS4A and TREM gene clusters in a
case–control Alzheimer’s disease data set. Neurobiol Aging. 2016;42:217.

16. Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee
J, Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N, et al.
Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s
disease and frontotemporal dementia. Neurobiol Aging. 2014;35(3):726.

17. Wang X, Lopez OL, Sweet RA, Becker JT, DeKosky ST, Barmada MM, Demirci
FY, Kamboh MI. Genetic Determinants of Disease Progression in Alzheimer’s
Disease. J Alzheimer Dis. 2015;43:649–55.

18. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R,
Bianchin M, Bird T, Miranda R, Salmaggi A, et al. Mutations in two genes
encoding different subunits of a receptor signaling complex result in an
identical disease phenotype. Am J Hum Genet. 2002;71:656–62.

19. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Hatia M,
Konttinen YT, Peltonen L. DAP12/TREM2 deficiency results in impaired
osteoclast differentiation and osteoporotic features. J Exp Med. 2003;198:669–75.

20. Nasu T, Tsukahara Y, Terayama K. A lipid metabolic disease-“membranous
lipodystrophy”-an autopsy case demonstrating numerous peculiar
membrane-structures composed of compound lipid in bone and bone
marrow and various adipose tissues. Acta Pathol Jpn. 1973;23:539–58.

21. Hakola HP. Neuropsychiatric and genetic aspects of a new hereditary
disease characterized by progressive dementia and lipomembranous
polycystic osteodysplasia. Acta Psychiatr Scand Suppl. 1972;232:1–173.

22. Kaneko M, Sano K, Nakayama J, Amano N. Nasu-Hakola disease: The first
case reported by Nasu and review. Neuropathology. 2010;30:463–70.

23. Sasaki A, Kakita A, Yoshida K, Konno T, Ikeuchi T, Hayashi S, Matsuo H,
Shioda K. Variable expression of microglial DAP12 and TREM2 genes in
Nasu-Hakola disease. Neurogenetics. 2015;16:265–76.

24. Bianchin MM, Capella HM, Chaves DL, Steindel M, Grisard EC, Ganev GG, da
Silva JP, Neto ES, Poffo MA, Walz R, et al. Nasu-Hakola disease (polycystic
lipomembranous osteodysplasia with sclerosing leukoencephalopathy -
PLOSL): A dementia associated with bone cystic lesions. From clinical to
genetic and molecular aspects. Cell Mol Neurobiol. 2004;24:1–24.

25. Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M,
Toyoshima I, Yoshioka T, Enomoto K, et al. Immunohistochemical
characterization of microglia in Nasu-Hakola disease brains. Neuropathology.
2011;31:363–75.

26. Bock V, Botturi A, Gaviani P, Lamperti E, Maccagnano C, Piccio L, Silvani A,
Salmaggi A. Polycystic Lipomembranous Osteodysplasia with Sclerosing
Leukoencephalopathy (PLOSL): A new report of an Italian woman and
review of the literature. J Neurol Sci. 2013;326:115–9.

27. Yamazaki K, Yoshino Y, Mori Y, Ochi S, Yoshida T, Lshimaru T, Ueno S. A
Case of Nasu-Hakola Disease without Fractures or Consanguinity Diagnosed
Using Exome Sequencing and Treated with Sodium Valproate. Clin
Psychopharmacol Neurosci. 2015;13:324–6.

28. Numasawa Y, Yamaura C, Ishihara S, Shintani S, Yamazaki M, Tabunoki H,
Satoh JI. Nasu-Hakola disease with a splicing mutation of TREM2 in a
Japanese family. Eur J Neurol. 2011;18:1179–83.

29. Fenoglio C, Galimberti D, Piccio L, Scalabrini D, Panina P, Buonsanti C,
Venturelli E, Lovati C, Forloni G, Mariani C, et al. Absence of TREM2
polymorphisms in patients with Alzheimer’s disease and Frontotemporal
Lobar Degeneration. Neurosci Lett. 2007;411:133–7.

30. Klunemann HH, Ridha H, Magy L, Wherrett JR, Hemelsoet DM, Keen RW, De
Bleecker JL, Rossor MN, Marienhagen J, Klein HE, et al. The genetic causes of
basal ganglia calcification, dementia, and bone cysts DAP12 and TREM2.
Neurology. 2005;64:1502–7.

31. Soragna D, Papi L, Ratti MT, Sestini R, Tupler R, Montalbetti L. An Italian family
affected by Nasu-Hakola disease with a novel genetic mutation in the TREM2
gene(vol 74, pg 825, 2003). J Neurol Neurosurg Psychiatry. 2003;74:1165.

32. Satoh J, Yanaizu M, Tosaki Y, Sakai K, Kino Y. Targeted sequencing approach
to identify genetic mutations in Nasu-Hakola disease. Intractable Rare Dis
Res. 2016;5:269–74.

33. Dardiotis E, Siokas V, Pantazi E, Dardioti M, Rikos D, Xiromerisiou G, Markou
A, Papadimitriou D, Speletas M, Hadjigeorgiou GM. A novel mutation in
TREM2 gene causing Nasu-Hakola disease and review of the literature.
Neurobiol Aging. 2017;53:194. e113-194.e122

34. Lattante S, Le Ber I, Camuzat A, Dayan S, Godard C, Van Bortel I, De
Septenville A, Ciura S, Brice A, Kabashi E, French Res Network FF-A. TREM2
mutations are rare in a French cohort of patients with frontotemporal
dementia. Neurobiol Aging. 2013;34(10):2443.

35. Le Ber I, De Septenville A, Guerreiro R, Bras J, Camuzat A, Caroppo P,
Lattante S, Couarch P, Kabashi E, Bouya-Ahmed K, et al. Homozygous TREM2
mutation in a family with atypical frontotemporal dementia. Neurobiol
Aging. 2014;35(10):2419.

36. Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N, Dursun
B, Bilgic B, Hanagasi H, Gurvit H, et al. Using Exome Sequencing to Reveal
Mutations in TREM2 Presenting as a Frontotemporal Dementia-like
Syndrome Without Bone Involvement. JAMA Neurol. 2013;70:78–84.

37. Giraldo M, Lopera F, Siniard AL, Corneveaux JJ, Schrauwen I, Carvajal J,
Munoz C, Ramirez-Restrepo M, Gaiteri C, Myers AJ, et al. Variants in
triggering receptor expressed on myeloid cells 2 are associated with both
behavioral variant frontotemporal lobar degeneration and Alzheimer’s
disease. Neurobiol Aging. 2013;34(8):2077.

38. Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, Fenoglio
C, Piaceri I, Archetti S, Bonvicini C, et al. Heterozygous TREM2 mutations in
frontotemporal dementia. Neurobiol Aging. 2014;35(4):934.

39. Thelen M, Razquin C, Hernandez I, Gorostidi A, Sanchez-Valle R, Ortega-
Cubero S, Wolfsgruber S, Drichel D, Fliessbach K, Duenkel T, et al.
Investigation of the role of rare TREM2 variants in frontotemporal dementia
subtypes. Neurobiol Aging. 2014;35(11):2657.

40. Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ,
Lomen-Hoerth C, Kertesz A, Bigio EH, et al. TREM2 in neurodegeneration:
evidence for association of the p.R47H variant with frontotemporal
dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.

41. Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T,
Druyeh R, Mahoney CJ, Rohrer JD, et al. R47H TREM2 variant increases risk
of typical early-onset Alzheimer’s disease but not of prion or frontotemporal
dementia. Alzheimers Dement. 2014;10:602–8.

42. Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM, Wang LS,
Liu T, Lassen CF, Meissner E, et al. The role of TREM2 R47H as a risk factor for
Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral
sclerosis, and Parkinson’s disease. Alzheimers Dement. 2015;11:1407–16.

43. Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and
genetics in frontotemporal dementia. Nat Rev Neurol. 2016;12:175–85.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 26 of 33



44. Bird TD, Koerker RM, Leaird BJ, Vlcek BW, Thorning DR. Lipomembranous
polycystic osteodysplasia (brain, bone, and fat disease): a genetic cause of
presenile dementia. Neurology. 1983;33:81–6.

45. Kim JH, Song P, Lim H, Lee JH, Lee JH, Park SA, Alzheimer’s Dis
Neuroimaging I. Gene-Based Rare Allele Analysis Identified a Risk Gene of
Alzheimer’s Disease. PLoS One. 2014;9(10):e107983.

46. Hooli BV, Parrado AR, Mullin K, Yip WK, Liu T, Roehr JT, Qiao DD, Jessen
F, Peters O, Becker T, et al. The rare TREM2 R47H variant exerts only a
modest effect on Alzheimer disease risk. Neurology. 2014;83:1353–8.

47. Bertram L, Parrado AR, Tanzi RE. TREM2 and neurodegenerative disease.
N Engl J Med. 2013;369:1565.

48. Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, Karydas
A, Miller ZA, Miller BL, Coppola G, Yokoyama JS. Rare TREM2 variants
associated with Alzheimer’s disease display reduced cell surface expression.
Acta Neuropathol Commun. 2016:4–98.

49. Rosenthal SL, Bamne MN, Wang XB, Berman S, Snitz BE, Klunk WE, Sweet
RA, Demirci FY, Lopez OL, Kamboh MI. More evidence for association of a
rare TREM2 mutation (R47H) with Alzheimer’s disease risk. Neurobiol Aging.
2015;36(8):2443.

50. Finelli D, Rollinson S, Harris J, Jones M, Richardson A, Gerhard A, Snowden
J, Mann D, Pickering-Brown S. TREM2 analysis and increased risk of
Alzheimer’s disease. Neurobiol Aging. 2015;36(1):546.

51. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu
S, Harari O, Cai YF, et al. Coding variants in TREM2 increase risk for
Alzheimer’s disease. Hum Mol Genet. 2014;23:5838–46.

52. Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga
C. TREM2 is associated with the risk of Alzheimer’s disease in Spanish
population. Neurobiol Aging. 2013;34(6):1711.

53. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert
JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against
Alzheimer’s disease. Neurobiol Aging. 2014;35(6):1510.

54. Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, de Munain
AL, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A, et al. Assessing the
role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and
frontotemporal dementia. Neurobiol Aging. 2014;35(2):444.

55. Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M,
Ebbert MT, Norton MC, Tschanz JT, Munger RG, et al. Assessment of TREM2
rs75932628 association with Alzheimer’s disease in a population-based
sample: the Cache County Study. Neurobiol Aging. 2013;34:2889.e2811–83.

56. Yu JT, Jiang T, Wang YL, Wang HF, Zhang W, Hu N, Tan L, Sun L, Tan MS,
Zhu XC, Tan L. Triggering receptor expressed on myeloid cells 2 variant is
rare in late-onset Alzheimer’s disease in Han Chinese individuals. Neurobiol
Aging. 2014;35(4):937.

57. Roussos P, Katsel P, Fam P, Tan WL, Purohit DP, Haroutunian V. The
triggering receptor expressed on myeloid cells 2 (TREM2) is associated with
enhanced inflammation, neuropathological lesions and increased risk for
Alzheimer’s dementia. Alzheimers Dement. 2015;11:1163–70.

58. Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC, Lu H, Wang HF, Zhang
YD, Yu JT. A rare coding variant in TREM2 increases risk for Alzheimer’s
disease in Han Chinese. Neurobiol Aging. 2016;42:217.

59. Mehrjoo Z, Najmabadi A, Abedini SS, Mohseni M, Kamali K, Najmabadi H,
Khorshid HRK. Association Study of the TREM2 Gene and Identification of a
Novel Variant in Exon 2 in Iranian Patients with Late-Onset Alzheimer’s
Disease. Med Princ Pract. 2015;24:351–4.

60. Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, Guo XD, Rumbaugh
M, Matsushita M, Girirajan S, Dorschner MO, et al. R47H Variant of TREM2
Associated With Alzheimer Disease in a Large Late-Onset Family Clinical,
Genetic, and Neuropathological Study. JAMA Neurol. 2015;72:920–7.

61. Rajagopalan P, Hibar DP, Thompson PM. TREM2 and neurodegenerative
disease. N Engl J Med. 2013;369:1565–7.

62. Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA, Sperling RA, Chibnik
LB, Bradshaw EM, Schneider JA, et al. A TREM1 Variant Alters the Accumulation
of Alzheimer-Related Amyloid Pathology. Ann Neurol. 2015;77:469–77.

63. Luis EO, Ortega-Cubero S, Lamet I, Razquin C, Cruchaga C, Benitez BA, Lorenzo
E, Irigoyen J, Pastor MA, Pastor P, Adni. Frontobasal gray matter loss is
associated with the TREM2 p.R47H variant. Neurobiol Aging. 2014;35:2681–90.

64. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH,
Ravits J, Simpson E, Appel SH, et al. TREM2 Variant p.R47H as a Risk Factor for
Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurol. 2014;71:449–53.

65. Benitez BA, Cruchaga CC. TREM2 and Parkinson’s Disease. N Engl J Med.
2013;369:1567–8.

66. Liu GY, Liu YQ, Jiang QH, Jiang YS, Feng RN, Zhang LC, Chen ZG, Li KS, Liu
JF. Convergent Genetic and Expression Datasets Highlight TREM2 in
Parkinson’s Disease Susceptibility. Mol Neurobiol. 2016;53:4931–8.

67. Mengel D, Thelen M, Balzer-Geldsetzer M, Soeling C, Bach JP, Schaeffer E,
Herold C, Becker T, Liepelt I, Becker J, et al. TREM2 rare variant p.R47H is not
associated with Parkinson’s disease. Parkinsonism Relat Disord. 2016;23:109–11.

68. Carrasquillo MM, Barber I, Lincoln SJ, Murray ME, Camsari GB, Khan QU,
Nguyen T, Ma L, Bisceglio GD, Crook JE, et al. Evaluating pathogenic dementia
variants in posterior cortical atrophy. Neurobiol Aging. 2016;37:38–44.

69. Chen YP, Chen XP, Guo XY, Song W, Cao B, Wei QQ, Ou RW, Zhao
B, Shang HF. Assessment of TREM2 rs75932628 association with
Parkinson’s disease and multiple system atrophy in a Chinese
population. Neurol Sci. 2015;36:1903–6.

70. Ortega-Cubero S, Lorenzo-Betancor O, Lorenzo E, Agundez JAG, Jimenez-
Jimenez FJ, Ross OA, Wurster I, Mielke C, Lin JJ, Coria F, et al. TREM2 R47H
variant and risk of essential tremor: A cross-sectional international
multicenter study. Parkinsonism Relat Disord. 2015;21:306–9.

71. Sulonen AM, Kallio SP, Ellonen P, Suvela M, Elovaara I, Koivisto K, Pirttila T,
Reunanen M, Tienari PJ, Palotie A, et al. No evidence for shared etiology in two
demyelinative disorders, MS and PLOSL. J Neuroimmunol. 2009;206:86–90.

72. Chee KY, Gaillard F, Velakoulis D, Ang CL, Chin LK, Ariffin R: A case of
TREM2 mutation presenting with features of progressive non-fluent
aphasia and without bone involvement. Aust N Z J Psychiatr. 2017;
doi:10.1177/0004867417707821.

73. Walton RL, Soto-Ortolaza AI, Murray ME, Lorenzo-Betancor O, Ogaki K,
Heckman MG, Rayaprolu S, Rademakers R, Ertekin-Taner N, Uitti RJ, et al.
TREM2 p.R47H substitution is not associated with dementia with Lewy
bodies. Neurol Genet. 2016;2(4):e85.

74. Cheng J, Guo XF, Zhang T, Zhong L, Bu GJ, Chen XF. TREMs in Alzheimer’s
disease: Genetic and clinical investigations. Clin Chim Acta. 2016;463:88–95.

75. Tan T, Song Z, Yuan LM, Xiong W, Deng X, Ni B, Chen Y, Deng H. Genetic
analysis of TREM2 variants in Chinese Han patients with sporadic Parkinson’s
disease. Neurosci Lett. 2016;612:189–92.

76. Li ZM, Zhong L, Gu L, Huang WQ, Shi XZ, Zhang XL, An XK, Lin Q, Tzeng
CM. Association study of TREM2 polymorphism rs75932628 with
leucoaraiosis or Parkinson’s disease in the Han Chinese population. BMJ
Open. 2016;6(1):e009499.

77. Chen XP, Chen YP, Wei QQ, Guo XY, Cao B, Ou RW, Zhao B, Shang HF.
Assessment of TREM2 rs75932628 association with amyotrophic lateral
sclerosis in a Chinese population. J Neurol Sci. 2015;355:193–5.

78. Feng SJ, Nie K, Gan R, Huang J, Zhang YW, Wang LM, Zhao JH, Tang HM,
Gao L, Zhu RM, et al. Triggering receptor expressed on myeloid cells 2
variants are rare in Parkinson’s disease in a Han Chinese cohort. Neurobiol
Aging. 2014;35(7):1780.

79. Ma JF, Zhou Y, Xu J, Liu XH, Wang Y, Deng YL, Wang G, Xu W, Ren RJ, Liu XY,
et al. Association study of TREM2 polymorphism rs75932628 with late-onset
Alzheimer’s disease in Chinese Han population. Neurol Res. 2014;36:894–6.

80. Jiao B, Liu XY, Tang BS, Hou LH, Zhou L, Zhang FF, Zhou YF, Guo JF, Yan XX,
Shen L. Investigation of TREM2, PLD3, and UNC5C variants in patients with
Alzheimer’s disease from mainland China. Neurobiol Aging. 2014;35(10):2422.

81. Miyashita A, Wen YN, Kitamura N, Matsubara E, Kawarabayashi T, Shoji M,
Tomita N, Furukawa K, Arai H, Asada T, et al. Lack of Genetic Association
Between TREM2 and Late-Onset Alzheimer’s Disease in a Japanese
Population. J Alzheimer Dis. 2014;41:1031–8.

82. Huang M, Wang DJ, Xu ZJ, Xu YS, Xu XP, Ma YF, Xia Z. Lack of Genetic
Association Between TREM2 and Alzheimer’s Disease in East Asian
Population: A Systematic Review and Meta-Analysis. Am J Alzheimers Dis
Other Demen. 2015;30:541–6.

83. Jin SC, Carrasquillo MM, Benitez BA, Skorupa T, Carrell D, Patel D, Lincoln S,
Krishnan S, Kachadoorian M, Reitz C, et al. TREM2 is associated with
increased risk for Alzheimer’s disease in African Americans. Mol
Neurodegener. 2015;10:19.

84. Singaraja RR. TREM2: a new risk factor for Alzheimer’s disease. Clin Genet.
2013;83:525–U514.

85. Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR, Cuerdon NE,
Ryan KJ, Johnson KA, Schneider JA, et al. CD33 modulates TREM2:
convergence of Alzheimer loci. Nat Neurosci. 2015;18:1556–8.

86. Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM,
Fenoglio C, Galimberti D, Borroni B, Cruchaga C. Cerebrospinal fluid soluble
TREM2 is higher in Alzheimer disease and associated with mutation status.
Acta Neuropathol. 2016;131:925–33.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 27 of 33

http://dx.doi.org/10.1177/0004867417707821


87. Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T,
Strittmatter SM. Opposing effects of progranulin deficiency on amyloid and
tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;48:222.

88. Pottier C, Ravenscroft TA, Brown PH, Finch NA, Baker M, Parsons M, Asmann
YW, Ren YX, Christopher E, Levitch D, et al. TYROBP genetic variants in early-
onset Alzheimer’s disease. Neurobiol Aging. 2016;48:222.e9–e15.

89. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA,
Zhang C, Xie T, Tran L, Dobrin R, et al. Integrated systems approach
identifies genetic nodes and networks in late-onset Alzheimer’s disease.
Cell. 2013;153:707–20.

90. Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A,
Koito H, Ujike-Asai A, Nakamura A, et al. Osteopetrosis and thalamic
hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin
Invest. 2003;111:323–32.

91. Haure-Mirande J, Audrain M, Fanutza T, Ho Kim S, Klein WL, Glabe C,
Readhead B, Dudley JT, Blitzer RD, Wang M, et al. Deficiency of TYROBP, an
adaptor protein for TREM2 and C3 receptors, is neuroprotective in a mouse
model of early Alzheimer’s pathology. Acta Neuropathol. 2017; doi:10.1007/
s00401-017-1737-3.

92. Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N, Soto-Ortolaza A,
Lash J, Wider C, Wojtas A, DeJesus-Hernandez M, et al. Mutations in the colony
stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse
leukoencephalopathy with spheroids. Nat Genet. 2011;44:200–5.

93. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C,
DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al. Meta-analysis of
74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s
disease. Nat Genet. 2013;45:1452–8.

94. Yeh FL, Wang YY, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to
Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates
Uptake of Amyloid-Beta by Microglia. Neuron. 2016;91:328–40.

95. Atagi Y, Liu CC, Painter MM, Chen XF, Verbeeck C, Zheng H, Li X,
Rademakers R, Kang SS, Xu H, et al. Apolipoprotein E Is a Ligand for
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). J Biol Chem.
2015;290:26043–50.

96. Bailey CC, DeVaux LB, Farzan M. The Triggering Receptor Expressed on
Myeloid Cells 2 Binds Apolipoprotein E. J Biol Chem. 2015;290:26033–42.

97. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s
disease. Neuron. 2009;63:287–303.

98. Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT. Triggering
Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage
Distribution and Improves Recovery after Traumatic Brain Injury. J
Neurotrauma. 2017;34:423.

99. Hernandez A, Donovan V, Grinberg YY, Obenaus A, Carson MJ. Differential
detection of impact site versus rotational site injury by magnetic resonance
imaging and microglial morphology in an unrestrained mild closed head
injury model. J Neurochem. 2016;136:18–28.

100. Graham LC, Harder JM, Soto I, de Vries WN, John SWM, Howell GR. Chronic
consumption of a western diet induces robust glial activation in aging mice
and in a mouse model of Alzheimer’s disease. Sci Report. 2016;6:21568.

101. Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J, Levine AP,
Hardy J, Pocock JM, Guerreiro R, et al. Insights into TREM2 biology by
network analysis of human brain gene expression data. Neurobiol Aging.
2013;34:2699–714.

102. Allcock RJN, Barrow AD, Forbes S, Beck S, Trowsdale J. The human TREM
gene cluster at 6p21.1 encodes both activating and inhibitory single IgV
domain receptors and includes NKp44. Eur J Immunol. 2003;33:567–77.

103. Ford JW, McVicar DW. TREM and TREM-like receptors in inflammation and
disease. Curr Opin Immunol. 2009;21:38–46.

104. Colonna M. Trems in the immune system and beyond. Nat Rev Immunol.
2003;3:445–53.

105. Daniel B, Nagy G, Hah N, Horvath A, Czimmerer Z, Poliska S, Gyuris T, Keirsse
J, Gysemans C, Van Ginderachter JA, et al. The active enhancer network
operated by liganded RXR supports angiogenic activity in macrophages.
Genes Dev. 2014;28:1562–77.

106. Zheng HH, Liu CC, Atagi Y, Chen XF, Jia L, Yang LY, He WC, Zhang XL, Kang
SS, Rosenberry TL, et al. Opposing roles of the triggering receptor expressed
on myeloid cells 2 and triggering receptor expressed on myeloid cells-like
transcript 2 in microglia activation. Neurobiol Aging. 2016;42:132–41.

107. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert
JC, Gibbs JR, Bras J, et al. Missense variant in TREML2 protects against
Alzheimer’s disease. Neurobiol Aging. 2014;35:1510.

108. Carrasquillo MM, Allen M, Burgess JD, Wang X, Strickland SL, Aryal S, Siuda J,
Kachadoorian ML, Medway C, Younkin CS, et al. A candidate regulatory
variant at the TREM gene cluster associates with decreased Alzheimer’s
disease risk and increased TREML1 and TREM2 brain gene expression.
Alzheimers Dement. 2016;13(6):663–73.

109. Replogle JM, De Jager PL. No Association of TREM1 rs6910730 and TREM2
rs7759295 With Alzheimer Disease Reply. Ann Neurol. 2015;78:659–60.

110. Reiner AP, Beleza S, Franceschini N, Auer PL, Robinson JG, Kooperberg C,
Peters U, Tang H. Genome-wide Association and Population Genetic
Analysis of C-Reactive Protein in African American and Hispanic American
Women. Am J Hum Genet. 2012;91:502–12.

111. Satoh J, Asahina N, Kitano S, Kino Y. A Comprehensive Profile of ChIP-Seq-
Based PU.1/Spi1 Target Genes in Microglia. Gene Regul Syst Bio. 2014;8:127–39.

112. Lefterov I, Schug J, Mounier A, Nam KN, Fitz NF, Koldamova R. RNA-
sequencing reveals transcriptional up-regulation of Trem2 in response to
bexarotene treatment. Neurobiol Dis. 2015;82:132–40.

113. Alexandrov PN, Zhao YH, Jones BM, Bhattacharjee S, Lukiw WJ. Expression
of the phagocytosis-essential protein TREM2 is down-regulated by an
aluminum-induced miRNA-34a in a murine microglial cell line. J Inorg
Biochem. 2013;128:267–9.

114. Owens R, Grabert K, Davies CL, Alfieri A, Antel JP, Healy LM, McColl BW.
Divergent Neuroinflammatory Regulation of Microglial TREM Expression and
Involvement of NF-κB. Front Cell Neurosci. 2017;11:56.

115. Long CL, Berry WL, Zhao Y, Sun XH, Humphrey MB. E Proteins Regulate
Osteoclast Maturation and Survival. J Bone Miner Res. 2012;27:2476–89.

116. Zawawi MSF, Dharmapatni A, Cantley MD, McHugh KP, Haynes DR, Crotti
TN. Regulation of ITAM adaptor molecules and their receptors by inhibition
of calcineurin-NFAT signalling during late stage osteoclast differentiation.
Biochem Biophys Res Commun. 2012;427:404–9.

117. Bhattacharjee S, Zhao Y, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-
Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor
and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS
One. 2016;11:e0150211.

118. Bhattacharjee S, Zhao YH, Lukiw WJ. Deficits in the miRNA-34a-regulated
endogenous TREM2 phagocytosis sensor-receptor in Alzheimer’s disease
(AD); an update. Front Aging Neurosci. 2014;6:116.

119. Zhao YH, Bhattacharjee S, Jones BM, Dua P, Alexandrov PN, Hill JM, Lukiw
WJ. Regulation of TREM2 expression by an NF-kappa B-sensitive miRNA-34a.
Neuroreport. 2013;24:318–23.

120. Zhao YH, Hill JM, Bhattacharjee S, Percy ME, Pogue AID, Lukiw WJ.
Aluminum-induced amyloidogenesis and impairment in the clearance of
amyloid peptides from the central nervous system in Alzheimer’s disease.
Front Neurol. 2014;5:167.

121. Zhao YH, Jaber V, Lukiw WJ. Over-Expressed Pathogenic miRNAs in
Alzheimer’s Disease (AD) and Prion Disease (PrD) Drive Deficits in TREM2-
Mediated A beta 42 Peptide Clearance. Front Aging Neurosci. 2016;8:140.

122. Celarain N, de Gordoa JSR, Zelaya MV, Roldan M, Larumbe R, Pulido L,
Echavarri C, Mendioroz M. TREM2 upregulation correlates with 5-
hydroxymethycytosine enrichment in Alzheimer’s disease hippocampus.
Clin Epigenetics. 2016;8:37.

123. Smith AR, Smith RG, Condliffe D, Hannon E, Schalkwyk L, Mill J, Lunnon K.
Increased DNA methylation near TREM2 is consistently seen in the superior
temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging. 2016;47:35–40.

124. Ozaki Y, Yoshino Y, Yamazaki K, Sao T, Mori Y, Ochi S, Yoshida T, Mori T, Iga JI,
Ueno SI. DNA methylation changes at TREM2 intron 1 and TREM2 mRNA
expression in patients with Alzheimer’s disease. J Psychiatr Res. 2017;92:74–80.

125. Fujimoto S, Goda T, Mochizuki K. In vivo evidence of enhanced di-
methylation of histone H3 K4 on upregulated genes in adipose tissue of
diabetic db/db mice. Biochem Biophys Res Commun. 2011;404:223–7.

126. Tserel L, Kolde R, Rebane A, Kisand K, Org T, Peterson H, Vilo J, Peterson P.
Genome-wide promoter analysis of histone modifications in human
monocyte-derived antigen presenting cells. BMC Genomics. 2010;11:642.

127. Ji JD, Park-Min KH, Shen Z, Fajardo RJ, Goldring SR, McHugh KP, Ivashkiv LB.
Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-
gamma in human osteoclast precursors. J Immunol. 2009;183:7223–33.

128. Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T, Tan L. Increased
Expression of TREM2 in Peripheral Blood of Alzheimer’s Disease Patients.
J Alzheimer Dis. 2014;38:497–501.

129. Park M, Yi JW, Kim EM, Yoon IJ, Lee EH, Lee HY, Ji KY, Lee KH, Jang JH, Oh SS,
et al. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Promotes
Adipogenesis and Diet-Induced Obesity. Diabetes. 2015;64:117–27.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 28 of 33

http://dx.doi.org/10.1007/s00401-017-1737-3
http://dx.doi.org/10.1007/s00401-017-1737-3


130. Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M. Impaired
Differentiation of Osteoclasts in TREM-2–deficient Individuals. J Exp Med.
2003;198:645–51.

131. Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A.
Mutations in TREM2 lead to pure early-onset dementia without bone cysts.
Hum Mutat. 2008;29:E194–204.

132. Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW,
Younkin SG, Sevlever D. Expression and processing analyses of wild type
and p.R47H TREM2 variant in Alzheimer’s disease brains. Mol Neurodegener.
2016;11(1):72.

133. Park JS, Ji IJ, An HJ, Kang MJ, Kang SW, Kim DH, Yoon SY. Disease-
Associated Mutations of TREM2 Alter the Processing of N-Linked
Oligosaccharides in the Golgi Apparatus. Traffic. 2015;16:510–8.

134. Yang AX, Chong NJ, Jiang YF, Catalano J, Puri RK, Khleif SN. Molecular
Characterization of Antigen-Peptide Pulsed Dendritic Cells: Immature
Dendritic Cells Develop a Distinct Molecular Profile when Pulsed with
Antigen Peptide. PLoS One. 2014;9(1):e86306.

135. Kiialainen A, Veckman V, Saharinen J, Paloneva J, Gentile M, Hakola P,
Hemelsoet D, Ridha B, Kopra O, Julkunen I, Peltonen L. Transcript profiles of
dendritic cells of PLOSL patients link demyelinating CNS disorders with
abnormalities in pathways of actin bundling and immune response. J Mol
Med. 2007;85:971–83.

136. Bouchon A, Hernandez-Munain C, Cella M, Colonna M. A DAP12-mediated
pathway regulates expression of CC chemokine receptor 7 and maturation
of human dendritic cells. J Exp Med. 2001;194:1111–22.

137. Rae F, Woods K, Sasmono T, Campanale N, Taylor D, Ovchinnikov DA,
Grimmond SM, Hume DA, Ricardo SD, Little MH. Characterisation and
trophic functions of murine embryonic macrophages based upon the use
of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–46.

138. Konig S, Regen T, Dittmann K, Engelke M, Wienands J, Schwendener R,
Hanisch UK, Pukrop T, Hahn H. Empty liposomes induce antitumoral effects
associated with macrophage responses distinct from those of the TLR1/2
agonist Pam(3)CSK(4) (BLP). Cancer Immunol Immunother. 2013;62:1587–97.

139. Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons
without inflammation by microglial triggering receptor expressed on
myeloid cells-2. J Exp Med. 2005;201:647–57.

140. Goncalves LA, Rodrigues-Duarte L, Rodo J, de Moraes LV, Marques I, Penha-
Goncalves C. TREM2 governs Kupffer cell activation and explains belr1
genetic resistance to malaria liver stage infection. Proc Natl Acad Sci U S A.
2013;110:19531–6.

141. Koth LL, Cambier CJ, Ellwanger A, Solon M, Hou L, Lanier LL, Abram CL,
Hamerman JA, Woodruff PG. DAP12 Is Required for Macrophage
Recruitment to the Lung in Response to Cigarette Smoke and Chemotaxis
toward CCL2. J Immunol. 2010;184:6522–8.

142. Oh JH, Yang MJ, Heo JD, Yang YS, Park HJ, Park SM, Kwon MS, Song
CW, Yoon S, Yu IJ. Inflammatory response in rat lungs with recurrent
exposure to welding fumes: a transcriptomic approach. Toxicol Ind
Health. 2012;28:203–15.

143. Humphrey MB, Daws MR, Spusta SC, Niemi EC, Torchia JA, Lanier LL,
Seaman WE, Nakamura MC. TREM2, a DAP12-associated receptor, regulates
osteoclast differentiation and function. J Bone Miner Res. 2006;21:237–45.

144. Song W, Hooli B, Mullin K, Jin SC, Cella M, Ulland TK, Wang Y, Tanzi RE,
Colonna M. Alzheimer’s disease-associated TREM2 variants exhibit either
decreased or increased ligand-dependent activation. Alzheimers Dement.
2017;13(4):381–7.

145. Wang YM, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan
TE, Shi Y, Gilfillan S, et al. TREM2-mediated early microglial response limits
diffusion and toxicity of amyloid plaques. J Exp Med. 2016;213:667–75.

146. Mori Y, Yoshino Y, Ochi S, Yamazaki K, Kawabe K, Abe M, Kitano T, Ozaki Y,
Yoshida T, Numata S, et al. TREM2 mRNA Expression in Leukocytes Is Increased
in Alzheimer’s Disease and Schizophrenia. PLoS One. 2015;10(9):e0136835.

147. Satoh J, Shimamura Y, Tabunoki H. Gene Expression Profile of THP-1
Monocytes Following Knockdown of DAP12, A Causative Gene for Nasu-
Hakola Disease. Cell Mol Neurobiol. 2012;32:337–43.

148. Tan YJ, Ng AS, Lim JKW, Chander RJ, Fang J, Qiu Y, Ting S, Hameed S,
Kandiah N, Zhou J: Higher peripheral Trem2 mRNA expression levels are
related to cognitive deficits and Alzheimer’s disease and amnestic MCI.
Alzheimers Dement. 2017;58:413–23.

149. Wu K, Byers DE, Jin X, Agapov E, Alexander-Brett J, Patel AC, Cella M, Gilfilan
S, Colonna M, Kober DL, et al. TREM-2 promotes macrophage survival and
lung disease after respiratory viral infection. J Exp Med. 2015;212:681–97.

150. Li XW, Montine KS, Keene CD, Montine TJ. Different mechanisms of
apolipoprotein E isoform-dependent modulation of prostaglandin E-2 production
and triggering receptor expressed on myeloid cells 2 (TREM2) expression after
innate immune activation of microglia. FASEB J. 2015;29:1754–62.

151. Elliott R, Li F, Dragomir I, Chua MMW, Gregory BD, Weiss SR. Analysis of the
Host Transcriptome from Demyelinating Spinal Cord of Murine Coronavirus-
Infected Mice. PLoS One. 2013;8(9):e75346.

152. Kiialainen A, Hovanes K, Paloneva J, Kopra O, Peltonen L. Dap12 and Trem2,
molecules involved in innate immunity and neurodegeneration, are co-
expressed in the CNS. Neurobiol Dis. 2005;18:314–22.

153. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman
WE. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal
cells by microglia. J Neurochem. 2009;109:1144–56.

154. Thrash JC, Torbett BE, Carson MJ. Developmental Regulation of TREM2 and
DAP12 Expression in the Murine CNS: Implications for Nasu-Hakola Disease.
Neurochem Res. 2009;34:38–45.

155. Zhu CH, Herrmann US, Li B, Abakumova I, Moos R, Schwarz P, Rushing EJ,
Colonna M, Aguzzi A. Triggering receptor expressed on myeloid cells-2 is
involved in prion-induced microglial activation but does not contribute to
prion pathogenesis in mouse brains. Neurobiol Aging. 2015;36:1994–2003.

156. Sessa G, Podini P, Mariani M, Meroni A, Spreafico R, Sinigaglia F, Colonna M,
Panina P, Meldolesi J. Distribution and signaling of TREM2/DAP12, the
receptor system mutated in human polycystic lipomembraneous
osteodysplasia with sclerosing leukoencephalopathy dementia. Eur J
Neurosci. 2004;20:2617–28.

157. Jiang T, Tan L, Zhu X, Zhang Q, Cao L, Tan M, Gu L, Wang H, Ding Z, Zhang
Y, Yu J. Upregulation of TREM2 Ameliorates Neuropathology and Rescues
Spatial Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s
Disease. Neuropsychopharmacology. 2014;39:2949–62.

158. Melchior B, Garcia AE, Hsiung BK, Lo KM, Doose JM, Thrash JC, Stalder AK,
Staufenbiel M, Neumann H, Carson MJ. Dual induction of TREM2 and tolerance-
related transcript, Tmem176b, in amyloid transgenic mice: implications for
vaccine-based therapies for Alzheimer’s disease. Asn Neuro. 2010;2:157–70.

159. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced
myeloid precursors mediate nervous tissue debris clearance and facilitate
recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4:675–89.

160. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim JY, Hsieh CL, Nakamura
MC, Yenari MA. Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)
Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates
Ischemic Damage in Experimental Stroke. J Neurosci. 2015;35:3384–96.

161. Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe
JG, Carson MJ. Heterogeneous expression of the triggering receptor expressed
on myeloid cells-2 on adult murine microglia. J Neurochem. 2002;83:1309–20.

162. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, Xu GX,
Margevicius D, Karlo JC, Sousa GL, et al. TREM2 deficiency eliminates
TREM2(+) inflammatory macrophages and ameliorates pathology in
Alzheimer’s disease mouse models. J Exp Med. 2015;212:287–95.

163. Elmore Monica RP, Najafi Allison R, Koike Maya A, Dagher Nabil N,
Spangenberg Elizabeth E, Rice Rachel A, Kitazawa M, Matusow B, Nguyen H,
West Brian L, Green Kim N. Colony-Stimulating Factor 1 Receptor Signaling
Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in
the Adult Brain. Neuron. 2014;82:380–97.

164. Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, Walker DG. TREM2 Protein
Expression Changes Correlate with Alzheimer’s Disease Neurodegenerative
Pathologies in Post-Mortem Temporal Cortices. Brain Pathol. 2015;25:469–80.

165. Chertoff M, Shrivastava K, Gonzalez B, Acarin L, Gimenez-Llort L. Differential
Modulation of TREM2 Protein during Postnatal Brain Development in Mice.
PLoS One. 2013;8(8):e72083.

166. Bhattacharjee S, Zhao YH, Dua P, Rogaev EI, Lukiw WJ. microRNA-34a-
Mediated Down-Regulation of the Microglial-Enriched Triggering Receptor
and Phagocytosis-Sensor TREM2 in Age-Related Macular Degeneration. PLoS
One. 2016;11(4):e0153292.

167. Trudler D, Weinreb O, Mandel SA, Youdim MBH, Frenkel D. DJ-1 deficiency
triggers microglia sensitivity dopamine toward a pro-inflammatory
phenotype that is attenuated by rasagiline. J Neurochem. 2014;129:434–47.

168. Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M,
Colonna M. Cutting edge: TREM-2 attenuates macrophage activation. J
Immunol. 2006;177:3520–4.

169. Gao X, Dong Y, Liu Z, Niu B. Silencing of triggering receptor expressed on
myeloid cells-2 enhances the inflammatory responses of alveolar
macrophages to lipopolysaccharide. Mol Med Rep. 2013;7:921–6.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 29 of 33



170. Gawish R, Martins R, Bohm B, Wimberger T, Sharif O, Lakovits K,
Schmidt M, Knapp S. Triggering receptor expressed on myeloid cells-2
fine-tunes inflammatory responses in murine Gram-negative sepsis.
FASEB J. 2015;29:1247–57.

171. Chang JH, Chang EJ, Kim HH, Kim SK. Enhanced inhibitory effects of a novel
CpG motif on osteoclast differentiation via TREM-2 down-regulation.
Biochem Biophys Res Commun. 2009;389:28–33.

172. Wilkins HM, Carl SM, Weber SG, Ramanujan SA, Festoff BW, Linseman DA,
Swerdlow RH. Mitochondrial Lysates Induce Inflammation and Alzheimer’s
Disease-Relevant Changes in Microglial and Neuronal Cells. J Alzheimer Dis.
2015;45:305–18.

173. Sharif O, Gawish R, Warszawska JM, Martins R, Lakovits K, Hladik A, Doninger
B, Brunner J, Korosec A, Schwarzenbacher RE, et al. The triggering receptor
expressed on myeloid cells 2 inhibits complement component 1q effector
mechanisms and exerts detrimental effects during pneumococcal
pneumonia. PLoS Pathog. 2014;10:e1004167.

174. Sun GY, Guan CX, Zhou Y, Liu YP, Li SF, Zhou HF, Tang CY, Fang X.
Vasoactive intestinal peptide re-balances TREM-1/TREM-2 ratio in acute lung
injury. Regul Pept. 2011;167:56–64.

175. Fujita K, Fukuda M, Fukui H, Horie M, Endoh S, Uchida K, Shichiri M,
Morimoto Y, Ogami A, Iwahashi H. Intratracheal instillation of single-wall
carbon nanotubes in the rat lung induces time-dependent changes in gene
expression. Nanotoxicology. 2015;9:290–301.

176. Oh JH, Yang MJ, Yang YS, Park HJ, Heo SH, Lee EH, Song CW, Yoon S.
Microarray-Based Analysis of the Lung Recovery Process After Stainless-Steel
Welding Fume Exposure in Sprague–Dawley Rats. Inhal Toxicol. 2009;21:347–73.

177. Morissette MC, Lamontagne M, Berube JC, Gaschler G, Williams A, Yauk C,
Couture C, Laviolette M, Hogg JC, Timens W, et al. Impact of cigarette
smoke on the human and mouse lungs: a gene-expression comparison
study. PLoS One. 2014;9:e92498.

178. Aoki N, Zganiacz A, Margetts P, Xing Z. Differential regulation of DAP12 and
molecules associated with DAP12 during host responses to mycobacterial
infection. Infect Immun. 2004;72:2477–83.

179. Grant RW, Vester Boler BM, Ridge TK, Graves TK, Swanson KS. Adipose tissue
transcriptome changes during obesity development in female dogs. Physiol
Genomics. 2011;43:295–307.

180. Chen Q, Zhang K, Jin Y, Zhu T, Cheng B, Shu Q, Fang X. Triggering receptor
expressed on myeloid cells-2 protects against polymicrobial sepsis by
enhancing bacterial clearance. Am J Respir Crit Care Med. 2013;188:201–12.

181. Crotti TN, Dharmapatni A, Alias E, Zannettino ACW, Smith MD, Haynes DR:
The immunoreceptor tyrosine-based activation motif (ITAM) -related factors
are increased in synovial tissue and vasculature of rheumatoid arthritic
joints. Arthritis Res Ther. 2012;14:R245.

182. Sun M, Zhu M, Chen K, Nie X, Deng Q, Hazlett LD, Wu Y, Li M, Wu M,
Huang X. TREM-2 promotes host resistance against Pseudomonas
aeruginosa infection by suppressing corneal inflammation via a PI3K/Akt
signaling pathway. Invest Ophthalmol Vis Sci. 2013;54:3451–62.

183. Wang XQ, Tao BB, Li B, Wang XH, Zhang WC, Wan L, Hua XM, Li ST.
Overexpression of TREM2 enhances glioma cell proliferation and invasion: a
therapeutic target in human glioma. Oncotarget. 2016;7:2354–66.

184. Chakrabarti S, Multani S, Dabholkar J, Saranath D. Whole genome
expression profiling in chewing-tobacco-associated oral cancers: a pilot
study. Med Oncol. 2015;32

185. Warnecke-Eberz U, Metzger R, Holscher AH, Drebber U, Bollschweiler E.
Diagnostic marker signature for esophageal cancer from transcriptome
analysis. Tumor Biol. 2016;37:6349–58.

186. Zhang SL, Chen TS, Xiao L, Ye Y, Xia W, Zhang H. TREM2 siRNA inhibits cell
proliferation of human liver cancer cell lines. Int J Clin Exp Pathol. 2016;9:4318–28.

187. Alias E, Dharmapatni A, Holding AC, Atkins GJ, Findlay DM, Howie DW,
Crotti TN, Haynes DR: Polyethylene particles stimulate expression of ITAM-
related molecules in peri-implant tissues and when stimulating
osteoclastogenesis in vitro. Acta Biomater 2012, 8:3104–3112.

188. Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Gene expression profile of the
bone microenvironment in human fragility fracture bone. Bone. 2009;44:87–101.

189. Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS.
Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl
Acad Sci U S A. 2009;106:256–61.

190. Correale C, Genua M, Vetrano S, Mazzini E, Martinoli C, Spinelli A, Arena V,
Peyrin-Biroulet L, Caprioli F, Passini N, et al. Bacterial sensor triggering
receptor expressed on myeloid cells-2 regulates the mucosal inflammatory
response. Gastroenterology. 2013;144:346–56.

191. Marcussen M, Bodker JS, Christensen HS, Johansen P, Nielsen S, Christiansen
I, Bergmann OJ, Bogsted M, Dybkaer K, Vyberg M, Johnsen HE. Molecular
Characteristics of High-Dose Melphalan Associated Oral Mucositis in Patients
with Multiple Myeloma: A Gene Expression Study on Human Mucosa. PLoS
One. 2017;12(1):e0169286.

192. Preusse C, Goebel HH, Pehl D, Rinnenthal JL, Kley RA, Allenbach Y, Heppner
FL, Vorgerd M, Authier FJ, Gherardi R, Stenzel W. Th2-M2 immunity in
lesions of muscular sarcoidosis and macrophagic myofasciitis. Neuropathol
Appl Neurobiol. 2015;41:952–63.

193. Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann
H, Witte OW, Frahm C. Attenuated Inflammatory Response in Triggering
Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following
Stroke. PLoS One. 2013;8(1):e52982.

194. Kobayashi M, Konishi H, Sayo A, Takai T, Kiyama H. TREM2/DAP12 Signal
Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic
Pain. J Neurosci. 2016;36:11138–50.

195. Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH. Systemic
inflammation modulates Fc receptor expression on microglia during
chronic neurodegeneration. J Immunol. 2011;186:7215–24.

196. Poliani PL, Wang YM, Fontana E, Robinette ML, Yamanish Y, Gilfillan S,
Colonna M. TREM2 sustains microglial expansion during aging and response
to demyelination. J Clin Investig. 2015;125:2161–70.

197. Petkovic F, Campbell IL, Gonzalez B, Castellano B. Astrocyte-Targeted
Production of Interleukin-6 Reduces Astroglial and Microglial Activation in
the Cuprizone Demyelination Model: Implications for Myelin Clearance and
Oligodendrocyte Maturation. Glia. 2016;64:2104–19.

198. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J,
Naismith RT, Panina-Bordignon P, Passini N, et al. Identification of soluble
TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis
and CNS inflammation. Brain. 2008;131:3081–91.

199. Fisher Y, Nemirovsky A, Baron R, Monsonego A. T Cells Specifically Targeted
to Amyloid Plaques Enhance Plaque Clearance in a Mouse Model of
Alzheimer’s Disease. PLoS One. 2010;5(5):e10830.

200. Raha AA, Henderson JW, Stott SRW, Vuono R, Foscarin S, Friedland RP,
Zaman SH, Raha-Chowdhury R. Neuroprotective Effect of TREM-2 in Aging
and Alzheimer’s Disease Model. J Alzheimer Dis. 2017;55:199–217.

201. Jiang T, Yu JT, Zhu XC, Tan MS, Gu LZ, Zhang YD, Tan L. Triggering receptor
expressed on myeloid cells 2 knockdown exacerbates aging-related
neuroinflammation and cognitive deficiency in senescence-accelerated
mouse prone 8 mice. Neurobiol Aging. 2014;35:1243–51.

202. Suarez-Calvet M, Kleinberger G, Caballero MAA, Brendel M, Rominger A,
Alcolea D, Fortea J, Lleo A, Blesa R, Gispert JD, et al. sTREM2 cerebrospinal
fluid levels are a potential biomarker for microglia activity in early-stage
Alzheimer's disease and associate with neuronal injury markers. Embo
Molecular Medicine. 2016;8:466–76.

203. Henjum K, Almdahl IS, Arskog V, Minthon L, Hansson O, Fladby T, Nilsson
LNG: Cerebrospinal fluid soluble TREM2 in aging and Alzheimer’s disease.
Alzheimers Res Ther. 2016;8.

204. Yoshino Y, Kawabe K, Yamazaki K, Watanabe S, Numata S, Mori Y, Yoshida T,
Iga J, Ohmori T, Ueno S. Elevated TREM2 mRNA expression in leukocytes in
schizophrenia but not major depressive disorder. J Neural Transm. 2016;123:
637–41.

205. Strobel S, Grunblatt E, Riederer P, Heinsen H, Arzberger T, Al-Sarraj S,
Troakes C, Ferrer I, Monoranu CM. Changes in the expression of genes
related to neuroinflammation over the course of sporadic Alzheimer's
disease progression: CX3CL1, TREM2, and PPAR gamma. J Neural Transm.
2015;122:1069–76.

206. Martiskainen H, Viswanathan J, Nykanen NP, Kurki M, Helisalmi S, Natunen T,
Sarajarvi T, Kurkinen KMA, Pursiheimo JP, Rauramaa T, et al. Transcriptomics
and mechanistic elucidation of Alzheimer's disease risk genes in the brain
and in vitro models. Neurobiol Aging. 2015;36

207. Perez SE, Nadeem M, He B, Miguel JC, Malek-Ahmadi MH, Chen K, Mufson
EJ. Neocortical and hippocampal TREM2 protein levels during the
progression of Alzheimer's disease. Neurobiol Aging. 2017;54:133–43.

208. Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative
Diseases. Trends Mol Med. 2017;23:512–33.

209. Porrini V, Lanzillotta A, Branca C, Benarese M, Parrella E, Lorenzini L,
Calza L, Flaibani R, Spano PF, Imbimbo BP, Pizzi M. CHF5074 (CSP-1103)
induces microglia alternative activation in plaque-free Tg2576 mice and
primary glial cultures exposed to beta-amyloid. Neuroscience. 2015;302:
112–20.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 30 of 33



210. Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F,
Audrain M, Bemelmans AP, Buchholz CJ, et al. Viral gene transfer of APPs
alpha rescues synaptic failure in an Alzheimer's disease mouse model. Acta
Neuropathol. 2016;131:247–66.

211. Matarin M, Salih DA, Yasvoina M, Cummings DM, Guelfi S, Liu WF, Solim
MAN, Moens TG, Paublete RM, Ali SS, et al. A Genome-wide Gene-
Expression Analysis and Database in Transgenic Mice during Development
of Amyloid or Tau Pathology. Cell Rep. 2015;10:633–44.

212. Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T.
TREM2 is upregulated in amyloid plaque-associated microglia in aged
APP23 transgenic mice. Glia. 2008;56:1438–47.

213. Savage JC, Jay T, Goduni E, Quigley C, Mariani MM, Malm T, Ransohoff
RM, Lamb BT, Landreth GE. Nuclear Receptors License Phagocytosis by
Trem2(+) Myeloid Cells in Mouse Models of Alzheimer's Disease. J
Neurosci. 2015;35:6532–43.

214. Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gus LZ, Wang HF, Ding
ZZ, Zhang YD, Yu JT. Upregulation of TREM2 Ameliorates Neuropathology
and Rescues Spatial Cognitive Impairment in a Transgenic Mouse Model of
Alzheimer's Disease. Neuropsychopharmacology. 2014;39:2949–62.

215. Bisht K, Sharma KP, Lecours C, Sanchez MG, El Hajj H, Milior G, Olmos-
Alonso A, Gomez-Nicola D, Luheshi G, Vallieres L, et al. Dark microglia: A
new phenotype predominantly associated with pathological states. Glia.
2016;64:826–39.

216. Jiang T, Tan L, Zhu XC, Zhou JS, Cao L, Tan MS, Wang HF, Chen Q, Zhang
YD, Yu JT. Silencing of TREM2 exacerbates tau pathology,
neurodegenerative changes, and spatial learning deficits in P301S tau
transgenic mice. Neurobiol Aging. 2015;36:3176–86.

217. Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, Neher
JJ. Replacement of brain-resident myeloid cells does not alter cerebral
amyloid-beta deposition in mouse models of Alzheimer's disease. J Exp
Med. 2015;212:1803–9.

218. Yin Z, Raj D, Saiepour N, Van Dam D, Brouwer N, Holtman IR, Eggen BJL,
Möller T, Tamm JA, Abdourahman A, et al.: Immune hyperreactivity of Aβ
plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging. 2017;
55:115–122.

219. Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ,
Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice
and Humans Impairs the Microglia Barrier Function Leading to
Decreased Amyloid Compaction and Severe Axonal Dystrophy. Neuron.
2016;90:724–39.

220. Mohle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Muller A, Lavrik IN,
Buguliskis JS, Schott BH, Schluter D, et al.: Chronic Toxoplasma gondii
infection enhances beta-amyloid phagocytosis and clearance by recruited
monocytes. Acta Neuropathol Commun. 2016;4:25.

221. Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, Almeida-
Souza L, Van Ginderachter JA, Timmerman V, Janssens S: Acute injury in the
peripheral nervous system triggers an alternative macrophage response. J
Neuroinflammation. 2012;9.

222. Wang YM, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan
S, Krishnan GM, Sudhakar S, Zinselmeyer BH, et al. TREM2 Lipid Sensing
Sustains the Microglial Response in an Alzheimer’s Disease Model. Cell.
2015;160:1061–71.

223. Kober DL, Alexander-Brett JM, Karch CM, Cruchaga C, Colonna M, Holtzman MJ,
Brett TJ: Neurodegenerative disease mutations in TREM2 reveal a functional
surface and distinct loss-of-function mechanisms. Elife. 2016;5:e20391.

224. Park JS, Ji IJ, Kim DH, An HJ, Yoon SY: The Alzheimer’s Disease-Associated
R47HVariant of TREM2 Has an Altered Glycosylation Pattern and Protein
Stability. Front Neurosci. 2017;0:618.

225. Kleinberger G, Yamanishi Y, Suarez-Calvet M, Czirr E, Lohmann E, Cuyvers E,
Struyfs H, Pettkus N, Wenninger-Weinzierl A, Mazaheri F, et al.: TREM2
mutations implicated in neurodegeneration impair cell surface transport
and phagocytosis. Scie Transl Med. 2014;6:243ra86.

226. Abduljaleel Z, Al-Allaf FA, Khan W, Athar M, Shahzad N, Taher MM, Elrobh M,
Alanazi MS, El-Huneidi W: Evidence of Trem2 Variant Associated with Triple
Risk of Alzheimer’s Disease. Plos One. 2014;9:e92648.

227. Kober DL, Wanhainen KM, Johnson BM, Randolph DT, Holtzman MJ, Brett TJ.
Preparation, crystallization, and preliminary crystallographic analysis of wild-
type and mutant human TREM-2 ectodomains linked to neurodegenerative
and inflammatory diseases. Protein Expr Purif. 2014;96:32–8.

228. Begum NA, Ishii K, Kurita-Taniguchi M, Tanabe M, Kobayashi M, Moriwaki Y,
Matsumoto M, Fukumori Y, Azuma I, Toyoshima K, Seya T. Mycobacterium

bovis BCG cell wall-specific differentially expressed genes identified by
differential display and cDNA subtraction in human macrophages. Infect
Immun. 2004;72:937–48.

229. Martiskainen H, Viswanathan J, Nykänen NP, Kurki M, Helisalmi S, Natunen T,
Sarajärvi T, Kurkinen KM, Pursiheimo JP, Rauramaa T, et al. Transcriptomics
and mechanistic elucidation of Alzheimer's disease risk genes in the brain
and in vitro models. Neurobiol Aging. 2015;36:1221.e1215–28.

230. Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J.
Sequential Proteolytic Processing of the Triggering Receptor Expressed
on Myeloid Cells-2 (TREM2) Protein by Ectodomain Shedding and
gamma-Secretase-dependent Intramembranous Cleavage. J Biol Chem.
2013;288:33027–36.

231. Ma L, Allen M, Sakae N, Ertekin-Taner N, Graff-Radford NR, Dickson DW,
Younkin SG, Sevlever D. Expression and processing analyses of wild type
and p.R47H TREM2 variant in Alzheimer's disease brains. Mol Neurodegener.
2016;11:72.

232. Glebov K, Wunderlich P, Karaca I, Walter J: Functional involvement of
gamma-secretase in signaling of the triggering receptor expressed on
myeloid cells-2 (TREM2). J Neuroinflammation. 2016;13:17.

233. Gomez-Pina V, Soares-Schanoski A, Rodriguez-Rojas A, Del Fresno C,
Garcia F, Vallejo-Cremades MT, Fernandez-Ruiz I, Arnalich F, Fuentes-
Prior P, Lopez-Collazo E. Metalloproteinases shed TREM-1 ectodomain
from lipopolysaccharide-stimulated human monocytes. J Immunol. 2007;
179:4065–73.

234. Gibot S, Kolopp-Sarda MN, Bene MC, Bollaert PE, Lozniewski A, Mory F, Levy
B, Faure GC. A soluble form of the triggering receptor expressed on
myeloid cells-1 modulates the inflammatory response in murine sepsis. J
Exp Med. 2004;200:1419–26.

235. Mahdy AM, Lowes DA, Galley HF, Bruce JE, Webster NR. Production of
soluble triggering receptor expressed on myeloid cells by
lipopolysaccharide-stimulated human neutrophils involves de novo protein
synthesis. Clin Vaccine Immunol. 2006;13:492–5.

236. Yoon SH, Lee YD, Ha J, Lee Y, Kim HH. TLT-1s, Alternative Transcripts of
Triggering Receptor Expressed on Myeloid Cell-like Transcript-1 (TLT-1),
Inhibits the Triggering Receptor Expressed on Myeloid Cell-2 (TREM-2)-
mediated Signaling Pathway during Osteoclastogenesis. J Biol Chem. 2012;
287:29620–6.

237. Varnum MM, Clayton KA, Yoshii-Kitahara A, Yonemoto G, Koro L, Ikezu S,
Ikezu T: A split-luciferase complementation, real-time reporting assay
enables monitoring of the disease-associated transmembrane protein
TREM2 in live cells. J Biol Chem. 2017;292:10651–63.

238. Prada I, Ongania GN, Buonsanti C, Panina-Bordignon P, Meldolesi J.
Triggering receptor expressed in myeloid cells 2 (TREM2) trafficking in
microglial cells: Continuous shuttling to and from the plasma membrane
regulated by cell stimulation. Neuroscience. 2006;140:1139–48.

239. Lucin KM, O'Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, Mastroeni DF,
Rogers J, Spencer B, Masliah E, Wyss-Coray T. Microglial Beclin 1 Regulates
Retromer Trafficking and Phagocytosis and Is Impaired in Alzheimer's
Disease. Neuron. 2013;79:873–86.

240. Yin J, Liu X, He Q, Zhou L, Yuan Z, Zhao S. Vps35-dependent recycling of
Trem2 regulates microglial function. Traffic. 2016;17:1286–96.

241. Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal
integration. Nat Immunol. 2006;7:1266–73.

242. Phongsisay V. Campylobacter jejuni targets immunoglobulin-like receptor
LMIR5. Mol Immunol. 2015;63:574–8.

243. Phongsisay V, Iizasa E, Hara H, Yamasaki S. 3-O-sulfo-beta-D-galactose
moiety of endogenous sulfoglycolipids is a potential ligand for
immunoglobulin-like receptor LMIR5. Mol Immunol. 2015;63:595–9.

244. Daws MR, Sullam PM, Niemi EC, Chen TT, Tchao NK, Seaman WE. Pattern
recognition by TREM-2: binding of anionic ligands. J Immunol. 2003;171:594–9.

245. N'Diaye EN, Branda CS, Branda SS, Nevarez L, Colonna M, Lowell C,
Hamerman JA, Seaman WE. TREM-2 (triggering receptor expressed on
myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol. 2009;
184:215–23.

246. Charles JF, Humphrey MB, Zhao XD, Quarles E, Nakamura MC, Aderem A,
Seaman WE, Smith KD. The innate immune response to Salmonella enterica
serovar Typhimurium by macrophages is dependent on TREM2-DAP12.
Infect Immun. 2008;76:2439–47.

247. Phongsisay V, Iizasa E, Hara H, Yoshida H. Pertussis toxin targets the innate
immunity through DAP12, FcRgamma, and MyD88 adaptor proteins.
Immunobiology. 2016;

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 31 of 33



248. Phongsisay V, Iizasa E, Hara H, Yoshida H. Evidence for TLR4 and FcR
gamma-CARD9 activation by cholera toxin B subunit and its direct bindings
to TREM2 and LMIR5 receptors. Mol Immunol. 2015;66:463–71.

249. Stefano L, Racchetti G, Bianco F, Passini N, Gupta RS, Bordignon PP,
Meldolesi J. The surface-exposed chaperone, Hsp60, is an agonist of the
microglial TREM2 receptor. J Neurochem. 2009;110:284–94.

250. Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of
epitope density in innate immunity. Glycobiology. 2010;20:270–9.

251. Kober DL, Brett TJ: TREM2-Ligand Interactions in Health and Disease.
J Mol Biol. 2017;429:1607–29.

252. Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE,
Lanier L. Cutting edge: inhibition of TLR and FcR responses in macrophages
by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12.
J Immunol. 2006;177:2051–5.

253. Ito H, Hamerman JA. TREM-2, triggering receptor expressed on myeloid cell-
2, negatively regulates TLR responses in dendritic cells. Eur J Immunol. 2012;
42:176–85.

254. Cannon JP, O'Driscoll M, Litman GW. Specific lipid recognition is a general
feature of CD300 and TREM molecules. Immunogenetics. 2012;64:39–47.

255. Jendresen C, Årskog V, Daws MR, Nilsson LNG. The Alzheimer’s disease risk
factors apolipoprotein E and TREM2 are linked in a receptor signaling
pathway. J Neuroinflammation. 2017;14:59.

256. Daws MR, Lanier LL, Seaman WE, Ryan JC. Cloning and characterization of a
novel mouse myeloid DAP12-associated receptor family. Eur J Immunol.
2001;31:783–91.

257. Hamerman JA, Ni M, Killebrew JR, Chu CL, Lowell CA. The expanding roles
of ITAM adapters FcRgamma and DAP12 in myeloid cells. Immunol Rev.
2009;232:42–58.

258. Yuan P, Condello C, Keene CD, Wang YM, Bird TD, Paul SM, Luo WJ,
Colonna M, Baddeley D, Grutzendler J. TREM2 Haplodeficiency in Mice and
Humans Impairs the Microglia Barrier Function Leading to Decreased
Amyloid Compaction and Severe Axonal Dystrophy (vol 90, pg 724, 2016).
Neuron. 2016;92:252–64.

259. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP12
bearing a tyrosine-based activation motif is involved in activating NK cells.
Nature. 1998;391:703–7.

260. Peng QS, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB:
TREM2-and DAP12-Dependent Activation of PI3K Requires DAP10 and Is
Inhibited by SHIP1. Sci Signal. 2010;3:ra38.

261. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, Faccio R, Ross
FP, Teitelbaum SL, Takayanagi H, Colonna M. TREM2 and beta-Catenin
Regulate Bone Homeostasis by Controlling the Rate of Osteoclastogenesis. J
Immunol. 2012;188:2612–21.

262. Whittaker GC, Orr SJ, Quigley L, Hughes L, Francischetti IM, Zhang W,
McVicar DW. The linker for activation of B cells (LAB)/non-T cell activation
linker (NTAL) regulates triggering receptor expressed on myeloid cells
(TREM)-2 signaling and macrophage inflammatory responses independently
of the linker for activation of T cells. J Biol Chem. 2010;285:2976–85.

263. Zhu M, Li D, Wu Y, Huang X, Wu M. TREM-2 promotes macrophage-
mediated eradication of Pseudomonas aeruginosa via a PI3K/Akt pathway.
Scand J Immunol. 2014;79:187–96.

264. Cameron B, Landreth GE. Inflammation, Microglia and Alzheimer’s Disease.
Neurobiol Dis. 2010;37:503–9.

265. Linnartz B, Neumann H. Microglial activatory (immunoreceptor tyrosine-
based activation motif)- and inhibitory (immunoreceptor tyrosine-based
inhibition motif)-signaling receptors for recognition of the neuronal
glycocalyx. Glia. 2013;61:37–46.

266. Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let's call the
whole thing off: the ambiguity of immunoreceptor signalling. Eur J
Immunol. 2006;36:1646–53.

267. O’Neill SK, Getahun A, Gauld SB, Merrell KT, Tamir I, Smith MJ, Dal Porto JM,
Li QZ, Cambier JC. Monophosphorylation of CD79a and CD79b ITAM motifs
initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade
required for B cell anergy. Immunity. 2011;35:746–56.

268. Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-
containing inositol 5-phosphatase negatively regulates Fcgamma receptor-
mediated phagocytosis through immunoreceptor tyrosine-based activation
motif-bearing phagocytic receptors. Blood. 2002;100:3374–82.

269. Maresco DL, Osborne JM, Cooney D, Coggeshall KM, Anderson CL. The SH2-
Containing 5′-Inositol Phosphatase (SHIP) Is Tyrosine Phosphorylated after
Fcγ Receptor Clustering in Monocytes. J Immunol. 1999;162:6458–65.

270. Peng QS, Long CL, Malhotra S, Humphrey MB: A Physical Interaction
Between the Adaptor Proteins DOK3 and DAP12 Is Required to Inhibit
Lipopolysaccharide Signaling in Macrophages. Sci Signal. 2013;6:ra72.

271. Montalvo V, Quigley L, Vistica BP, Boelte KC, Nugent LF, Takai T,
McVicar DW, Gery I. Environmental factors determine DAP12 deficiency
to either enhance or suppress immunopathogenic processes.
Immunology. 2013;140:475–82.

272. Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu GJ, Ladu MJ, Fardo DW,
Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in
Alzheimer’s disease. Mol Neurodegener. 2015;10:52.

273. Takegahara N, Takamatsu H, Toyofuku T, Tsujimura T, Okuno T, Yukawa K,
Mizui M, Yamamoto M, Prasad DVR, Suzuki K, et al. Plexin-A1 and its
interaction with DAP12 in immune responses and bone homeostasis. Nat
Cell Biol. 2006;8:615–22.

274. Zhang Y, Su J, Wu S, Teng Y, Yin Z, Guo Y, Li J, Li K, Yao L, Li X. DDR2
(discoidin domain receptor 2) suppresses osteoclastogenesis and is a
potential therapeutic target in osteoporosis. Sci Signal. 2015;8:ra31.

275. Fernandez-Vega I, de Heredia-Goni KP, Santos-Juanes J, Imizcoz MG,
Zaldumbide L, Zarranz JJ, Ferrer I. Sporadic adult-onset leucodystrophy with
axonal spheroids and pigmented glia with no mutations in the known
targeted genes. Histopathology. 2016;68:308–12.

276. Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP.
TREM-1 ligand expression on platelets enhances neutrophil activation.
Blood. 2007;110:1029–35.

277. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation
and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.

278. Kim Y, Sato K, Asagiri M, Morita I, Soma K, Takayanagi H. Contribution of nuclear
factor of activated T cells c1 to the transcriptional control of immunoreceptor
osteoclast-associated receptor but not triggering receptor expressed by
myeloid cells-2 during osteoclastogenesis. J Biol Chem. 2005;280:32905–13.

279. Xiang X, Werner G, Bohrmann B, Mazaheri F, Capell A, Feederle R, Knuesel I,
Kleinberger G, Haass C. TREM2-deficiency reduces the efficacy of
immunotherapeutic amyloid clearance. J Neurochem. 2016;138:422.

280. Zhong L, Chen XF, Zhang ZL, Wang Z, Shi XZ, Xu K, Zhang YW, Xu HX, Bu
GJ. DAP12 Stabilizes the C-terminal Fragment of the Triggering Receptor
Expressed on Myeloid Cells-2 (TREM2) and Protects against LPS-induced
Pro-inflammatory Response. J Biol Chem. 2015;290:15866–77.

281. Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S,
Jucker M, Calhoun ME. Dynamics of the Microglial/Amyloid Interaction
Indicate a Role in Plaque Maintenance. J Neurosci. 2008;28:4283–92.

282. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon
A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT.
Rapid appearance and local toxicity of amyloid-beta plaques in a mouse
model of Alzheimer's disease. Nature. 2008;451:720–4.

283. Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D. Relationship of microglia
and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol.
1989;24:173–82.

284. Wegiel J, Wisniewski HM. The complex of microglial cells and amyloid star
in three-dimensional reconstruction. Acta Neuropathol. 1990;81:116–24.

285. Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM.
Microglial response to amyloid plaques in APPsw transgenic mice. Am J
Pathol. 1998;152:307–17.

286. Ulrich JD, Finn MB, Wang YM, Shen A, Mahan TE, Jiang H, Stewart FR, Piccio
L, Colonna M, Holtzman DM. Altered microglial response to A beta plaques
in APPPS1–21 mice heterozygous for TREM2. Mol Neurodegener. 2014;9.

287. Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM, Lamb BT,
Landreth GE. Disease Progression-Dependent Effects of TREM2 Deficiency in a
Mouse Model of Alzheimer’s Disease. J Neurosci. 2017;37:637–47.

288. Cantoni C, Bollman B, Licastro D, Xie MQ, Mikesell R, Schmidt R, Yuede
CM, Galimberti D, Olivecrona G, Klein RS, et al. TREM2 regulates
microglial cell activation in response to demyelination in vivo. Acta
Neuropathol. 2015;129:429–47.

289. Nguyen MD, Julien J-P, Rivest S. Innate immunity: the missing link in
neuroprotection and neurodegeneration? Nat Rev Neurosci. 2002;3:216–27.

290. Wu HM, Zhang LF, Ding PS, Liu YJ, Wu X, Zhou JN. Microglial activation
mediates host neuronal survival induced by neural stem cells. J Cell Mol
Med. 2014;18:1300–12.

291. Kim H, Walczak P, Kerr C, Galpoththawela C, Gilad AA, Muja N, Bulte JWM.
Immunomodulation by Transplanted Human Embryonic Stem Cell-Derived
Oligodendroglial Progenitors in Experimental Autoimmune
Encephalomyelitis. Stem Cells. 2012;30:2820–9.

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 32 of 33



292. Mazaheri F, Snaidero N, Kleinberger G, Madore C, Daria A, Werner G,
Krasemann S, Capell A, Trümbach D, Wurst W, et al. TREM2 deficiency
impairs chemotaxis and microglial responses to neuronal injury. EMBO
Reports. 2017;1186–1198.

293. Humphrey MB, Ogasawara K, Yao W, Spusta SC, Daws MR, Lane NE, Lanier LL,
Nakamura MC. The signaling adapter protein DAP12 regulates multinucleation
during osteoclast development. J Bone Miner Res. 2004;19:224–34.

294. Lemke G. Biology of the TAM receptors. Cold Spring Harb Perspect Biol.
2013;5:a009076.

295. Jiang T, Zhang YD, Chen Q, Gao Q, Zhu XC, Zhou JS, Shi JQ, Lu H, Tan L, Yu JT.
TREM2 modifies microglial phenotype and provides neuroprotection in P301S
tau transgenic mice. Neuropharmacology. 2016;105:196–206.

296. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R,
Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, et al. A unique
microglia type associated with restricting development of Alzheimer’s
disease. Cell. 2017;169:1276–90.

297. Chung W-S, Welsh CA, Barres BA, Stevens B. Do glia drive synaptic and
cognitive impairment in disease? Nat Neurosci. 2015;18:1539–45.

298. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry
KM, Shi Q, Rosenthal A, Barres BA, et al. Complement and microglia mediate
early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

299. Takahashi K, Prinz M, Neumann H. Clearance of tissue debris by TREM2-
transduced myeloid cells promotes recovery of experimental autoimmune
encephalomyelitis. J Neuroimmunol. 2006;178:27–8.

300. Jiang T, Y Wan, Y Zhang, J Zhou, Q Gao, X Zhu, J Shi, H Lu, L Tan, Yu J:
TREM2 Overexpression has no improvement on neuropathology and
cognitive impairment in aging APPswe/PS1dE9 mice. Mol Neurobiol. 2017;
54:855–65.

301. Camargo LM, Zhang XD, Loerch P, Caceres RM, Marine SD, Uva P, Ferrer M,
de Rinaldis E, Stone DJ, Majercak J, et al. Pathway-Based Analysis of
Genome-Wide siRNA Screens Reveals the Regulatory Landscape of App
Processing. Plos One. 2015;10:e0115369.

302. Condello C, Yuan P, Schain A, Grutzendler J. Microglia constitute a barrier
that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques.
Nat Commun. 2015;6:6176.

303. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ,
Selkoe D. Naturally secreted oligomers of amyloid protein potently inhibit
hippocampal long-term potentiation in vivo. Nature. 2002;416:535–9.

304. Kayed R, Lasagna-Reeves C. Molecular Mechanisms of Amyloid Oligomers
Toxicity. J Alzheimers Dis. 2013;33:S67–78.

305. Hu X, X Li, M Zhao, A Gottesdiener, W Luo, Paul S. Tau pathogenesis is
promoted by Abeta 1–42 but not Abeta 1–40. Mol Neurodegener. 2014;9:52.

306. Lupton MK, Strike L, Hansell NK, Wen W, Mather KA, Armstrong NJ,
Thalamuthu A, McMahon KL, de Zubicaray GI, Assareh AA, et al. The effect
of increased genetic risk for Alzheimer's disease on hippocampal and
amygdala volume. Neurobiol Aging. 2016;40:68–77.

307. Engelman CD, Koscik RL, Jonaitis EM, Hermann BP, La Rue A, Sager MA.
Investigation of triggering receptor expressed on myeloid cells 2 variant
in the Wisconsin Registry for Alzheimer’s Prevention. Neurobiol Aging.
2014;35:1252–4.

308. Montalbetti L, Ratti MT, Greco B, Aprile C, Moglia A, Soragna D.
Neuropsychological tests and functional nuclear neuroimaging provide
evidence of subclinical impairment in Nasu-Hakola disease heterozygotes.
Funct Neurol. 2005;20:71–5.

309. Satoh J, Motohashi N, Kino Y, Ishida T, Yagishita S, Jinnai K, Arai N,
Nakamagoe K, Tamaoka A, Saito Y, Arima K: LC3, an autophagosome
marker, is expressed on oligodendrocytes in Nasu-Hakola disease brains.
Orphanet J Rare Dis. 2014;9:68.

310. Nakamagoe K, Shioya A, Yamaguchi T, Takahashi H, Koide R, Monzen T,
Satoh J, Tamaoka A. A Japanese Case with Nasu-Hakola Disease of
DAP12 Gene Mutation Exhibiting Precuneus Hypoperfusion. Intern Med.
2011;50:2839–44.

311. Bianchin MM, Lima JE, Natel J, Sakamoto AC. The genetic causes of basal
ganglia calcification, dementia, and bone cysts: DAP12 and TREM2.
Neurology. 2006;66:615–6.

312. Piccio L, Cantoni C, Bollman B, Cignarella F, Mikesell R. TREM2 regulates
microglia activation in response to CNS demyelination. Mult Scler J. 2016;22:54.

313. Ohrfelt A, Axelsson M, Malmestrom C, Novakova L, Heslegrave A, Blennow
K, Lycke J, Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients
with multiple sclerosis treated with natalizumab or mitoxantrone. Mult Scler
J. 2016;22:1587–95.

314. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J,
Johansson P, Ohrfelt A, Blennow K, Hardy J, Schott J, et al. Increased
cerebrospinal fluid soluble TREM2 concentration in Alzheimer's disease.
Mol Neurodegener. 2016;11:3.

315. McIntee FL, P Giannoni, S Blais, G Sommer, TA Neubert, A Rostagno, Ghiso
J. In vivo Differential Brain Clearance and Catabolism of Monomeric and
Oligomeric Alzheimer's Aβ protein. Front Aging Neurosci. 2016;8:223.

316. Gispert JD, Suarez-Calvet M, Monte GC, Tucholka A, Falcon C, Rojas S, Rami
L, Sanchez-Valle R, Llado A, Kleinberger G, et al. Cerebrospinal fluid sTREM2
levels are associated with gray matter volume increases and reduced
diffusivity in early Alzheimer's disease. Alzheimers Dement. 2016;12:1259–72.

317. Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, Wyles M,
Gelsthorpe C, Highley JR, Lorente-Pons A, et al. A data-driven approach links
microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta
Neuropathol Commun. 2016;22:1587–95.

318. Gispert JD, Monté GC, Suárez-Calvet M, Falcon C, Tucholka A, Rojas S, Rami
L, Sánchez-Valle R, Lladó A, Kleinberger G, et al. The APOE ε4 genotype
modulates CSF YKL-40 levels and their structural brain correlates in the
continuum of Alzheimer’s disease but not those of sTREM2. Alzheimer’s
Dement. 2016;6:50–9.

319. Schindler SE, Holtzman DM. CSF sTREM2: marking the tipping point
between preclinical AD and dementia? Embo Mol Med. 2016;8:437–8.

320. Song FH, Qian Y, Peng X, Han GC, Wang JJ, Bai ZX, Crack PJ, Lei HX.
Perturbation of the transcriptome: implications of the innate immune
system in Alzheimer's disease. Curr Opin Pharmacol. 2016;26:47–53.

321. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M,
Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, et al. CSF
biomarkers and incipient Alzheimer disease in patients with mild cognitive
impairment. JAMA. 2009;302:385–93.

322. Black RA, CT Rauch, CJ Kozlosky, JJ Peschon, JL Slack, MF Wolfson, BJ
Castner, KL Stocking, P Reddy, S Srinivasan, et al.: A metalloproteinase
disintegrin that releases tumour-necrosis factor-alpha from cells. Nature
1997, 385:729-733.

323. Lu Y, Liu W, Wang X. TREM2 variants and risk of Alzheimer’s disease: a meta-
analysis. Neurol Sci. 2015;36:1881–8.

324. Jonsson T, Stefansson K. TREM2 and Neurodegenerative Disease. N Engl
J Med. 2013;369:1564–70.

325. Guerreiro R, Bilgic B, Guven G, Bras J, Rohrer J, Lohmann E, Hanagasi H,
Gruvit H, Emre M. A novel compound heterozygous mutation in TREM2
found in a Turkish frontotemporal dementia-like family. Neurobiol Aging.
2013;34:2890e1–5.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Jay et al. Molecular Neurodegeneration  (2017) 12:56 Page 33 of 33


	Abstract
	Background
	Genetics of TREM2 in NDDs
	Diverse TREM2 variants are associated with NDD risk
	TREM2 variants are the genetic basis of PLOSL and some familial FTD cases
	TREM2 variants are associated with risk for AD
	TREM2 variants have been investigated as risk factors for other NDDs
	The epidemiology of TREM2 variants
	The relationship between TREM2 and other NDD genetic risk factors
	TREM2 expression
	Co-regulation of TREM2 and other members of the TREM family
	Regulation of TREM2 expression
	Cell types in which TREM2 is expressed
	TREM2 expression changes throughout neurodevelopment and varies across brain regions
	Inflammatory stimuli, injury and disease drive changes in TREM2 expression
	TREM2 expression by peripherally derived macrophages in the AD brain


	TREM2 structure and signaling
	The structure of full-length TREM2
	The structure and production of soluble TREM2
	Subcellular localization of TREM2
	TREM2 ligands
	TREM2 associates with the intracellular adaptor DAP12
	TREM2 signaling downstream of DAP12
	Other TREM2 signaling complexes
	Biological actions of sTREM2

	TREM2 function
	TREM2 regulates myeloid cell number
	TREM2 enhances myeloid cell survival
	TREM2 enhances myeloid cell proliferation and differentiation
	TREM2 regulates myeloid cell chemotaxis
	TREM2 regulates phagocytic function
	TREM2 modulates inflammatory responses
	Other functions of TREM2

	TREM2 and NDD pathology
	TREM2 impacts amyloid pathology in AD
	TREM2 modulates neuritic dystrophy in AD
	TREM2 affects tau hyperphosphorylation and aggregation in AD
	TREM2 affects synaptic and neuronal loss in AD
	The effect of TREM2 on other NDD pathologies
	The effect of TREM2 on inflammation-related pathologies

	The clinical relevance of TREM2
	TREM2-related biomarkers
	TREM2-directed therapeutics

	Conclusion
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

