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A bs tr ac t

Background

Homozygous loss-of-function mutations in TREM2, encoding the triggering recep-
tor expressed on myeloid cells 2 protein, have previously been associated with an 
autosomal recessive form of early-onset dementia.

Methods

We used genome, exome, and Sanger sequencing to analyze the genetic variability 
in TREM2 in a series of 1092 patients with Alzheimer’s disease and 1107 controls 
(the discovery set). We then performed a meta-analysis on imputed data for the 
TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three ge-
nomewide association studies of Alzheimer’s disease and tested for the association 
of the variant with disease. We genotyped the R47H variant in an additional 1887 
cases and 4061 controls. We then assayed the expression of TREM2 across different 
regions of the human brain and identified genes that are differentially expressed in 
a mouse model of Alzheimer’s disease and in control mice.

Results

We found significantly more variants in exon 2 of TREM2 in patients with Alzhei
mer’s disease than in controls in the discovery set (P = 0.02). There were 22 variant 
alleles in 1092 patients with Alzheimer’s disease and 5 variant alleles in 1107 con-
trols (P<0.001). The most commonly associated variant, rs75932628 (encoding 
R47H), showed highly significant association with Alzheimer’s disease (P<0.001). 
Meta-analysis of rs75932628 genotypes imputed from genomewide association 
studies confirmed this association (P = 0.002), as did direct genotyping of an addi-
tional series of 1887 patients with Alzheimer’s disease and 4061 controls (P<0.001). 
Trem2 expression differed between control mice and a mouse model of Alzheimer’s 
disease.

Conclusions

Heterozygous rare variants in TREM2 are associated with a significant increase in 
the risk of Alzheimer’s disease. (Funded by Alzheimer’s Research UK and others.)
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A lzheimer’s disease is the most com-
mon cause of dementia, typically present-
ing with a progressive loss of cognitive 

function and memory. It is a complex disorder 
with a strong genetic component. In the past, 
genetic studies have identified mutations in three 
genes — APP (encoding amyloid precursor pro-
tein), PSEN1 (encoding presenilin 1), and PSEN2 
(encoding presenilin 2) — as the cause of disease 
in several families, most of whom have early-
onset disease. Expansions in C9orf72 are found in 
families with mixed types of disease. In late-onset 
disease, the most common form of Alzheimer’s 
disease, the ε4 allele of the apolipoprotein E gene 
(APOE) is the major known genetic risk factor.1-5 
Several genomic loci have been identified in ge-
nomewide association studies as low-risk factors 
for late-onset disease (implicating CLU, PICALM, 
CR1, BIN1, MS4A, CD2AP, CD33, EPHA1, and 
ABCA7 6‑9).

Advances in sequencing techniques have al-
lowed for the assessment of entire exomes and 
genomes. These techniques have the potential to 
identify rare mutations in families or patients in 
whom linkage analysis cannot be performed and 
to identify rare variants with moderate-to-strong 
effects in complex diseases.

Homozygous loss-of-function mutations in 
TREM2, encoding the triggering receptor expressed 
on myeloid cells 2 protein, have previously been 
associated with an autosomal recessive form of 
early-onset dementia presenting with bone cysts 
and consequent fractures called polycystic lipo-
membranous osteodysplasia with sclerosing leu-
koencephalopathy, or Nasu–Hakola disease.10 We 
have recently identified homozygous TREM2 mu-
tations in three Turkish patients presenting with a 
clinical phenotype associated with frontotemporal 
dementia and with leukodystrophy but without 
any bone-associated symptoms.11 In addition, a 
genomewide meta-analysis pooling linkage results 
for late-onset Alzheimer’s disease identified eight 
linkage regions with nominally significant asso-
ciations. One of these regions is on chromosome 
6 (6p21.1-q15) and includes TREM2.12 In this study, 
we wanted to find out whether heterozygous vari-
ants in TREM2 increase the risk of Alzheimer’s 
disease.

Me thods

Study Design

We performed exome or full-genome sequencing in 
samples from 281 patients with Alzheimer’s dis-
ease and 504 unaffected persons, with the latter 
including 175 elderly persons (>65 years of age) 
who were determined to be free of Alzheimer’s 
disease on neuropathological analysis. In the re-
sulting sequence data, we analyzed six genes 
(APP, PS1, PS2, PGRN, MAPT, and TREM2) and noted 
a disproportionate number of variants in exon 2 
of TREM2 in case samples. We then used poly-
merase-chain-reaction (PCR) amplification and 
Sanger sequencing to analyze exon 2 of TREM2 in 
samples from 811 patients with Alzheimer’s dis-
ease and 603 unaffected persons. In total, we 
analyzed samples from 1092 patients with Alz
heimer’s disease and 1107 controls, all of whom 
were of European or North American descent 
(Table 1).

To test for replication of the most strongly 
associated single-nucleotide polymorphism in our 
discovery set, we performed a meta-analysis of the 
summary statistics of several imputed genome-
wide association studies. In a second test of rep-
lication, we directly genotyped the R47H variant 
(encoding a substitution of histidine for arginine 
at position 47 of the protein) in patients with 
Alzheimer’s disease and in controls. To determine 
the level of TREM2 messenger RNA (mRNA) in 
human brain, we assayed TREM2 expression in 
samples obtained from 12 different brain re-
gions in 137 controls. Using Affymetrix MOE 
430 2.0 arrays, we compared the levels and pat-
tern of Trem2 expression in the brains of a trans-
genic mouse model of Alzheimer’s disease13 
with that in control mice.

Exome Sequencing
Library preparation for next-generation sequencing 
was performed according to the TruSeq (Illumina) 
sample-preparation protocol. DNA libraries were 
then hybridized to exome-capture probes with 
NimbleGen SeqCap EZ Human Exome Library, 
version 2.0 (Roche NimbleGen), TruSeq (Illumina), 
or Agilent SureSelect Human All Exon Kit (Agilent 
Technologies). Each capture method covers the 
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TREM2 locus. Exome-enriched libraries were se-
quenced on the HiSeq 2000 (Illumina).

We performed sequence alignment and vari-
ant calling against the reference human genome 
(UCSC hg19). Paired-end sequence reads (50 or 
100 bp) were aligned with the use of the Burrows–
Wheeler aligner.14 We performed duplicate read 
removal and format conversion and indexing using 
Picard (www.picard.sourceforge.net/index.shtml). 
We used the Genome Analysis Toolkit (GATK) to 
recalibrate base quality scores, perform local re-
alignment around insertions and deletions, and 
call and filter variants.15,16 We used ANNOVAR 
software to annotate variants.17 All protein-coding 
TREM2 variants in cases and controls were checked 
against established databases (1000 Genomes 
Project and dbSNP, version 134), and pathogenic-
ity was predicted in silico with the use of Poly-
morphism Phenotyping, version 2 (PolyPhen-2).18

Genome Sequencing
We performed genome sequencing in samples 
obtained from 215 healthy persons in the Cache 
County Study on Memory in Aging, a series com-
prising 5092 residents of Utah who were followed 

for 12 years. We collected basic demographic in-
formation, family and medical histories, and re-
sults of multistage dementia-assessment screen-
ing for all participants.19 The participants who 
were included in this study were found to be free 
of dementia on the basis of clinical dementia 
screening and evaluation, including the Clinical 
Dementia Rating Scale and Mini–Mental State 
Examination. All samples were sequenced with 
the use of Illumina HiSeq technology. Alignment 
was performed with the use of CASAVA software,20 
and variant calling was performed with the use of 
SAMtools21 and GATK.15,16

Meta-Analysis of Genomewide Association 
Studies

To evaluate the associated single-nucleotide poly-
morphism (SNP) rs75932628 (encoding the R47H 
protein variant) with the risk of Alzheimer’s 
disease, we used fixed-effects inverse-variance-
weighted meta-analyses by combining the sum-
mary statistics from three studies: the European 
Alzheimer’s Disease Initiative Consortium (EADI), 
AddNeuroMed (ANM), and the Genetic and Envi-
ronmental Risk for Alzheimer’s Disease Consor-

Table 1. Sequencing of Samples from Patients with Alzheimer’s Disease and from Controls.*

Source of Samples
No. of 

Samples Type
Sequencing  

Strategy Cases Controls

No. of 
Samples

Age Range  
at Onset

No. of 
Samples

Age Range  
at Onset

yr yr

All sources 2199 1092 29–98 1107 35–102

United Kingdom brain banks 312 Neuropath Exome sequencing 181 46–90 131 60–99

United States brain banks 44 Neuropath Exome sequencing 0 NA 44 63–102

Dementia Research Centre, London 41 Clinical Exome sequencing 41 38–74 0 NA

Coimbra University Hospitals, Portugal 34 Clinical Sanger sequencing 
(exon 2)

34 43–55 0 NA

North America (United States plus Canada) 1173 Clinical Sanger sequencing 
(exon 2)

673 29–73 500 51–100

Canada 207 Neuropath Sanger sequencing 
(exon 2)

104 41–98 103 35–92

North America (United States plus Canada) 173 Clinical Exome sequencing 59 38–90 114 1–90

United States 215 Clinical Genome sequencing 0 NA 215 75–92

*	Samples were collected either as part of clinical assessments (clinical) or as part of neuropathological confirmed series (neuropath). NA de-
notes not applicable.
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tium (GERAD). Details of each genomewide as-
sociation study are presented in the Supplementary 
Appendix, available with the full text of this ar-
ticle at NEJM.org. Rare variant rs75932628 has a 
minor allele frequency of 0.003, as reported in 
the 1000 Genomes Project, and for this reason it 
was excluded during quality-control steps in re-
ported genomewide association studies of Alz
heimer’s disease to date. Imputation was performed 
with the use of IMPUTE software, version 2.2.2,22 
on the basis of integrated reference-panel haplo-
types of phase 1 of the 1000 Genomes Project  
(April 2012, National Center for Biotechnology 
Information, build 37) and accomplished with a 
conservative quality score of more than 0.4 for all 
the studies.

Direct Genotyping of the r47h variant

We used TaqMan SNP Genotyping Assays in an ABI 
PRISM 7900HT Sequence Detection System with 
a 384-well block module (Applied Biosystems) to 
assess the prevalence of the SNP rs75932628 (the 
R47H variant) in an additional series of 1887 cases 
and 4061 controls from the Mayo Clinic. (Details 
on this series are provided in the Supplementary 
Appendix.) The genotype data were analyzed with 
the use of SDS software, version 2.2.3 (Applied 
Biosystems).

Genotypes from the case–control series were 
analyzed by means of logistic regression with the 
use of an additive model either without covariates 
(as reported in the text) or with series, sex, age at 
diagnosis, and number of APOE ε4 alleles as co-
variates (Table S1 in the Supplementary Appendix).

TREM2 Expression in Human Brain

To assess the normal brain distribution of TREM2 
expression, we used Affymetrix Exon 1.0 ST Ar-
rays. Brain tissue from 137 neuropathologically 
confirmed controls was collected by the UK Brain 
Expression Consortium (UKBEC). Total RNA was 
isolated from 12 different brain regions per con-
trol and processed with the use of standard proto-
cols (see the Supplementary Appendix for details).

Trem2 Expression in a Transgenic Mouse 
Model

TgCRND8 mice (a transgenic mouse model of 
Alzheimer’s disease) express a human APP695 
transgene with two pathogenic mutations 
(KM670/671NL and V717F) under the regulation 
of the hamster prion protein promoter gene and 

were maintained in C3H/HeJ × C57BL/6J mice. 
(APP695 designates a particular transcript of 
APP). RNA was extracted from the brains of trans-
genic and nontransgenic littermate mice (with 
four mice per series, with profiles generated in-
dependently for each mouse) at the ages of 70, 
80, and 150 days and was incubated on the MOE 
430 2.0 array (Affymetrix) (see the Supplemen-
tary Appendix for additional details).

R esult s

We found significantly more variants in exon 2 of 
TREM2 in patients with Alzheimer’s disease than 
in those without the disease (P = 0.02). In addition, 
we observed six variants (H157Y, R98W, D87N, 
T66M, Y38C, and Q33X) that were present in cas-
es and not in controls in the discovery series and 
two variants that were present only in controls 
(N68K and L211P) (Table 2). Of these variants, 
D87N was significantly associated with disease 
(P = 0.02). We previously observed the T66M, Y38C, 
and Q33X variants in the homozygous state in 
patients with a frontotemporal dementia–like 
syndrome. Homozygous Q33X variants have also 
been identified in patients with Nasu–Hakola dis-
ease. The Q33X mutation almost certainly results 
in loss of function of TREM2 protein. Thus, we 
propose that the T66M and Y38C variants result 
in at least some loss of function. In aggregate, 
these three variants are more common in per-
sons with Alzheimer’s disease than in unaffected 
persons (P = 0.01).

Of the variants in TREM2 associated with Alz
heimer’s disease, the R47H variant showed the 
strongest association (P<0.001). On meta-analysis 
of three imputed data sets of genomewide as-
sociation studies of Alzheimer’s disease (EADI, 
ANM, and GERAD) (Table S2 and Fig. S1 in the 
Supplementary Appendix), we observed signifi-
cant association with disease (P = 0.002).

Given the limitation in imputing rare variants, 
we directly genotyped the R47H variant in 1994 
patients with Alzheimer’s disease and 4062 con-
trols (Table S1 in the Supplementary Appendix), 
a series that included 1887 patients with Alzhei
mer’s disease and 4061 controls not previously 
sequenced or imputed. Analysis of the entire se-
ries by logistic regression with an additive model 
showed a strong, highly significant association 
with Alzheimer’s disease (odds ratio, 5.05; 95% 
confidence interval [CI], 2.77 to 9.16; P = 9.0×10−9). 
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Analyses in participants not previously genotyped 
or imputed also showed a strong and highly sig-
nificant association (odds ratio, 4.59; 95% CI, 
2.49 to 8.46; P = 1.4×10−7).

Pathological examination of five brains with 
variants that have possibly pathogenic effects 
(Q33X, R47H, and D87N) revealed that all were 
Braak stage 6 (fully developed Alzheimer’s dis-
ease) and had typical findings with no distin-
guishing features. Two of the samples showed 
some mild Lewy-body disease, and one had 
documented TAR DNA-binding protein 43 (TDP-
43) disease (Fig. 1). In two cases, some mild 
white-matter abnormalities were observed, but 
these were not outside the range one would ex-
pect for a typical case of Alzheimer’s disease.

In human control brain, TREM2 was expressed 
widely, at high levels in white matter and sub-
stantial abundance in hippocampus and neocor-
tex but at low levels in the cerebellum (Fig. S2 in 
the Supplementary Appendix). This expression pat-
tern is partly consistent with the pathological fea-
tures observed in both Nasu–Hakola disease and 
Alzheimer’s disease.

We assayed Trem2 expression in the brain tissue 
from TgCRND8 mice.23 To capture changes re-
flecting the very earliest responses to APP mis-
processing and accumulation of beta amyloid, 
rather than responses to late-stage tissue injury, 
we focused on time points at which the Alzhei
mer’s disease–like phenotype was largely a bio-
chemical accumulation of beta amyloid without 
obvious morphological changes (i.e., at 70 to 80 
days). We also analyzed Trem2 expression during 
the phase of emerging disease and functional 
deficits (150 days).23,24 At the earlier time point, 
we observed 85 genes to be differentially expressed 
in the brains of mutant mice and controls (Table 
S3 in the Supplementary Appendix). These genes 
comprised seven clusters. Clusters 1, 3, and 7 con-
tained genes related to cholesterol or lipid me-
tabolism, whose expression was coordinately al-
tered from early time points (≤70 days). Cluster 
5 included genes encoding complement factors, 
cytokines, and proinflammatory proteins, with 
changes in the expression of these factors at 
slightly later time points (>80 days). Genes encod-
ing proteins that mediate vesicular trafficking 
genes did not appear to be differentially expressed 
(Tables S3 and S4 in the Supplementary Appendix).

To determine whether mRNA changes were 
reflected in changes in protein expression and to 
document the cell types involved, we assayed pro-
teins in brain tissue from TgCRND8 mice, to-
gether with age- and sex-matched littermate 
controls, by means of Western blotting and im-
munohistochemical analysis. Suitable antibodies 
were not available for many proteins. Neverthe-
less, for proteins that could be assessed, the re-
sults were consistent with the mRNA data.

The expression of Trem2 mRNA was increased 
in TgCRND8 mice, as compared with non-
TgCRND8 littermates (Table S4 in the Supple-
mentary Appendix). This change, which is in 
agreement with a similar observation in another 
mouse transgenic model of Alzheimer’s disease,25 
was confirmed by means of Western blotting. 
We observed increased expression of Trem2 in 
large activated microglia (Fig. 2). In wild-type 
mice, Trem2 is expressed in small cytoplasmic 
granules in the cytoplasm of most neurons in 
the cortex and other brain regions. The number 
and size of these granules in control mice were 
relatively constant during aging (mean [±SD] at 
70 days, 6.7±0.5 granules per cell; at 90 days, 
7.2±0.4; and at 150 days, 5.8±0.8). In contrast, in 
TgCRND8 mice, the average number of granules 
increased significantly as the amyloid disease 
emerged (at 70 days, 8.2±0.3 granules per cell; at 
90 days, 22.4±0.6; and at 150 days, 15.0±0.3) 
(P = 0.01 for all comparisons). There was also a 
progressive increase in the diameter of granules 
(at 70 days, 0.4 μm; at 90 days, 0.6 μm; and at 
120 days, 2.1 μm) (P = 0.01 for all comparisons). 
We observed Trem2 to be expressed in microglia 
surrounding the outer border of amyloid plaques, 
as reported previously in the APP23 mouse mod-
el25 (Fig. 2). Perhaps these changes represent a 
response to rising levels of beta amyloid in the 
TgCRND8 and APP23 mice, which, like all mouse 
models, develop prominent pathological findings 
associated with beta amyloid but no neurode-
generation.

Discussion

TREM2 encodes a single-pass type I membrane 
protein that forms a receptor-signaling complex 
with the TYRO protein tyrosine kinase-binding 
protein (TYROBP) and thereby triggers the acti-
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Figure 1. Pathological Hallmarks in Carriers of TREM2 Variants.

Shown are pathological findings in samples containing variant D87N (Panels A through D) and variant R47H (Panels E 
through L) obtained from patients with Alz hei mer’s disease. A carrier of the D87N variant had mature plaques (Panel A, 
arrow), along with more diffuse plaques and a moderate degree of cerebral amyloid angiopathy (Panel B). Beta amy-
loid was found deposited in leptomeningeal blood vessels. Tau immunohistochemical analysis revealed neuritic plaques 
(Panel C) in the hippocampus and numerous neurofibrillary tangles throughout the cortical regions (Panel D). Two 
carriers of the R47H variant also showed pathological features of Alz hei mer’s disease (with sections obtained from 
one patient in Panels E through H and from the other in Panels I through L) in the form of mature and diffuse plaques 
(Panels E and J, arrow). Severe cerebral amyloid angiopathy was evident with the presence of parenchymal capillary 
involvement (Panel F) and circumferential deposition of beta amyloid (Panel K). Also present were neuritic plaques 
(Panels G and L, arrow in Panel L), neurofibrillary tangles (Panels H and L), and abundant neuropil threads. However, 
one carrier of the R47H variant showed only moderate cerebral amyloid angiopathy with no other pathological abnor-
malities (Panel I, inset). Immunohistochemical analysis was carried out with the use of antibodies against beta amyloid 
(DAKO; 1:100) to identify the beta amyloid protein in both plaques and cerebral amyloid angiopathy, and AT8 antibody 
(Autogen Bioclear; 1:600) to identify tau.
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vation of immune responses in macrophages and 
dendritic cells.10 As we have shown, TREM2 is 
expressed throughout the central nervous system 
and at particularly high concentrations in white 
matter. Homozygous loss-of-function mutations in 
TREM2 cause Nasu–Hakola disease (Online Mende-
lian Inheritance in Man number, 605086). Here we 
show that heterozygous rare variants, including 
those that cause Nasu–Hakola disease in the homo-
zygous state, predispose to Alz hei mer’s disease. 
Thus, we suggest that the reduced function of 
TREM2 is key to the pathogenic effect of these risk 
variants associated with Alz hei mer’s disease.

Trem2 is localized to microglia around plaques 
and neurons in the brains of TgCRND8 mice. In 
microglia, TREM2 is known to control two streams 
of signaling to regulate the reactive phenotype. 
One of these streams regulates phagocytosis. In-
creased expression of TREM2 on microglia is 
coupled to enhanced phagocytic pathways (which 
could be relevant to the removal of cell debris 
and the clearance of amyloid proteins in Alz hei-
mer’s disease) and promotion of the alternative 
activation state of microglia, which is thought to 
be protective.26-28 The other signaling stream sup-
presses inflammatory reactivity and involves the 
repression of cytokine production and secretion.28 
TREM2 control of constitutive cytokine signaling 
may promote survival by prompting the secretion 
of tumor necrosis factor at levels that potentiate 

survival and repair pathways through tumor ne-
crosis factor receptor 2 (TNFR2).

Consistent with the results described in a 
previous study,25 we have shown that the expres-
sion of TREM2 rises in parallel with a rise in 
cortical levels of beta amyloid. However, the dys-
regulation of expression that is induced by beta 
amyloid is relatively specific to TREM2. Other 
components of the same cascade, such as TYROBP, 
are not dysregulated. These data are consistent 
with a role for TREM2 as a gateway for control-
ling microglial responses. Compromised function 
of TREM2 is likely to have ramifications for the 
clearance of cell debris and possibly the removal 
of beta amyloid in Alz hei mer’s disease. At the 
same time, relief of the TREM2 lock on cytokine 
levels, potentially effected by the TREM2 variants 
described here, may fuel inflammatory cascades, 
leading to a systemic inflammatory response and 
the incidental death of neurons. In an animal 
model of multiple sclerosis, blocking of Trem2 
exacerbated disease symptoms,27 whereas boost-
ing of Trem2 signaling ameliorated them.29

Variants of the gene CR1 have been implicated 
as risk factors for Alz hei mer’s disease.30 We have 
recently described functional data that support the 
control of microglial reactivity and the production 
of tumor necrosis factor by CR1 protein, suggest-
ing parallel or convergent signaling streams with 
respect to those initiated by TREM2.31,32 Thus, if 

D
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Figure 2. Immunohistochemical Analyses of Trem2 in TgCRND8 Mice.

Slides of samples from TgCRND8 mice (a transgenic mouse model of Alz hei mer’s disease) and age-matched littermates (controls) at 
different ages show that Trem2 is expressed as small granules in the cytoplasm of neurons (arrowheads) in both the transgenic mice and 
controls. In a slide of a sample from a transgenic mouse, the amyloid plaques are also surrounded by Trem2-positive granules (Panel D, 
arrow), and the Trem2 granules increase in number and size, as compared with the controls. The scale bar represents 30 mm in Panels 
A, B, C, E, and F and 60 mm in Panel D.
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there are variants with reduced function in either 
of these pathways, the subsequent functional de-
fects in microglial responses may show similar 
effects.

The approach we have taken shows that whole-
exome sequencing is capable of identifying not 
only very rare mendelian causes of disease but also 
low-frequency variability with medium-effect siz-
es modulating disease development. Our data add 
to a growing list of disease associations32 in which 
two diseases — one that is severe, has an early 
onset, and is caused by homozygous loss-of-
function mutations and the other that has a late 
onset with susceptibility caused by heterozygous 
loss-of-function variants — had previously been 
thought to be unrelated.32 We and others have 
predicted that heterozygous loss-of-function vari-
ants may represent a substantial component of 
risk for common late-onset diseases.32,33 Our 
findings support this hypothesis, and we believe 
additional loss-of-function variants will be iden-
tified as risk factors for Alzheimer’s disease and 
other late-onset complex disorders.
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