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Abstract

We introduce a family of adaptive estimators on

graphs, based on penalizing the ℓ1 norm of dis-

crete graph differences. This generalizes the idea

of trend filtering [11, 26], used for univariate

nonparametric regression, to graphs. Analogous

to the univariate case, graph trend filtering ex-

hibits a level of local adaptivity unmatched by

the usual ℓ2-based graph smoothers. It is also de-

fined by a convex minimization problem that is

readily solved (e.g., by fast ADMM or Newton

algorithms). We demonstrate the merits of graph

trend filtering through examples and theory.

1 INTRODUCTION

Nonparametric regression has a rich history in statistics,

carrying well over 50 years of associated literature. The

goal of this paper is to port a successful idea in univariate

nonparametric regression, trend filtering [24, 11, 26, 29],

to the setting of estimation on graphs. The proposed esti-

mator, graph trend filtering, shares three key properties of

trend filtering in the univariate setting.

1. Local adaptivity: graph trend filtering can adapt to

inhomogeneity in the level of smoothness of an ob-

served signal across nodes. This stands in constrast to

the usual ℓ2-based methods, e.g., Laplacian regular-

ization [22], which enforce smoothness globally with

a much heavier hand, and tend to yield estimates that

are either smooth or else wiggly throughout.

2. Computational efficiency: graph trend filtering is de-

fined by a regularized least squares problem, in which

the penalty term is nonsmooth, but convex and struc-

tured enough to permit efficient computation.
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3. Analysis regularization: the graph trend filtering

problem directly penalizes (possibly higher order) dif-

ferences in the fitted signal across nodes. Therefore

graph trend filtering falls into what is called the anal-

ysis framework for defining estimators. Alternatively,

in the synthesis framework, we would first construct

a suitable basis over the graph, and then regress the

observed signal over this basis; e.g., [21] study such

an approach using wavelets; likewise, kernel methods

regularize in terms of the eigenfunctions of the graph

Laplacian [12]. An advantage of analysis regulariza-

tion is that it easily yields complex extensions of the

basic estimator by mixing penalties.

A Motivating Example. Consider an estimation problem

on 402 census tracts of Allegheny County, PA, arranged

into a graph with 402 vertices and 2382 edges by connect-

ing spatially adjacent tracts. To illustrate the adaptive prop-

erty of graph trend filtering we generated an artificial sig-

nal with inhomogeneous smoothness across the nodes, and

two sharp peaks near the center of the graph, as can be

seen in the top left panel of Figure 1. (This was generated

from a mixture of Gaussians in the underlying spatial co-

ordinates.) We drew noisy observations around this signal,

shown in the top right panel, and we fit graph trend filter-

ing, graph Laplacian smoothing, and wavelet smoothing to

these observations. Graph trend filtering is to be defined in

Section 2 (here we used k = 2, quadratic order); the latter

two, recall, are defined by the optimization problems

min
β∈Rn

‖y − β‖22 + λβ⊤Lβ (Laplacian smoothing),

min
θ∈Rn

1

2
‖y −Wθ‖22 + λ‖θ‖1 (wavelet smoothing).

Above, y ∈ R
n is the vector of observations across nodes,

n = 402, L ∈ R
n×n is the unnormalized Laplacian matrix

over the graph, andW ∈ R
n×n is a wavelet basis built over

the graph (we followed the prescription of [21]). The three

estimators each have their own regularization parameters

λ; hence as a common measure for the complexities of the

fitted models, we use degrees of freedom (df).
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True signal Noisy observations

Graph trend filtering, 80 df Laplacian smoothing, 80 df

Laplacian smoothing, 134 df Wavelet smoothing, 313 df

Figure 1: Color maps for the Allegheny County example.

The middle left panel of Figure 1 shows the graph trend fil-

tering estimate with 80 df. We see that it adaptively fits to

the sharp peaks in the center of the graph, and smooths out

the surrounding regions appropriately. The graph Lapla-

cian estimate with 80 df (middle right), substantially over-

smooths the high peaks in the center, while at 134 df (bot-

tom left), it begins to detect the high peaks in the center,

but undersmooths neighboring regions. Wavelet smooth-

ing performs quite poorly across all df values—it appears

to be most affected by the level of noise in the observations.

Furthermore, Figure 2 shows the mean squared errors be-

tween the estimates and the true signal. The differences

in performance here are analogous to the univariate case,

when comparing trend filtering to smoothing splines [26].

At the smaller df values, Laplacian smoothing, due to its

global considerations, fails to adapt to local differences

across nodes. Trend filtering performs much better at low

df values, and yet it matches Laplacian smoothing when

both are sufficiently complex, i.e., in the overfitting regime.

This demonstrates that the local flexibility of trend filtering

estimates is a key attribute.
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Figure 2: Mean squared errors for the Allegheny County

example. Results were averaged over 10 simulations; the

bars denote ±1 standard errors.

Outline. Section 2 defines graph trend filtering and cov-

ers basic properties. Section 3 examines computational ap-

proaches, Section 4 looks at more examples, and Section 5

presents theory. Section 6 concludes with a discussion.

Notation. For X ∈ R
m×n, we write XA to extract the

rows of X corresponding to a subset A ⊆ {1, . . .m}, and

X−A to extract the complementary rows. Similarly for vec-

tors. We write row(X) and null(X) for the row and null

spaces of X , respectively, and X† for the pseudoinverse of

X , with X† = (X⊤X)†X⊤ when X is rectangular.

2 TREND FILTERING ON GRAPHS

2.1 Review: Univariate Trend Filtering

We begin by reviewing trend filtering in the univariate set-

ting. Here discrete difference operators play a central role.

Suppose that we observe y = (y1, . . . yn) ∈ R
n across

equally spaced input locations x = (x1, . . . xn); for sim-

plicity, say x = (1, . . . n). Given an integer k ≥ 0, the kth

order trend filtering estimate β̂ = (β̂1, . . . β̂n) is defined as

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖D(k+1)β‖1, (1)

where λ ≥ 0 is a tuning parameter, and D(k+1) is the dis-

crete difference operator of order k + 1. When k = 0,

problem (1) employs the first difference operator,

D(1) =





−1 1 0 . . . 0

0 −1 1 . . . 0

.

.

.

.
.
.

.
.
.

0 0 . . . −1 1



, (2)
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hence ‖D(1)β‖1 =
∑n−1

i=1 |βi+1 − βi|, and the 0th order

trend filtering estimate in (1) reduces to the 1-dimensional

fused lasso estimator [25], also called 1-dimensional total

variation denoising [17]. For k ≥ 1 we define D(k+1) re-

cursively by

D(k+1) = D(1)D(k), (3)

with D(1) above denoting the (n − k − 1) × (n − k) ver-

sion of the first difference operator in (2), i.e. D(k+1) is

given by taking first differences of kth differences. The in-

terpretation is hence that problem (1) penalizes the changes

in the kth discrete differences of the fitted trend. The esti-

mated components β̂1, . . . β̂n exhibit the form of a kth or-

der piecewise polynomial function, evaluated over the input

locations x1, . . . xn. This can be formally verified [26, 29]

by examining a continuous-space analog of (1).

2.2 Trend Filtering over Graphs

Let G = (V,E) be an graph, with vertices V = {1, . . . n}
and undirected edges E = {e1, . . . em}, and suppose that

we observe y = (y1, . . . yn) over the nodes. Following the

univariate definition in (1), we define the kth order graph

trend filtering (GTF) estimate β̂ = (β̂1, . . . β̂n) by

β̂ = argmin
β∈Rn

1

2
‖y − β‖22 + λ‖∆(k+1)β‖1. (4)

In broad terms, this problem (like univariate trend filtering)

is a type of generalized lasso problem [27], in which the

penalty matrix ∆(k+1) is a suitably defined graph differ-

ence operator, of order k + 1. In fact, the novelty in our

proposal lies entirely within the definition of this operator.

When k = 0, we define first order graph difference oper-

ator ∆(1) in such a way it yields the graph-equivalent of a

penalty on local differences:

‖∆(1)β‖1 =
∑

(i,j)∈E

|βi − βj |.

In this case, the penalty term in (4) sums the absolute dif-

ferences across connected nodes in G. To achieve this, we

let ∆(1) ∈ {−1, 0, 1}m×n
be the oriented incidence matrix

of the graph G, containing one row for each edge in the

graph; specifically, if eℓ = (i, j), then ∆(1) has ℓth row

∆
(1)
ℓ = (0, . . .−1

↑
i

, . . . 1
↑
j

, . . . 0), (5)

where the sign orientations are arbitrary. By construction,

the 0th order graph trend filtering estimate is piecewise

constant over nodes of G, and it is identical to the fused

lasso estimate on G [9, 27, 19].

For k ≥ 1, we use a recursion to define the higher order

graph difference operators, in a manner similar to the uni-

variate case. The recursion alternates in multiplying by the

first difference operator ∆(1) and its transpose, taking into

account that this matrix not square:

∆(k+1) =

{

(∆(1))⊤∆(k) = L
k+1

2 for odd k

∆(1)∆(k) = DL
k

2 for even k.
(6)

Above we exploited the fact that ∆(2) = (∆(1))⊤∆(1) is

the unnormalized graph Laplacian L of G, and we abbre-

viated ∆(1) by D. Note that ∆k+1 ∈ R
n×n for odd k, and

∆k+1 ∈ R
m×n for even k.

There may be multiple ways to generalize the univariate

discrete difference operators (2), (3) to graphs, so why this

particular definition? Intuition surrounding (5), (6) can

be developed by considering piecewise polynomial signals

over graphs; due to a lack of space, we defer this discussion

to the supplementary document. Another important reasur-

rance is that our graph definitions (5), (6) reduce to the uni-

variate ones (2), (3) in the case of a chain graph (in which

V = {1, . . . n} and E = {(i, i + 1) : i = 1, . . . n − 1}),
modulo boundary terms.

2.3 ℓ1 versus ℓ2 Regularization

It is instructive to compare the graph trend filtering estima-

tor, as defined in (4), (5), (6) to Laplacian smoothing [22].

Standard Laplacian smoothing uses the same least squares

loss as in (4), but replaces the penalty term with β⊤Lβ. A

natural generalization would be to allow for a power of the

Laplacian matrix L, and define kth order graph Laplacian

smoothing according to

β̂ = argmin
β∈Rn

‖y − β‖22 + λβ⊤Lk+1β. (7)

The above penalty term can be written as ‖L k+1

2 β‖22 for

odd k, and ‖DL k

2 β‖22 for even k; i.e., the penalty in (7)

is exactly ‖∆(k+1)β‖22 for the graph difference operator

∆(k+1) defined previously.

As we can see, the critical difference between graph Lapla-

cian smoothing (7) and graph trend filtering (4) lies in the

choice of penalty norm: ℓ2 in the former, and ℓ1 in the lat-

ter. The effect of the ℓ1 penalty is that the GTF program can

set many (higher order) graph differences to zero exactly,

and leave others at large nonzero values; i.e., the GTF es-

timate can simultaneously be smooth in some parts of the

graph and wiggly in others. On the other hand, due to the

(squared) ℓ2 penalty, the graph Laplacian smoother can-

not set any graph differences to zero exactly, and roughly

speaking, must choose between making all graph differ-

ences small or large. The relevant analogy here is the com-

parison between the lasso and ridge regression, or univari-

ate trend filtering and smoothing splines [26], and the high-

level conclusion is that GTF can adapt to the proper local

degree of smoothness, while Laplacian smoothing cannot.
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2.4 Related Work

Some authors from the signal processing community, e.g.,

[4, 18], have studied total generalized variation (TGV), a

higher order variant of total variation regularization. More-

over, several discrete versions of these operators have been

proposed. They are often similar to the construction that

we have. However, the focus of this work is mostly on

how well a discrete functional approximates its continuous

counterpart. This is quite different from our concern, as a

signal on a graph (say a social network) may not have any

meaningful continuous-space embedding at all. In addi-

tion, we are not aware of any study on the statistical prop-

erties of these regularizers. In fact, our theoretical analysis

in Section 5 may extend to these methods too.

2.5 Basic Structure and Degrees of Freedom

We now describe the basic structure of graph trend filter-

ing estimates, and present an unbiased estimate for their

degrees of freedom. Let the tuning parameter λ be arbi-

trary but fixed. By virtue of the ℓ1 penalty in (4), the so-

lution β̂ satisfies supp(∆(k+1)β̂) = A for some active set

A (typically A is smaller when λ is larger). Trivially, we

can reexpress this as ∆
(k+1)
−A β̂ = 0, or β̂ ∈ null(∆

(k+1)
−A ).

Therefore, the basic structure of GTF estimates is revealed

by analyzing the null space of the suboperator ∆
(k+1)
−A .

Lemma 1. Assume without a loss of generality that G is

connected (otherwise the results apply to each connected

component of G). Let D,L be the oriented incidence ma-

trix and Laplacian matrix of G.

For even k, let A ⊆ {1, . . .m}, and let G−A denote the

subgraph induced by removing the edges indexed byA (i.e.,

removing edges eℓ, ℓ ∈ A). Let C1, . . . Cs be the connected

components of G−A. Then

null(∆
(k+1)
−A ) = span{1}+ (L†)

k

2 span{1C1
, . . .1Cs

},

where 1 = (1, . . . 1) ∈ R
n, and 1C1

, . . .1Cs
∈ R

n are the

indicator vectors over connected components. For odd k,

let A ⊆ {1, . . . n}. Then

null(∆
(k+1)
−A ) = span{1}+ {(L†)

k+1

2 v : v−A = 0}.

The proof of Lemma 1 is straightforward and we omit it.

The lemma is useful for a few reasons. First, as motivated

above, it describes the coarse structure of GTF solutions.

When k = 0, we can see (as (L†)
k

2 = I) that β̂ will indeed

be piecewise constant over groups of nodes C1, . . . Cs of

G. When k = 2, 4, . . ., this structure is smoothed by mul-

tiplying such piecewise constant levels by (L†)
k

2 . Mean-

while, for k = 1, 3 . . ., the structure of the GTF estimate is

based on assigning nonzero values to a subset A of nodes,

and smoothing through multiplication by (L†)
k+1

2 . Both

of these smoothing operations, which depend on L†, have

interesting interpretations in terms of to the electrical net-

work perspective for graphs; see the supplement.

Second, Lemma 1 leads to a simple expression for the de-

grees of freedom, i.e., the effective number of parameters,

of the GTF estimate β̂. From results on generalized lasso

problems [27, 28], we have df(β̂) = E[nullity(∆
(k+1)
−A )],

with A denoting the support of ∆(k+1)β̂ (and nullity(M)
the dimension of the null space of a matrix M ). Applying

Lemma 1 then gives the following.

Lemma 2. Assume that G is connected. Let β̂ denote the

GTF estimate at a fixed but arbitrary value of λ. Under the

normal error model y ∼ N (β0, σ
2I), the GTF estimate β̂

has degrees of freedom

df(β̂) =

{

E [max {|A|, 1}] odd k

E [no. of connected components of G−A] even k.

Here A = supp(∆(k+1)β̂) denotes the active set of β̂.

As a result of Lemma 2, we can form simple unbiased es-

timate for df(β̂); for k odd, this is max{|A|, 1}, and for k
even, this is the number of connected components of G−A,

where A is the support of ∆(k+1)β̂. When reporting de-

grees of freedom for graph trend filtering (as in the example

in the introduction), we use these unbiased estimates.

2.6 Extensions

The GTF problem in (4) lies in the analysis framework,

wherein the estimate is defined through direct regulariza-

tion via an analyzing operator (penalty term) ‖∆(k+1)β‖1.

A nice feature of this framework is that we can easily alter

or extend the GTF estimator by adding other penalty terms.

For example, by adding a pure ℓ1 penalty on β itself, we ar-

rive at sparse graph trend filtering,

β̂ = argmin
β∈Rn

1

2
‖y−β‖22+λ1‖∆(k+1)β‖1+λ2‖β‖1, (8)

with two tuning parameters λ1, λ2 ≥ 0. Under the proper

tuning, the sparse GTF estimate will be zero at many nodes

in the graph, and will otherwise deviate smoothly from

zero. This can be useful in scenarios where the observed

signal represents a difference between two smooth pro-

cesses that are mostly similar, but exhibit (perhaps sig-

nificant) differences over a few regions of the graph. We

give an example of sparse GTF in Section 4. Aside from

this particular extension, many others are possible, e.g., by

changing the loss to suit a classification problem, mixing

graph difference penalties of various orders, or tying to-

gether several denoising tasks with a group penalty.

3 COMPUTATION

Graph trend filtering is defined by a convex optimization

problem (4), and in principle this means that (at least for
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small or moderately sized problems) its solutions can be

reliably computed using a variety of standard algorithms.

In order to handle large-scale problems, we describe two

specialized algorithms that improve on generic procedures

by taking advantage of the structure of ∆(k+1).

3.1 A Fast ADMM Algorithm

We reparametrize (4) by introducing auxiliary variables, so

that we can apply ADMM. For even k, we use a special

transformation that is critical for fast computation (follow-

ing [16] in univariate trend filtering); for odd k, this is not

possible. The reparametrizations for even and odd k are

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖Dz‖1 s.t. z = L

k

2 x,

min
β,z∈Rn

1

2
‖y − β‖22 + λ‖z‖1 s.t. z = L

k+1

2 x,

respectively. Recall D is the oriented incidence matrix and

L is the graph Laplacian. The augmented Lagrangian is

1

2
‖y − β‖22 + λ‖Sz‖1 +

ρ

2
‖z − Lqβ + u‖22 −

ρ

2
‖u‖22,

where S = D or S = I depending on whether k is even

or odd, and likewise q = k/2 or q = (k + 1)/2. ADMM

then proceeds by iteratively minimizing the augmented La-

grangian over β, minimizing over z, and performing a dual

update over u. The β and z updates are of the form

β ← (I + ρL2q)−1b, (9)

z ← argmin
x∈Rn

1

2
‖b− x‖22 +

λ

ρ
‖Sx‖1, (10)

for some b. The linear system in (9) is well-conditioned,

sparse, and can be solved efficiently using the precondi-

tioned conjugate gradient method. This involves only mul-

tiplication with Laplacian matrices. For a small enough ρ
(augmented Lagrangian parameter), the system (9) is diag-

onally dominant, and thus we can solve it in almost linear

time using a special Laplacian/SDD solver [23, 13, 10].

The update in (10) is soft-thresholding when S = I , and

when S = D it is given by graph TV denoising, i.e., the

graph fused lasso. For the graph TV denoising problem, we

rely on a direct solver based on parametric max-flow [6]. In

fact, this algorithm solves (4) directly when k = 0, and is

much faster empirically than its worst case complexity [3].

3.2 A Fast Newton Method

As an alternative to ADMM, the projected Newton method

[2, 1] can be used to solve (4) via its dual problem:

v̂ = argmin
v∈Rr

‖y − (∆(k+1))⊤v‖22 s.t. ‖v‖∞ ≤ λ.

The solution of (4) is then given via β̂ = y − (∆(k+1))⊤v̂.

(For univariate trend filtering, [11] adopt a similar strategy,

but instead use an interior point method.) Projected New-

ton method takes update steps using a reduced Hessian, so

abbreviating ∆ = ∆(k+1), each iteration boils down to

v ← a+ (∆⊤
I )

†b, (11)

for some a, b and set of indices I . The linear system in

(11) is always sparse, but conditioning becomes an issue

as k grows (note: the same problem does not exist in (9)

because of the addition of the identity matrix I). We have

found empirically that a preconditioned conjugate gradient

method works quite well for (11) for k = 1, but for larger

k it can struggle due to poor conditioning.

3.3 Computation Summary

In our experience with practical experiments, the following

algorithms work best for the various graph trend orders k.

Order Algorithm

k = 0 Parametric max-flow [6]

k = 1 Projected Newton method [2, 1]

k = 2, 4, . . . ADMM with parametric max-flow

k = 3, 5, . . . ADMM with soft-thresholding

Figure 3 demonstrates that the projected Newton method

converges faster than ADMM (superlinear versus at best

linear convergence), so when its updates can be performed

efficiently (k = 1), it is preferred. The figure also shows

that the special ADMM algorithm (with max-flow) con-

verges faster than the naive one (with soft-thresholding),

so when applicable (k = 2), it is preferred. We remark that

orders the k = 0, 1, 2 are of most practical interest, so we

do not often run naive ADMM with soft-thresholding.

GTF with k = 1 GTF with k = 2
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Special ADMM residual
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Figure 3: Convergence plots for projected Newton method

and ADMM for solving GTF with k = 1 and k = 2. The

algorithms are all run on a 2d grid graph (an image) with

16,384 nodes and 32,512 edges. For projected Newton, we

plot the duality gap across iterations; for the ADMM rou-

tines, we plot the average of the primal and dual residuals

in the ADMM framework (which also serves as a valid sub-

optimality bound).

1046



Trend Filtering on Graphs

Dense Poisson equation Sparse Poisson equation Inhomogeneous random walk
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Figure 4: Performance of GTF and others for three generative models on the Facebook graph. The x-axis shows the

negative SnR: 10 log10(nσ
2/‖x‖22), where n = 4039, x is the underlying signal, and σ2 is the noise variance. Hence the

noise level is increasing from left to right. The y-axis shows the denoised negative SnR: 10 log10(MSE/‖x‖22), so the

achieved MSE is increasing from bottom to top.

4 EXAMPLES

4.1 Trend Filtering over the Facebook Graph

In the introduction, we examined the denoising power of

graph trend filtering in a spatial setting. Here we examine

the behavior of graph trend filtering on a nonplanar graph:

the Facebook graph from the Stanford Network Analy-

sis Project (http://snap.stanford.edu). This is

composed of 4039 nodes representing Facebook users, and

88,234 edges representing friendships, collected from real

survey participants; the graph has one connected compo-

nent, but the observed degree sequence is very mixed, rang-

ing from 1 to 1045 (see [15] for more details).

We generated synthetic measurements over the Facebook

nodes (users) based on three different ground truth models,

so that we can precisely evaluate and compare the estima-

tion accuracy of GTF, Laplacian smoothing, and wavelet

smoothing. The three ground truth models represent very

different scenarios for the underlying signal x, each one

favorable to different estimation methods. These are:

1. Dense Poisson equation: we solved the Poisson

equation Lx = b for x, where b is arbitrary and dense

(its entries were i.i.d. normal draws).

2. Sparse Poisson equation: we solved the Poisson

equation Lx = b for x, where b is sparse and has 30

nonzero entries (again i.i.d. normal draws).

3. Inhomogeneous random walk: we ran a set of de-

caying random walks at different starter nodes in the

graph, and recorded in x the total number of visits at

each node. Specifically, we chose 10 nodes as starter

nodes, and assigned each starter node a decay prob-

ability uniformly at random between 0 and 1 (this is

the probability that the walk ends at any step instead

of travelling to a neighboring node). At each starter

node, we also sent out a varying number of random

walks, chosen uniformly between 0 and 1000.

In each case, the synthetic measurements were formed by

adding noise to x. We note that model 1 is designed to be

favorable for Laplace smoothing; model 2 is designed to be

favorable for GTF; and in the inhomogeneity in model 3 is

designed to be challenging for Laplacian smoothing, and

favorable for the more adaptive GTF and wavelet methods.

Figure 4 shows the performance of the three estimation

methods, over a wide range of noise levels in the synthetic

measurements; performance here is measured by the best

achieved mean squared error, allowing each method to be

tuned optimally at each noise level. The summary is that

GTF estimates are (expectedly) superior when the struc-

tured sparsity pattern exists (model 2), but are nonetheless

highly competitive in both other settings—the dense case,

in which Laplacian smoothing thrives, and the inhomoge-

neous random walk case, in which wavelets thrive.

4.2 Event Detection with NYC Taxi Trips Data

To illustrate the sparse graph trend filtering variant of our

proposed regularizers, we apply it to the problem of de-

tecting events based on abnormalities in the number of taxi

trips at different locations of New York city. (This data set

was kindly provided by authors of Doraiswamy et al. [7],

who obtained the data from NYC Taxi & Limosine Com-

mission. These authors also considered event detection, but

their topological definition of an “event” is very different

from what we considered here, and hence our results not

directly comparable.) Specifically, we consider the graph
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Figure 5: Comparison of sparse GTF and sparse Laplacian smoothing. In the plots, yellow corresponds to a zero estimate.

We can see qualitatively that sparse GTF delivers better event detection with fewer false positives (zoomed-in, the sparse

Laplacian plot shows a scattering of many non-yellow colors.

to be the road network of Manhattan, which contains 3874

nodes (junctions) and 7070 edges (sections of roads that

connect two junctions).

For measurements over the nodes, we used the number of

taxi pickups and dropoffs over a particular time period of

interest: 12:00–2:00 pm on June 26, 2011, corresponding

to the Gay Pride parade. As pickups and dropoffs do not

generically occur at road junctions, we used interpolation

to form counts over the graph nodes. A baseline seasonal

average was calculated by considering data from the same

time block 12:00–2:00 pm on the same day of the week

across the nearest eight weeks. The measurements y were

then taken to be the difference between the counts observed

during the Gay Pride parade and the seasonal averages.

Note that the nonzero node estimates from sparse GTF ap-

plied to y, after proper tuning, mark events of interest, be-

cause they convey substantial differences between the ob-

served and expected taxi counts. According to descriptions

in the news, we know that the Gay Pride parade was a giant

march down at noon from 36th St. and Fifth Ave. all the

way to Christopher St. in Greenwich Village, and traffic

was blocked over the entire route for two hours (meaning

no pickups and dropoffs could occur). We therefore hand-

labeled this route as a crude “ground truth” for the event of

interest, illustrated in the left panel of Figure 5.

In the middle and right panels of Figure 5, we compare

sparse GTF (with k = 0) and a sparse variant of Laplacian

smoothing (k = 1), defined by adding an ℓ1 penalty to its

criterion (7), as in (8). For a qualitative visual comparison,

the smoothing parameter λ1 was chosen so that both meth-

ods have 200 degrees of freedom (without any sparsity im-

poved). The sparsity parameter was then set as λ2 = 0.2.

Similar to what we have seen already, GTF is able to better

localize its estimates around strong inhomogenous spikes

in the measurements, and in this setting, is able to better

capture the event of interest.

5 THEORY

In this section we assume that y ∼ N (β0, σ
2I) and derive

asymptotic error guarantees for graph trend filtering. (The

normal model could be relaxed but is used for simplicity.)

Throughout we abbreviate ∆ = ∆(k+1), and denote by r
for the number of rows of ∆ (r = m for k even, and r = n
for k odd). All proofs are deferred to the supplement.

Using arguments in line with the basic inequality for the

lasso [5], we can establish the following bound.

Theorem 3. Assume that null(∆) has constant dimension,

and let B denote the maximum ℓ2 norm of columns of ∆†.

Then for λ = Θ(B
√
log r), the estimate β̂ in (4) satisfies

‖β̂ − β0‖22
n

= OP

(

B
√
log r

n
· ‖∆β0‖1

)

.

When the true signal is bounded under the GTF operator,

‖∆β0‖1 = O(1), the theorem says that the average squared

error of GTF converges at the rateB
√
log r/n, in probabil-

ity. Theorem 3 is quite general, as it applies to trend filter-

ing on any graph; indeed, it covers any generalized lasso
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problem, since ∆ is treated as an arbitrary linear operator.

One might therefore think that it cannot yield sharp rates.

Still, as we show next, it does imply consistency in certain

cases.

Corollary 4. Consider the trend filtering estimate β̂ of or-

der k, with a choice of λ as in Theorem 3. Then:

1. for univariate trend filtering (essentially, GTF on a

chain), ‖β̂ − β0‖22/n = OP(
√

log n/n · nk‖∆β0‖1);
2. for GTF on an Erdos-Renyi random graph, with edge

probability p, and expected degree d = np ≥ 1,

‖β̂ − β0‖22/n = OP(
√

log(nd)/(nd
k+1

2 ) · ‖∆β0‖1);
3. for GTF on a Ramanujan d-regular graph, and d ≥ 1,

‖β̂ − β0‖22/n = OP(
√

log(nd)/(nd
k+1

2 ) · ‖∆β0‖1).
The results for cases 2 and 3 of Corollary 4 are based on

the simple bound B ≤ ‖∆†‖2, the largest singular value of

∆†. When ∆ is the (k + 1)st order graph difference op-

erator, it is not hard to see that ‖∆†‖2 ≤ 1/λmin(L)
k+1

2 ,

where λmin(L) is the smallest nonzero eigenvalue of the

Laplacian L (also known as the Fiedler value [8]). In gen-

eral, λmin(L) can be very small, leading to a loose er-

ror bound; but for the particular graphs in question, it is

well-controlled. When ‖∆β0‖1 is bounded, cases 2 and

3 of the corollary show the GTF estimate to be converg-

ing at the rate
√

log(nd)/(nd
k+1

2 ); surely, as k increases,

this rate grows stronger, but so does the assumption that

‖∆β0‖1 = ‖∆(k+1)β0‖1 is bounded.

The rate for case 1 in Corollary 4, on univariate trend filter-

ing, is based on direct calculation of B using specific facts

about the univariate operator ∆†. In the univariate setting,

it is natural to assume that nk‖∆(k+1)β0‖1 is bounded;

e.g., this happens when β0 contains the evaluations of a

kth order spline function f0 over [0, 1], and TV(f
(k)
0 ) is

bounded. Under this assumption, the above corollary yields

a convergence rate of
√

log n/n for univariate trend filter-

ing. We note that this rate does not depend on k, and it is

not tight and can be improved to n−(2k+2)/(2k+3) [26]. The

latter rate is optimal for the univariate case, and is proved

using more sophisticated metric entropy arguments [14].

Transferring over such entropy calculations to the general

graph case is a topic for future work.

Even without metric entropy, the bound in Theorem 3 can

be improved by assuming a type of incoherence condition.

Theorem 5. Let ξ1 ≤ . . . ≤ ξn denote the singular values

of ∆, ordered to be increasing, and let ψ1, . . . ψr be the left

singular vectors (recall that r is the number of rows of ∆).

Assume the incoherence condition:

‖ψi‖∞ ≤ µ/
√
n, i = 1, . . . r,

for some µ > 0. Now let i0 ∈ {1, . . . n} with i0 →∞, and

let λ = Θ(µ[log r/n
∑n

i=i0+1 ξ
−2
i ]1/2). Then β̂ satisfies

‖β̂ − β0‖22
n

= OP





i0
n

+
µ

n

√

√

√

√

log r

n

n
∑

i=i0+1

1

ξ2i
· ‖∆β0‖1



 .

Again we emphasize that this theorem is general in that it

does not assume a priori that ∆ is a graph difference oper-

ator, and only leverages the properties of ∆ through its sin-

gular value decomposition. Compared to the basic bound

in Theorem 3, the result in Theorem 5 is clearly stronger

because it allows us to replace B—which can grow like

the reciprocal of the minimum nonzero singular value of

∆—with something akin to the average reciprocal of larger

singular values. But it does, of course, also make stronger

assumptions (incoherence of the singular vectors of ∆).

It is interesting to note that the functional in Theorem 5,
∑n

i=i0+1 ξ
−2
i , was also determined to play a leading role

in an error bound for a graph Fourier based scan statistic in

the hypothesis testing framework [20].

Graphs that are expected to exhibit the incoherence condi-

tion will be regular in the sense in that neighborhoods of

different vertices look roughly the same. Social networks

are likely to have this property for the bulk of their vertices

(i.e., with the exception of a small number of high degree

nodes). Another particular graph of this type is the regular

torus in 2 dimensions with ℓ× ℓ vertices. We finish with a

corollary regarding this graph.

Corollary 6. Let G be a regular square ℓ × ℓ torus with

n = ℓ2, and let k = 1. Then, with an appropriate choice of

λ as in Theorem 5,

‖β̂ − β0‖22
n

= OP

(

(log n)2/7

n4/7
· ‖∆β0‖1

)

.

6 DISCUSSION

In this work, we proposed graph trend filtering as a useful

alternative to Laplacian and wavelet smoothers on graphs.

This is analogous to the utility of univariate trend filtering

in nonparametric regression, as an alternative to smooth-

ing splines and wavelets [26]. We have documented em-

pirical evidence for the superior local adaptivity of the ℓ1-

based GTF over the ℓ2-based graph Laplacian smoother,

and the superior robustness of GTF over wavelet smoothing

in high-noise scenarios. Our theoretical analysis provides a

basis for a deeper understanding of the estimation proper-

ties of GTF, and it is conjectured that metric entropy argu-

ments will reveal an even sharper characterization for cer-

tain graph models. This and many other extensions, such

as a compressed version of GTF, and a multitask version of

GTF, are well within reach.
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