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Abstract

Avoiding losses from long-term trend reversals is challenging, and trend-following is one of

the few trading approaches to explore it. While trend-following is popular among investors

and has gained increased attention in academia, the recent diminished profitability in equity

markets casts doubt on its effectiveness. To clarify its cause and suggest remedies, we thor-

oughly examine the effect of market conditions and averaging window on recent profitability

using four major stock indices in an out-of-sample experiment comparing trend-following

rules (moving average and momentum) and a machine-classification-based non-trend-fol-

lowing rule. In addition to the significant advantage of trend-following rules in avoiding down-

side risks, we find a discrepancy in the optimum averaging window size between trend

direction phases, which is exacerbated by a higher positive trend direction ratio. A higher

positive trend direction ratio leads to poor performance relative to buy-and-hold returns.

This discrepancy creates the dilemma of choosing which trend direction phase to empha-

size. Incorporating machine-learning into trend-following is effective for alleviating this

dilemma. We find that the profit-maximizing averaging window realizes the level that best

balances the dilemma and suggest a simple guideline for selecting the optimum averaging

window. We attribute the sluggishness of trend-following in recent equity markets to the

insufficient chances of trend reversals rather than their loss of profitability. Our results con-

tribute to improving the performance of trend following by mitigating the dilemma.

1 Introduction

Stock markets have recurring upward and downward trend direction phases, and investors

can lose much of the earned profit during a maximum drawdown. However, avoiding losses

from trend reversals is a challenging task involving fundamental difficulties. This study consid-

ers the problem of long-term trend direction classification to help avoid losses from such

trend reversals.

The essential difficulty of the long-term trend direction classification problem lies in the

distinction between noisy daily stock price fluctuations and the rare large price trend direc-

tion reversals. Given the tendency for large, sudden trend reversals in the stock market after

a long, stable, and continued upward trend, we can interpret the difficulty for investors as a
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decision between “keep riding the upward long-term trend” or “be cautious about sudden

trend reversals”.

This situation corresponds to the stability-plasticity dilemma [1] that both human and

learning machines often encounter in the process of knowledge acquisition when confronted

with new environments, typically involving the problem of non-stationarity (or concept drift)

with class imbalance. Non-stationarity and class imbalance constitute a combination repre-

senting the most challenging current problems for computational intelligence studies [2]: the

machine classification problem is complicated by non-stationarity, where the underlying data

distribution is time-varying and insufficient information on the minority class complicates it

further.

In particular, dealing with non-stationarity is highly challenging [3]. Several studies propose

remedies to address non-stationarity by classifying the types of non-stationarity. However,

they consist mainly of general-purpose theory-oriented approaches [4–6] are critical of their

practical performance. They emphasize the importance of simplicity in the model by tailoring

it to each specific application problem. Because of such difficulties dealing with non-stationar-

ity, trend direction classification studies using machine classification focus on the short term,

with temporal horizons of daily and monthly at most.

The handling of simultaneous concept drift and class imbalance is attracting increased

attention, especially in real-world online learning. However, it is still an emerging research

area, and very few studies address the simultaneous occurrence of these problems [7]. Apply-

ing the proposed solutions to real-world data is often difficult because the expected character-

istics of the data are usually unknown [8].

As a trading strategy, trend-following is possibly the only approach that addresses the long-
term trend direction classification problem while providing the desired simplicity. Trend-fol-

lowing is a form of technical analysis that aims to ride an upward trend formation while avoid-

ing losses by identifying the downward trend reversals in time. Trend-following rules generate

buy (sell) signals when users identify the start (end) of a trend formation. In the simplest for-

mulation, a single parameter, the averaging window, also called the look-back period, balances

“the stability of the long-term trend” and the “sensitivity (plasticity) to trend direction

changes”. That is, the dilemma in choosing to emphasize the “clear capture of an upward

trend” and “sensitivity to trend reversal signals”. Hence, selecting the appropriate averaging

window becomes the key to improving trading performance.

This study aims to empirically clarify the source of the recent unstable and diminished

returns of trend-following in equity markets and suggest remedies to realize their improved

advantage in avoiding long-term trend reversals. We conduct the following two studies. First,

we perform a comprehensive out-of-sample comparative analysis that focuses on the effect of

trend direction and strength on profitability in relation to the averaging window size. We also

examine the effect of the imbalance degree of the trend direction ratio. We compare the sim-

plest form of standard trend-following rules: time-series momentum (TMOM) and single

moving average cross over (MACO), and the ordinal support vector machine (OSVM), a

simple machine-classification-based non-trend-following rule. To minimize the risk of data

snooping, we analyze data from major daily stock indices (the NYSE, NASDAQ, FTESEALL,

and TOPIX) for the sample period of 1973 to 2019. The out-of-sample test period is from 1995

to 2019, when researchers began to report unstable and reduced profitability, especially in the

U.S. markets.

Second, we introduce a machine-classification-based trend-following rule, the long-term

trend direction classifier (LTDC). We adopt this approach to contrast the features specific to

trend-following rules and examine the effectiveness of incorporating simple machine-classifi-

cation-based remedies in varying market conditions involving the problem of non-stationarity
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and the class imbalance. With only the target price series, the LTDC learns the stable long-

term MA-smoothed trend direction via a support vector machine (SVM) classifier in relation

to the trend reversal signs sensitively detected via short-term daily return moments. The differ-

ence between OSVM and LTDC is the target to learn: OSVM learns the raw short-term (e.g.,

monthly) stock price change direction, but the LTDC learns the MA smoothed long-term stock

price trend direction that realizes stable learning. We set the other conditions the same: Both

OSVM and LTDC employ SVM which is advantageous for varying market conditions com-

pared to many classifiers, and contain remedies for an imbalanced direction class.

This study offers two contributions to the literature. First, the results empirically illustrate

the underlying causes of the recent unstable performance, which, as the study demonstrates,

does not imply the loss of profitability. In addition to the significant advantage of trend-follow-

ing rules in avoiding downside risks, we find a discrepancy in the optimum averaging window

size between positive and negative trend phases, which is widened by higher positive trend

direction ratio, reflecting the degree of discrepancy. A higher positive trend direction ratio

leads to poorer performance relative to buy-and-hold returns (BHR), and the effect exceeds

that of volatility. That is, the discrepancy creates a dilemma regarding which trend direction to

emphasize when selecting the main control parameter, the averaging window, resulting in the

unstable performance of trend-following due to inappropriate averaging window size to adapt

to the market conditions black.

Second, we provide effective suggestions to mitigate the dilemma of averaging window

selection by focusing on the essential difficulty of trend-following rules. We demonstrate the

effectiveness of incorporating the simplest possible machine classification-based remedies into

standard trend-following rules to alleviate the negative effects of non-stationarity with class

imbalance on performance. We validate the advantages of trend-following rules in protecting

against long-term trend reversals via bootstrap significance tests. Among the compared rules,

the LTDC machine-classification-based trend-following rule has the highest returns and

robustness most of the time. Particularly, we extend the advantage of downside protection of

trend-following to markets with higher positive direction ratios. Moreover, we suggest a sim-

ple data-based guideline to select the optimum averaging window: the mean return level of the

target price series as a practical indicator reflecting both the key information of the trend direc-

tion ratio and the trend strength. This helps to attain profit closer to the maximum achievable

level.

Our results confirm that trend-following rules demonstrate their true value in markets with

sufficient opportunities for trend reversals. Their protection ability relative to BHR is not fairly

rewarded during a stable, upward trend period. This explains why the profitability of trend-fol-

lowing rules appears more commonly in commodity markets than in stock markets. Our

results also suggest that the recent reduced profitability of trend-following rules relative to

BHR in U.S. equity markets could be explained by the insufficient downside risks; that is, it

does not outperform BHR due to the prolonged upward trend periods in the dataset. We

extend the advantage of trend-following rules to markets with higher positive trend direction

ratios by providing effective remedies to mitigate the dilemma of which trend direction phase

to emphasize in averaging window selection. These remedies are commonly applicable for all

trend-following rules with any machine classifier, enabling further enhancement of the down-

side risk protection ability of the trend-following rules.

The remainder of the paper is organized as follows. Section 2 summarizes the related stud-

ies. Section 3 explains the trading rules compared including the proposed LTDC method and

remedies. Section 4 describes the data, while Section 5 outlines the research design. Section 6

presents the results of a comprehensive comparative out-of-sample experiment. Section 7 pro-

vides discussion on the remaining problems, and section 8 concludes.
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2 Related studies

2.1 Trend-following studies in finance

Trend-following strategies are widely used among practitioners and are receiving growing

scholarly attention because of their potential for high profitability and because they outper-

form BHR. See, for example [9–14]. Above all, trend-following strategies are as strong during

market stress periods with downside risk or high volatility phases [13, 15, 16]. In particular,

prior studies document the profitability of trend-following rules in volatile assets [17–19].

However, the recent reduced or unstable profitability of trend-following rules in equity

markets has become a subject of discussion, casting doubt on their effectiveness. In U.S. equity

markets, particularly for indices and large stocks, some studies report diminished or unstable

profitability from trend-following rules since around 1990 [13, 20–22]. Others report a similar

tendency in the equity markets of other developed countries [23] and foreign exchange mar-

kets [24], though no studies report evidence of a decrease in profitability in commodity futures

markets [25].

Empirical research suggests several factors leading to diminished or unstable profitability

from trend-following rules in U.S. equity markets. According to [26], the decrease in several

anomalies, including the momentum effect, is attributed to increased liquidity and trading

activity. The study about the out-of-sample and post-publication return predictability by [27]

suggests data mining effects, as well as the possibility that traders learn about mispricing from

academic publications.

Focusing on the fundamental problems of non-stationarity, a few studies provide theoreti-

cal evidence that the unstable profitability of trend-following rules is caused by the difficulty of

keeping the trading model optimal, where the averaging window size and trend strength are

the key factors. Assuming an autoregressive return process, [28] study the relationship

between averaging window size and the trading performance of MA rules theoretically, and

find that the dominant factor affecting trading performance changes from autocorrelation to

the drift around a few months’ look-back period. Moreover, their in-sample study demon-

strates that the drift (autocorrelation) phase is characterized by an increase (decrease) in the

Sharpe ratio as a function of the averaging window size.

Authors in [29] theoretically compare and contrast TMOM and MA rules to summarize

important properties of trend-following rules. Assuming an autoregressive return process,

they demonstrate a theoretical significant positive effect of trend strength on the similarity in

forecasting accuracy between the trading rules of TMOM and MA. Given the difficulty of

identifying trend strength and the time-varying optimal averaging window size, they conclude

that maintaining the optimum averaging window is difficult, and that the robustness to the

changes in the averaging window size determines whether MA outperforms TMOM in terms

of profitability. However, the overall picture of how trend strength and averaging window

affect the profitability behavior of trend-following is not yet empirically clarified.

2.2 Measures for non-stationarity with class imbalance in machine learning

Whereas non-stationarity with class imbalance has become a critical issue in applying machine

learning to real world problems, the combined problem is addressed by very little work [5, 7].

There are several measures developed to overcome non-stationarity without class imbalance

problem, which can be classified into the following three categories: 1) adaptive base learners,

2) adaptive training set formation, and 3) ensemble techniques [4, 5]. The second category

modifies the training set for better adaptation, which we can further decompose into

windowing techniques and weighting techniques [5]. For the purpose of realizing practical
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performance, however, [4–6] criticize the application of general-purpose theory-oriented rem-

edies, and emphasize the importance of designing the simple adaptation algorithm customized

to the specific nature of the non-stationarity in each application problem.

This study focuses on the windowing techniques in the second category because 1) it is the

simplest and 2) the standard trend-following trading rules are classified as windowing method

in that it modifies the target trend direction whose scale is controlled by averaging window or

look back period. Windowing techniques select an appropriate set of previous data to train a

classifier. How to use the past data streams depends on the type of non-stationarity the user

confronts, the nature of available data, and required computational costs. The most important

drawback of the windowing techniques is that it is impossible to determine the appropriate

window size for any given problem in advance [5]. Moreover, the user confronts a stability-

plasticity dilemma in optimizing window size between small window (fast adaptivity) and

large window (better generalization) [30].

The remedies developed for class imbalance under stationarity are classified as: 1) resam-

pling techniques, 2) algorithm-level methods, 3) ensemble learning. However, they are not

effective for non-stationarity data streams because they cannot handle drifts that affect classifi-

cation boundaries [7]. Employing evaluation measures giving more weight to the minority

class is simple and easily applicable, and reported as effective to handle imbalanced data stream

[31, 32]. Whereas there are several proposed measures such as G-mean, recall, and the Kappa

statistic, for example, Kappa statistic is reported as advantageous relative to the others for real-

time unbalanced class measure of accuracy [8, 33].

3 Trading rules and remedies

3.1 Standard trend-following rules

3.1.1 Time series momentum rule. Let t be the end date of the most recent month. The

observed series of raw daily closing prices at date t are P = {P1, P2, . . ., Pt}. The trend-following

rules make trading decisions based on the direction of the price trend during the past dL days

up to date t, where dL is the look-back period or averaging window. The difference between the

MA and TMOM is how we obtain the price trend. For both rules, the time scale of the long-

term trend changes as dL changes.

TMOM introduced by [11] differs from the conventional cross-sectional relative returns in

that it focuses purely on a security’s own past returns. The TMOM rule generates a buy (sell)

signal at date t if the past dL-day return is positive (non-positive). That is, the TMOM generates

a buy signal at date t if

TMOMt;dL
¼ Pt � Pt� dL > 0; ð1Þ

and a sell signal when TMOMt;dL
� 0. The source of the conventional cross-sectional momen-

tum profits originates mostly from the time-series dependence in realized returns rather than

the cross-sectional factors according to studies of momentum profit decomposition by [34,

35]. A 12-month look-back period and a one-month holding period is reported to generate the

highest profitability for all securities [11].

3.1.2 Moving average-based rule. MA-based trading rules have many variations, and we

use the most popular formulation, MACO. Using data on 28 commodity futures markets, [10]

demonstrate the superior performance of dual MA crossovers and channel strategies relative

to momentum strategies. They emphasize that employing the typical research design for

momentum strategies using intermediate investment horizons is the key for a profitable result

using MA strategies. In addition, they document that weakly significant individual results can

be significantly powerful when they are aggregated across markets. We obtain the long-term
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smoothed price at date t, yt, by the dL-day simple MA, formulated as

yt ¼
1

dL

XdL � 1

i¼0

Pt� i: ð2Þ

Here, the averaging window, dL, controls the degree of smoothing. Let zt be the short-term

MA with an averaging window of ds, where ds< dL. The MACO generates a buy signal on date

t when

MACOt;dL;ds
¼ zt � yt ¼

1

ds

Xds � 1

i¼0

Pt� i �
1

dL

XdL � 1

i¼0

Pt� i > 0; ð3Þ

and a sell signal when MACOt;dL ;ds
� 0. In the simplest form, we use the price at time t, Pt, as

the short-term MA, zt.

3.2 Long-term trend direction classification rule

3.2.1 Overview of the method. LTDC is a machine-classification-based trend-following

rule which is designed as simplest possible to realize effective handling of non-stationarity

with class imbalance that investors encounter to avoid losses from large trend reversals. The

LTDC trading rule predicts future long-term trend direction by stably learning the past rela-

tionship between the MA-smoothed long-term trend direction and sensitively capturing the

varying market conditions expressed as the recent return moments using the SVM classifier.

Fig 1 shows the overall architecture of the LTDC system. The system consists of two steps

before the unseen data classification: feature representation and classification model (re-)con-

struction. Given raw daily price time-series P and averaging window dL, the feature representa-

tion step prepares the class labels of y (dL-day MA of P). In the next step, Δy is computed as

daily return time series of y during past dm days, and the obtained moment statistics of Δy is

used as input vectors x. Here, the feature is that class labels are generated not from the raw
price series P but from the MA smoothed price series y representing the long-term trend move-

ment. We directly monitor the changes in return density shape (i.e., market conditions)

through the moment statistics of the short-term daily smoothed price change series. Any

machine classifier can be used in our framework, but we select binary SVM classification for

its robustness under concept drift. Parameter optimization is by grid search through k-fold

CV using maximum training data period to keep information of rare large trend reversals,

which reduces the need of frequent model re-construction. We select the model based on

Kappa statistics as they provide the sensitivity to detect a minor downward trend direction.

Provided the input vectors x (recent return moments describing market condition), SVM clas-

sifies the corresponding direction of target trend y. LTDC generates a buy (sell) signal if the

classified direction is positive (negative).

We provide a detailed explanation of the respective parts and the implementation below.

3.2.2 Support vector machine classification. The SVM was developed by [36] and it has

since been widely applied because of its excellent classification performance. Among various

methods, we select SVM for machine classifier of LTDC because it is simple but realizes robust

online learning under non-stationarity [4, 30]. Actually, the SVM is one of the most used clas-

sifiers in online concept drift learning studies [37]. In forecasting stock price direction, SVM is

one of the best algorithms [38–41]. Specifically, it is reported as advantages in environments

with non-stationarity and noise relative to competing methods [39, 42].

The SVM is based on the principle of structural risk minimization and statistical learning

theory. The basic idea behind SVM is to map the original data points in an input space to a
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high-dimensional feature space using linear classification. The learned classification rule is

then mapped back to the original input space. The standard model, C-support vector classifica-

tion, is as follows. Consider the training dataset x composed of N input vectors x1, � � �, xN cor-

responding to target labels y1, � � �, yN, where y 2 {−1, + 1}. We set labels yi to −1 (+1) if the

trend direction is downward (upward). Let ϕ(x) denote a fixed feature space transformation

for some weight vector w and bias parameter b. Then, the binary soft margin classification

problem is

arg min
w;b;x

1

2
jjwjj2 þ

C
N

XN

n¼1

xi; ðC > 0Þ; subject to yiðw
T�ðxÞ þ bÞ � 1 � xi; ð4Þ

where ξi� 0, i = 1, � � �, N is the slack variable tolerating misclassification and parameter C con-

trols the trade-off between a large margin and misclassification errors. That is, a larger C
increases the rate of recognition but reduces generalization performance through overfitting.

Fig 1. Schematic layout of the long-term trend direction classification method.

https://doi.org/10.1371/journal.pone.0276322.g001
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3.2.3 The stable class label of the long-term trend direction. The LTDC target to classify

is not the ordinal raw (typically daily) price change direction but the smoothed long-term price

trend direction, which facilitates the learning task of distinguishing the large downward trend

reversals from noisy fluctuations. Among the various methods for modifying the training set

for better adaptation, the windowing technique is the most common approach and provides

clearer probability estimation on unseen data [4, 5]. To obtain the long-term trend, we select

MA smoothing as its performance is superior to that of the TMOM rule [13, 29].

Fig 2 illustrates the algorithm that assigns the trend direction class label. The gray line illus-

trates the raw price series, P. We calculate the dL-day simple MA-smoothed price up to time t,
yt, as in Eq (2), and plot y = {y1, y2, � � �, yt} as the thick red and blue lines. We obtain the green

line, ~y, by further smoothing y to locate the local minima and maxima of y. We further smooth

the line by applying the df-day MA extended toward both sides via a Nadaraya-Watson kernel

regression [43] with a box kernel of bandwidth df. Along the smoothed trend line, y, the

Fig 2. Algorithm to assign the smoothed price trend direction labels. Local maxima (minima) between adjacent

intersections of the smoothed price trend (thick red and blue lines) and further smoothed price trend (green line) are set as the

trend direction reversal points of the smoothed price.

https://doi.org/10.1371/journal.pone.0276322.g002

PLOS ONE Trend-following with better adaptation to large downside risks

PLOS ONE | https://doi.org/10.1371/journal.pone.0276322 October 18, 2022 8 / 31

https://doi.org/10.1371/journal.pone.0276322.g002
https://doi.org/10.1371/journal.pone.0276322


highest (lowest) point in orange (light blue) between the adjacent green intersections is the

local maximum (minimum). Then, we assign a section from the local minimum (maximum)

to the local maximum (minimum) as an “Up” (“Down”) direction class, as colored in red

(blue).

The class assignment algorithm above is inspired by the MA-based technical indicators, the

golden cross and the death cross, but we modify them such that the buy/sell signal timing is on

the trend reversal point of the smoothed price to learn the market status by the trend direction

class. We control the target scale of trend reversals by the averaging window, dL, which ranges

from several days to several years.

3.2.4 Input vectors to sensitively capture market condition changes. Given the

smoothed price at time t, yt, as in Eq (2), we formulate the daily price change at time t as Δyt =

log yt − log yt−1. Let x at time step t be the smoothed price change series during dm days such

that xðt; dmÞ ¼ fDyt� dmþ1; . . . ;Dytg. We use the recent moment statistics of x(t, dm) as input

vectors, where the statistics are centralized about the mean for orders larger than one. The

optimum order of the moments to use depends on the nature of the target movement and the

available information. We focus on the orders up to four, the mean, variance, skewness, and

kurtosis to avoid overfitting and to simplify the interpretation of the results.

The advantages of using the moment statistics of the target series as input vectors are two-

fold. First, it requires no external data and model assumptions, avoiding the risk of model-mis-

specification due to market condition changes. Using the minimum number of input vectors

is desirable to create the simplest model possible to mitigate the minority class data insuffi-

ciency problem. However, selecting the appropriate input vectors is a difficult task requiring

expert knowledge of the target’s behavior. Moreover, the best set of input vectors can change

over time, which requires frequent updates. In our approach, instead of renewing the optimum

set of input vectors to adjust for the changes in market conditions, we capture the market sta-

tus change itself directly by the changes in the moment statistic.

Second, moment statistics summarize certain characteristics of the probability density shape

patterns and thus provide an effective warning of trend reversals by directly capturing the non-

stationary market condition. In particular, the third moment, skewness, indicates the degree of

trend direction class imbalance. Various streams of research provide evidence of the effective

warning ability of moment statistics. The literature on anomalies in prices reports evidence that

variance and skewness contain information on future return movements and offer predictabil-

ity (see, e.g., [44]). Further, several research streams report the effectiveness of moment statistics

as completely data-driven signals of the approach of critical transitions, such as ecology, neuro-

science, and medicine. Several more detailed reviews are provided by [45–47].

3.2.5 Long memory and remedies for class imbalance. Validation system is the k-fold

blocked cross-validation of [48], because it is advantageous in time-series direction forecasting

with small sample data compared to other procedures such as the standard out-of-sample pro-

cedure [49]. Parameter optimization is by a grid search.

All available data are partitioned into in-set samples used for training and out-of-sample

used only to evaluate performance. In-set samples are partitioned into k sections of equal size.

In the in-set training process, one block is withheld, as the in-set testing block, and the remain-

ing k − 1 blocks are used for learning. Each of the k in-set blocks can be the in-set test block in

the in-set training phase in turn. The directional accuracy of the candidate models is measured

k times, and the average value of the k accuracy results is compared with candidate models to

select the best model specification. The selected best model with the optimum parameter set is

retrained using all k in-set training blocks to forecast the trend direction of the out-of-sample

test block, which is used to evaluate trading performance.
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In online learning environment, the training data period expands every time SVM is recon-

structed, adding new data to use the full length, and partitioned into k sections of equal longer

size. Adaptive block size is desirable to adjust to the drift length, and an appropriate fixed

block size is a compromise between fast adaptivity (small size) and good generalization (large

size) [30]. However, the size or variability of the respective block depends on the applications

in which it is used [50]. For our research aim, loss aversion from large long-term trend rever-

sals which rarely happens, it is critically important to hold long memory by holding longest

available training data, which is also suggested by our preliminary test results.

The choice of model evaluation measure is especially important for avoiding trend reversal

risks, particularly when the target data have concept drift with class imbalance. In stock mar-

kets, a high degree of class imbalance occurs in periods of stable upward trend phases. From

the risk management perspective, risky events to avoid occur only rarely, but the correct detec-

tion of minor risky classes is more important than for non-risky classes. However, in the stock

price trend direction classification problem, standard measures such as accuracy, evaluate the

classification performance giving more weight to the relatively frequent, non-risky positive

direction. Moreover, investors and traders tend to prioritize avoiding losses over seeking the

same size gains [51]. Hence, we use an evaluation measure that places greater weight on the

minority downward trend direction class for maximum exploitation of information about the

downward trend class. Among these measures, we employ kappa statistics, which is one of the

best evaluation measures receiving increased attention, particularly in the literature on online

learning with concept drift and class imbalance [31, 32].

The specification of the directional evaluation measure, the kappa statistics, is as follows.

Denote the true positive, false positive, true negative, and false negative as TP, FP, TN, and FN,

respectively. Then, TP (FP) implies a correct (wrong) upward direction forecast; that is, a cor-

rect (wrong) buy decision. TN (FN) implies a correct (wrong) downward direction forecast;

that is, a correct (wrong) sell decision. Accuracy is defined as

Accuracy ¼ p0 ¼
TP þ TN

TP þ TN þ FP þ FN
: ð5Þ

Then, Cohen’s kappa statistic is

Kappa ¼
po � pe
1 � pe

; pe ¼
ðTP þ FNÞðTP þ FPÞ þ ðFPþ TNÞðFN þ TNÞ

ðTP þ TN þ FPþ FNÞ2
; ð6Þ

where po is the relative observed agreement identical to accuracy, and pe is the expected agree-

ment obtained when the same number of examples are observed in each class.

3.3 Standard machine-classification-based non-trend-following rule

We add a standard machine-classification-based non-trend-following rule, OSVM, to our

comparison to contrast the differences between trend-following rules and non-trend-following

rules. OSVM learns the direction of non-smoothed raw daily price change series ΔP following

common manner in machine learning studies. The design of OSVM is formulated as identical

with that of LTDC except that it classifies direction of raw price change series ΔP instead of

that of smoothed price change series Δy. Corresponding to the replacement of target direction

series from Δy to ΔP, the input vectors are also replaced from the moment statistics of Δy dur-

ing past dm days to those of ΔP during past dm days.
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4 Data

4.1 Data description

Selecting the dataset is important for an appropriate performance evaluation of a trend-follow-

ing trading strategy, and [52] warn of the danger of data-snooping bias and recommend using

only major stock market indices with sufficient length to enable the dataset to include long-

term trend reversal information. This study uses the daily closing prices of four major daily

stock market indices: the NYSE, NASDAQ, TOPIX, and FTSEALL. The selected indices are

the weighted averages of all (or a major part of) the listed companies in each market. These are

considered the most representative stock indices of the major countries. We collected these

data from Datastream database for the period from 1973 to 2019. For all four stock indices, the

in-sample trading period starts from January 1975, and the corresponding in-sample input

data period starts from around the beginning of May 1973, which is the maximum averaging

window 400 trading days before January 1975. The out-of-sample test period is from January

1995 to December 2019. This period covers the lower, unstable profitability of trend-following

rules in the U.S. equity market, especially for large stock and market indices [13, 20–22].

Fig 3 shows the movement of the log price and the corresponding daily returns for our full

sample period. All four stock index price series have repeated upward and downward trend

formations at the micro- and macro-scales. In the return sequences, we see periodic volatility

clustering. Table 1 summarizes the basic statistics of the daily raw data and moment statistics,

in addition to monthly directions. From Fig 3, we see that the long-term trend behavior of the

TOPIX is quite different from that of the other indices. If we consider the long-term linear

trend line, after the 1990s, only the TOPIX exhibits a sideways trend, while the other indices

Fig 3. Daily log price and return time series of the NYSE, NASDAQ, FTSEALL, and TOPIX.

https://doi.org/10.1371/journal.pone.0276322.g003

Table 1. Descriptive statistics.

Stock index Daily returns Monthly direction

Sample size Mean Variance Skewness Kurtosis Up (%) Down (%)

NYSE 11769 0.00026 0.00011 -1.055 27.364 334 (59.7) 225 (40.3)

NASDAQ 11769 0.00037 0.00015 -0.306 12.327 334 (59.7) 225 (40.3)

FTSEALL 11794 0.00026 0.00011 -0.272 11.505 340 (60.8) 219 (39.2)

TOPIX 11496 0.00014 0.00013 -0.378 13.414 314 (56.1) 246 (43.9)

Full sample period from 1973 to 2019.

https://doi.org/10.1371/journal.pone.0276322.t001
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show a globally upward trend. The monthly direction ratio of the TOPIX in Table 1 also has

the highest downward ratio among the four indices, but the difference from the other indices

is not that large.

4.2 Trend direction ratio imbalance problem

We must note the serious effect of changing the target trend scale in the difficulty of addressing

the trend direction identification problem. The price trend becomes longer-term as the averag-

ing window, dL, increases to smooth the trend further, resulting in a more serious trend direc-

tion ratio imbalance. A large positive trend direction ratio leads to deficient information about

downward trend direction, rendering the trend direction identification problem difficult to

address.

Using the full sample period data from 1973 to 2019, Fig 4 illustrates the increases in the

positive trend direction ratio as the target trend scale to measure directional (i.e., return fre-

quency) changes, from daily to two-yearly, for all stock market indices. For the U.S. stock mar-

ket indices, the positive direction ratio increases to over 80% at the two-yearly frequency,

while it is at a level slightly above 50% at the one-day change direction. In particular, it is diffi-

cult to predict the trend reversal of large dL after a prolonged period of continued upward

direction because information on the downward direction class in the past data, used to con-

struct the model for trading decisions, is insufficient. Among the four indices, the degree of

positive/negative direction class imbalance is the smallest for the TOPIX, and the difference

with other indices increases on longer time scales.

5 Research design

We next discuss the design and setting of the out-of-sample back test to compare four trading

rules: TMOM, MACO, LTDC, and OSVM.

5.1 Computational set-ups

The TMOM and MACO rules are given in Eqs (1) and (3) with zt = Pt, respectively. We

described the LTDC in Section 3.2 and OSVM in Section 3.3, respectively. We use the ksmooth
function in R with bandwidth df to obtain the further smoothed price trend of LTDC, ~y, which

we require for classifying the long-term trend direction. It is desirable that df changes as dL
changes, and we set df = 2dL.

As for the SVM classification of OSVM and LTDC, the computational details are as follows.

We choose the short-term memory parameter for obtaining the moment statistics from dm =

{5, 10, 15, 20} days. We implement the SVM using the kernlab [53] package interface for

libsvm [54], which includes an efficient version of the sequential minimization-optimization

algorithm. For the nonlinear mapping ϕ from the input space to the high-dimensional feature

space, we use the Gaussian radial basis function (RBF) kernel, which is the most suitable for

our purpose and is widely applied to unknown general time series data. The soft margin pen-

alty C controls the trade-off between the size of the margin and hyperplane violations. The

RBF kernel requires parameter γ, which controls the influential range of a single training

example. We set C = {2−3, . . ., 23} and γ = {2−3, . . ., 23}. The number of in-set blocks k is set as

four.

5.2 Experimental scheme

The four trading rules make buy/sell trade decisions given the past daily price data. We evalu-

ate the one-month ahead out-of-sample trading performance. We consider a monthly trading
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decision, as a one-month holding period achieved the best trading performance in a study by

[11]. We evaluate the results using a prequential approach, which is desirable in a streaming

setting with evolving data [7, 33]. Considering the loss aversion from long-term trend rever-

sals, such as a stock market crash, we use an expanding (landmark) window that enables us to

exploit the maximum information in the data.

The start of the in-sample trade performance evaluation period is 1975.1, and the input

data period starts from 400 trading days prior to obtain Eqs (1) and (2) with the maximum

averaging window. The sliding out-of-sample test period starts from 1995.1 and ends in

2019.12, during which previous studies report an insignificant profitability of trend-following

rules. A buy/sell decision for the trade at 1995.1 is made after 1994.12 based on the models

using in-sample training data up to 1994.12. We evaluate the out-of-sample one-month

returns from 1994.12 to 1995.1. The buy/sell decision of the second test month, from 1995.1 to

Fig 4. Changes in the positive direction ratio as the time scale of the change direction increases.

https://doi.org/10.1371/journal.pone.0276322.g004
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1995.2, is made based on the in-sample data up to 1995.1, and the same applies to the following

months.

For the SVM classification of OSVM and LTDC, the model is reconstructed every five

years, which is determined as a compromise between computational cost and model durability

under the constraint of available data. The construction of the first model is based on the data

up to 1994.12 and the first (second) monthly trade decision for 1995.1 (1995.2) is made when

the input vector up to 1994.12 (1995.1) becomes available. The application of the first model

continues until the monthly trade decision for 1999.12. The second model is constructed using

data up to 1999.12, and the first (second) monthly decision for trade from 1999.12 (2000.1) to

2000.1 (2000.2) occurs in 1999.12 (2000.1). This process continues until the last test month,

2019.12, where we apply the fifth model using data up to 2014.12 and the input vector up to

2019.11 for the prediction.

The subsequent section compares the out-of-sample test results of the four trading rules

from 1995.1 to 2019.12 to analyze the causes of the unstable profitability of trend-following

rules and explore the potential remedies.

6 Results

6.1 Unconditional performance analysis

6.1.1 Profitability changes by target index and averaging window. The out-of-sample

comparative study shows that changing the target index and averaging window, dL, has a sig-

nificant effect on unconditional trading performance, and we see common patterns for the

trend-following rules. Fig 5 shows the cumulative monthly returns of the trend-following strat-

egies by trading four major stock market indices in the recent period with different dL lengths.

We find that three trend-following rules, MACO, TMOM, and LTDC, mostly outperform

BHR for the TOPIX, but their performance for the other indices depends on dL. Moreover,

the excess return of the BHR of trend-following rules is higher for lower BHR indices, and the

optimum dL for each index is mostly common among the trend-following rules. Thus, the

effect of changing the trading rule is sometimes outweighed by the change in the target index

or dL. Among the four rules, the performance of LTDC is best mostly around the common

optimum dL, with no negative returns for all indices and dL.

Selecting the averaging window appropriate for each market property is quite effective for

trend-following rules to significantly outperform BHR by avoiding losses from trend reversals.

Fig 6 illustrates the evolution of the cumulative returns of trend-following strategies with

Fig 5. Cumulative monthly returns by market and averaging window.

https://doi.org/10.1371/journal.pone.0276322.g005
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respect to the common optimum dL, wherein the average of all three trend-following rules’

returns are maximized: dL = 400 for NASDAQ, 200 for NYSE and FTSEALL, and 100 for

TOPIX. We find that the machine-classification-based non-trend-following rule, OSVM, per-

forms poorly in most cases, significantly underperforming the trend-following rules, especially

for the TOPIX. The performance differences between the trend-following rules and BHR wid-

ens notably during a large price decline, implying the common advantage of trend-following

rules in avoiding losses from trend reversals. As a result of the significant effect of market

trend conditions common to trend-following rules, we observe the coincidence of the trading

decision of LTDC and TMOM for the NASDAQ with dL = 400. In our experiment, this coinci-

dence occurs only with the combination of the NASDAQ with dL = 400, which has the simplest

classification problem. We presume that the lowest noise level of the 400-day MA direction

makes the LTDC learning (by matching return moments) degenerate to focus only on the past

price mean movement. The LTDC has the best performance of all methods.

The features illustrated in Figs 5 and 6 are in line with results reported by [13] and [29] in

that the TMOM and MA-based rules have many similarities in their trading behavior. How-

ever, their finding that the MA-based rules outperform the TMOM rule is not clearly sup-

ported: we observe that the selection of dL and the market conditions affect the relative

performance of the TMOM and MACO. Alternatively, we find significantly different behavior

between the three trend-following rules and the non-trend-following rule. This result suggests

that the similarity and the nature common to trend-following rules stem from the focus on the

direction of the long-term price trend change instead of the monthly raw price change, as it is

the only difference between the OSVM and LTDC.

6.1.2 Downside risk protection. Our results validate the significant ability to protect

against downside risks rather than high volatility as a property common to trend-following

rules. We evaluate the risk tolerance of each rule by the standard risk measures: Sharpe ratio,

Sortino ratio, and maximum drawdown. We set the risk-free rate at zero. Table 2 summarizes

the risk tolerance statistics of the out-of-sample test period with reality-check significance by

[55], corresponding to the hypothesis that the performance measures outperform those of

Fig 6. Evolution of cumulative monthly returns at the common optimum averaging window for all trend-following rules. The selected common

optimum averaging window is dL = 400 for NASDAQ, 200 for the NYSE and FTSEALL, and 100 for the TOPIX.

https://doi.org/10.1371/journal.pone.0276322.g006
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BHR, where we use the stationary block bootstrap method of [56] with the optimum block

length determination by [57]. High volatility significantly affects the unstable performance of

trend-following rules [13, 17, 18]. However, Table 2 shows that the performance of trend-fol-

lowing rules relative to the BHR is best for maximum drawdown, and their Sortino ratios

are better than their Sharpe ratios. Most trend-following results for the lowest BHR market,

TOPIX, are significant, indicating that trend-following rules are advantageous for such stag-

nating (i.e., not stably upward) market conditions. In addition, the dL minimizing maximum

drawdown is the same or smaller than the return-maximizing dL. For all risk indicators, the

LTDC has the best overall performance, especially at around the optimum dL, where it outper-

forms the BHR, suggesting the effectiveness of incorporating machine classification-based

solutions to avoid downside risks. OSVM offers significant drawdown risk protection for the

NYSE and NASDAQ, whose cause we discuss in more detail later.

The stability of downside risk aversion of the LTDC is the best among the four rules from

Figs 7 and 8, implying the effectiveness of trend-following with remedies for class imbalance

Table 2. Risk tolerance statistics.

Stock index dL Sharpe Ratio(1) Sortino Ratio(2) Maximum drawdown(3)

LTDC MACO TMOM OSVM BHR LTDC MACO TMOM OSVM BHR LTDC MACO TMOM OSVM BHR

NYSE 10 0.219 0.035 0.135 0.420 0.534 0.312 0.050 0.204 0.621 0.767 0.667 0.549 0.637 0.376�� 0.552

20 0.187 0.037 0.084 0.260 0.053 0.123 0.483��� 0.633 0.524

50 0.447 0.168 0.349 0.672 0.249 0.540 0.465 0.497 0.323���

100 0.396 0.371 0.471 0.597 0.574 0.723 0.578 0.316��� 0.472

200 0.604 0.524 0.497 0.926 0.795 0.745 0.375�� 0.449 0.441�

300 0.427 0.367 0.420 0.648 0.538 0.626 0.429� 0.569 0.514

400 0.611 0.345 0.321 1.001 0.506 0.476 0.293��� 0.466� 0.585

NASDAQ 10 0.405 −0.056 0.150 0.426 0.560 0.606 −0.079 0.216 0.620 0.836 0.757 0.853 0.768 0.667�� 0.750

20 0.481 0.097 0.192 0.711 0.140 0.287 0.750 0.705� 0.602��

50 0.479 0.334 0.246 0.739 0.502 0.369 0.493��� 0.502��� 0.559���

100 0.476 0.417 0.213 0.719 0.649 0.311 0.460��� 0.441��� 0.706

200 0.443 0.427 0.386 0.674 0.656 0.598 0.459��� 0.558��� 0.458���

300 0.589 0.420 0.510 0.937 0.657 0.791 0.538��� 0.550��� 0.543���

400 0.560 0.518 0.560 0.859 0.822 0.859 0.564��� 0.393��� 0.564���

FTSEALL 10 0.276 −0.017 −0.083 0.215 0.377 0.400 −0.024 −0.116 0.294 0.527 0.345�� 0.504 0.618 0.463 0.469

20 0.250 −0.179 −0.120 0.346 −0.248 −0.166 0.462 0.634 0.656

50 0.167 −0.118 0.274 0.245 −0.164 0.425 0.450 0.617 0.337�

100 0.417 0.098 0.377 0.635 0.146 0.593 0.333� 0.503 0.341�

200 0.549 0.502 0.371 0.867 0.801 0.565 0.237��� 0.311� 0.340�

300 0.439 0.352 0.317 0.690 0.534 0.487 0.319� 0.443 0.495

400 0.308 0.306 0.226 0.470 0.462 0.338 0.395 0.466 0.571

TOPIX 10 0.317 0.027 0.478� 0.050 0.111 0.465 0.038 0.757� 0.069 0.155 0.492 0.599 0.334�� 0.599 0.595

20 0.143 0.223 0.435 0.212 0.333 0.695 0.475 0.421� 0.394

50 0.416 0.415 0.471� 0.648 0.641 0.741� 0.336�� 0.352� 0.433

100 0.555� 0.509� 0.527� 0.885� 0.797� 0.840� 0.404 0.348� 0.434

200 0.373 0.350 0.325 0.585 0.528 0.501 0.492 0.629 0.554

300 0.325 0.420 0.328 0.498 0.659 0.503 0.460 0.359� 0.460

400 0.136 0.516 0.089 0.199 0.820 0.128 0.565 0.387 0.584

(1) and (2) are annualized. (3) is the maximum drawdown from the peak. The reality check corresponds to the hypothesis that the performance measures outperform

those of the BHR. Statistical significance at the 1%, 5%, and 10% levels are indicated by ���, ��, and �, respectively.

https://doi.org/10.1371/journal.pone.0276322.t002
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and non-stationarity to avoid downside risks. Fig 7 depicts the time series plot of the draw-

down for each rule since the start of the test period in 1995.1 at the dL that maximizes the aver-

age returns of the three trend-following rules, as in Fig 6. Compared to the BHR (green line),

the drawdown size of the LTDC (bold black line) is significantly smaller most of the time,

exhibiting a stable drawdown protection ability. This is in contrast to the other rules, which

experience periods with significantly underperforming BHR for some indices. Fig 8 compares

the quantiles of the annual negative returns at the dL that maximizes the average returns of

the three trend-following rules. In Fig 8, the trend-following rules are mostly above the BHR,

while the OSVM (blue line) is mostly overlapping the BHR, except for the NYSE and NAS-

DAQ, whose positive direction ratio is the first and second among the four indices, respec-

tively. Most of the time, the LTDC has the smallest loss, especially in terms of the largest

downside risk.

6.1.3 Performance robustness. LTDC is robust in the mis-selection of the averaging win-

dow size and realizes an enhanced adaptation to market condition changes. Authors in [29]

emphasize the difficulty of selecting the time-varying return-maximizing averaging window,

and show that the forecast accuracy of trend-following rules depends on the robustness to

changes in dL. They propose a measure of performance robustness based on the average

Sharpe ratio over all averaging window sizes. We follow their approach to obtain an indicator

Fig 7. Time series plot of the drawdown at the dL common optimum for all trend-following rules.

https://doi.org/10.1371/journal.pone.0276322.g007

Fig 8. Quantile points of negative returns at the dL common optimum for all trend-following rules.

https://doi.org/10.1371/journal.pone.0276322.g008
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for robustness to the change in the averaging window size, expanding the set of target risk

measures.

Table 3 reports the Sharpe ratio, Sortino ratio, and maximum drawdown averaged over all

dL values of dL = 10, 20, 50, 100, 200, 300, and 400. We test the equality of the dL average of the

risk statistics for each pair of rules. Table 3 also presents the reality check p-values following

[55] based on the stationary block bootstrap by [56, 57]. Table 3 shows that the LTDC method

has the best overall robustness to the change in dL, with only minor performance fluctuations

among the target indices. With respect to the Sharpe and Sortino ratios, the LTDC outper-

forms the rules for all indices except the TOPIX. Regarding maximum drawdown, the perfor-

mance robustness of the trend-following rules is mostly stable for all target indices, in contrast

to the OSVM, which differs considerably for each index.

The LTDC has a significant advantage in terms of robustness for the FTSEALL. Trend-

following rules are commonly advantageous for the TOPIX. On the other hand, the OSVM

tends to be advantageous for the NYSE and NASDAQ, except for the maximum drawdown

of NASDAQ. Fig 4 shows the positive trend direction ratios for the NYSE, NASDAQ,

FTSEALL, and TOPIX, in that order. Hence, the relative performance patterns are consistent

with our conjecture that high positive trend direction ratios exacerbate the performance of

trend-following rules, which we subsequently validate. The validity of this conjecture implies

that the outperformance of the LTDC over the MACO and TMOM for FTSEALL suggests a

significant improvement in dealing with the class imbalance problem by combining machine

classification with trend-following rules to improve the adaptation of the rule to varying

market conditions.

6.2 The mechanism of performance instability

We focus on the trend direction phase as a significant factor in the unstable profitability of

trend-following rules. Among the potential market influences, [29] theoretically demonstrate

the significant effect of trend strength and the averaging window, assuming an autoregressive

return process. Moreover, they emphasize the importance of empirically estimating the trend

strength for improving the trading performance under uncertainty. We consider the BHR

during a calendar year as a simple measure of trend direction and strength, computable solely

from price series.

6.2.1 Effect of trend direction phase on trade decision accuracy. The difficulty of the

buy/sell decision changes according to the trend direction phase, and the most difficult phase

differs for trend-following and non-trend-following rules. Fig 9 shows the kernel density esti-

mates of the trade decision accuracy of each trading rule classified by the three trend direction

phases of the target price index: positive, negative, and trendless. Using 25 years of trading

decisions in the out-of-sample test results, the years with higher (lower) annual market returns

(BHR) than 0.1(−0.1) are classified as a positive (negative) trend phase, and those within ±0.1

are classified as a trendless phase. We compute the accuracy of the trading decisions in a calen-

dar year using Eq (5) for each dL and index, evaluating the correctness of 12 monthly trading

decisions given the target actual raw monthly price change directions. In a strict sense, evaluat-

ing the accuracy of predicting the direction of raw price changes is not a fair comparison,

since the target direction to predict is that of the raw price change for the non-trend-following

rule, but for the three trend-following rules, it is that of the smoothed trend. We take the aver-

age accuracy of the trend-following rules across all dL values.

In Fig 9, the prediction accuracy in the positive trend direction phase (red) is located at the

extreme right for all trading rules, implying the highest accuracy phase, or the easiest phase for

which to predict the direction. However, the most difficult phase to predict the monthly trend
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Table 3. Average risk tolerance statistics and the tests of equality comparison between two rules.

Stock index Trading rule

LTDC MACO TMOM OSVM

Average Sharpe ratio over all dL
NYSE Average Sharpe ratio

P-value

0.413 0.264 0.325 0.420

LTDC 0.232 0.410 0.978

MACO NA 0.320 0.498

TMOM NA NA 0.668

NASDAQ Average Sharpe ratio

P-value

0.491 0.308 0.322 0.426

LTDC 0.154 0.102 0.664

MACO NA 0.840 0.610

TMOM NA NA 0.636

FTSEALL Average Sharpe ratio

P-value

0.344 0.135 0.195 0.215

LTDC 0.072� 0.124 0.592

MACO NA 0.278 0.756

TMOM NA NA 0.916

TOPIX Average Sharpe ratio

P-value

0.324 0.351 0.379 0.050

LTDC 0.700 0.312 0.220

MACO NA 0.628 0.202

TMOM NA NA 0.170

Average Sortino ratio over all dL
NYSE Average Sortino ratio

P-value

0.631 0.395 0.491 0.621

LTDC 0.224 0.408 0.996

MACO NA 0.358 0.540

TMOM NA NA 0.706

NASDAQ Average Sortino ratio

P-value

0.749 0.478 0.490 0.620

LTDC 0.228 0.160 0.610

MACO NA 0.932 0.712

TMOM NA NA 0.688

FTSEALL Average Sortino ratio

P-value

0.522 0.215 0.304 0.294

LTDC 0.086� 0.158 0.546

MACO NA 0.296 0.832

TMOM NA NA 0.976

TOPIX Average Sortino ratio

P-value

0.499 0.545 0.595 0.069

LTDC 0.680 0.302 0.216

MACO NA 0.612 0.200

TMOM NA NA 0.176

Average maximum drawdowns over all dL
NYSE Average maximum drawdowns

P-value

0.470 0.497 0.499 0.376

LTDC 0.978 0.676 0.114

MACO NA 0.522 0.228

TMOM NA NA 0.122

NASDAQ Average maximum drawdowns

P-value

0.574 0.572 0.600 0.667

LTDC 0.350 0.906 0.144

MACO NA 0.146 0.116

TMOM NA NA 0.232

(Continued)
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direction differs for the trend-following rules and non-trend-following OSVM. The phase

located at the extreme left is the trendless phase (green) for the trend-following rules, TMOM,

MACO, and LTDC, but it is the downward trend phase (blue) for the non-trend-following

OSVM. The relative difficulty of the trendless phase and downward phase for the LTDC is

lesser than that of the other trend-following rules, possibly because it combines the properties

of OSVM and trend-following rules.

6.2.2 Discrepancies in the optimum averaging window between risk phases. While

market stress, such as downside risks and high volatility, influence the performance of trend-

following rules [13, 15, 29, 58], how those factors affect unstable profitability is not yet clear.

Fig 10 comprehensively illustrates the effect of such market risk conditions on the relationship

between excess returns relative to the BHR and averaging window. We measure the market

risk condition by the market trend direction sign or the market volatility level.

In Fig 10(a), we split the annual excess returns of each rule by the trend direction of the tar-

get stock price index in a calendar year; that is, the sign of the yearly BHR. Similarly, we divide

the annual excess returns of each rule into two phases at s.d. = C to plot Fig 10(b), wherein C is

the median of the standard deviation of each stock index. The horizontal axis of Fig 10 is the

averaging window size, dL, which we interpret as the trend scale of the direction to predict.

The bold solid lines indicate the unconditional excess returns, while the thin solid and dotted

Table 3. (Continued)

Stock index Trading rule

LTDC MACO TMOM OSVM

FTSEALL Average maximum drawdowns

P-value

0.363 0.497 0.480 0.463

LTDC 0.020�� 0.006��� 0.350

MACO NA 0.968 0.784

TMOM NA NA 0.822

TOPIX Average maximum drawdowns

P-value

0.460 0.442 0.456 0.599

LTDC 0.796 0.612 0.340

MACO NA 0.504 0.294

TMOM NA NA 0.472

The hypotheses that the Sharpe and Sortino ratios (maximum drawdown) are higher (lower) than those of the BHR is tested using a reality check.

���, ��, and � indicate statistically significant reality check p-values at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0276322.t003

Fig 9. Kernel density estimates of price direction prediction accuracy by trend direction phase. Trend direction is classified according to yearly

BHRs with the threshold at ±0.1. The accuracy of trend-following rules is averaged over all dL values.

https://doi.org/10.1371/journal.pone.0276322.g009
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lines indicate the risky and non-risky phases, respectively. Black, light blue, pink, and blue

denote the LTDC, MACO, TMOM, and OSVM, respectively. The leftmost panels of Fig 10(a)

and 10(b) merge the results for the four indices on their respective right side, summarizing the

effect of changing dL on the profitability of trend-following rules by trend direction phase.

From Fig 10(a), we find discrepancies in the optimal averaging window of the trend-follow-

ing rules between the positive and negative trend direction phases. As the leftmost merged

panel shows, the averaging window affects the excess return differently for each trend direction

phase, and the significant outperformance in the negative trend direction phase compensates

for the under-performance in the positive trend direction phase. This result is in line with the

reported advantages of trend-following rules during market stress periods. The relationship

between dL and excess returns in the negative trend phase is an inverted U-shaped curve,

whereas that in the positive trend phase is rising to the right. Hence, the optimal dL tends to be

smaller than that for the positive trend direction phase. According to [10, 11], setting a longer

investment horizon, a larger dL in our context, is more profitable, but our result suggests that it

is only valid during a period matching a positive trend direction phase.

The performance of each trading rule varies for each stock market index. This varying pat-

tern could be explained by the degree of discrepancy by trend direction phase, where the opti-

mal dL in the positive trend direction phase is critical. The relationship between dL and the

Fig 10. Changes in the relationship between annual excess returns and averaging window by market risk condition. (a)Risk phase by market trend

direction; (b) Risk phase by market volatility level.

https://doi.org/10.1371/journal.pone.0276322.g010
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excess returns of trend-following rules in the positive market return (BHR) phase (dotted

lines) is upward trending for the NYSE and NASDAQ, gently inverted V-shaped for the

FTSEALL, and downward-trending for the TOPIX. The difference between the optimal dL
in each trend direction phase is the largest for the NYSE and NASDAQ, followed by the

FTSEALL and the TOPIX. Hence, it becomes more difficult to stay near the optimal dL at

trend reversals for the NYSE and NASDAQ than for the TOPIX. That is, dealing with sudden

trend reversals, which is the problem of non-stationarity, is difficult for trend-following rules

in trading the NYSE and NASDAQ relative to trading the TOPIX.

We argue that the large discrepancy of the optimum dL size by trend direction phase is due

to the stable long upward trend period, which we can empirically measure by the positive

trend direction ratio. With respect to the out-of-sample test period from 1995 to 2019, the

average positive/negative return ratios of the yearly trend direction of the NYSE, NASDAQ,

FTSEALL, and TOPIX are 76%, 76%, 68%, and 52%, respectively.

For the target index series with a largely positive trend direction, such as the NYSE and

NASDAQ, trading decisions based on the past price movement are overwhelmed by the posi-

tive trend direction by frequency, which leads to a greater emphasis on the upward trend

direction phase. This corresponds to the case when a long-term upward trend phase continues,

and simply riding the upward trend without considering protection against downside risk can

generate profit. Hence, a larger dL becomes more profitable because it captures the long-term

trend with less noise. However, adapting to trend reversals after a long continued positive

trend is difficult, as traders are unprepared to detect the signs of a trend reversal. The situation

is different for a balanced index such as the TOPIX, where the trend direction class imbalance

problem is not severe. The downside risk of the TOPIX is larger than that of the other indices,

even in a positive trend direction year, and maintaining protection against the downside risk,

as in the negative trend direction phase at around dL = 100, is desirable. With less discrepancy

in the optimal dL, therefore, it is easier to maintain the optimal dL for the TOPIX.

The relative advantage of the OSVM for the NYSE might be explained by the smaller imbal-

ance in the target trend direction for trading decisions. The time scale of the target direction of

the OSVM is smaller than that of trend-following rules. Fig 4 shows that the positive direction

ratio of the NYSE and NASDAQ is more balanced for the shorter target time scale, which is

one month for the OSVM but more than six months for the three trend-following rules. For

the NYSE and NASDAQ, we conjecture that the benefit of reducing noise by targeting the

smoothed trend direction is outweighed by the negative effects of the large class imbalance.

Table 4 reports the Pearson correlation and Spearman rank correlation test results for the

risk factors and excess returns in the same year. These results confirm the adverse effect of

high positive direction ratios on the excess returns of the timing strategies. We take the average

excess returns of each trading rule in a year across all dL values. For the first risk factor, the pos-

itive direction ratio, we use the monthly direction ratio in a year to ensure a sufficient sample

size. We find a high significance of the positive direction ratio for all trading rules, while the

OSVM has a lower significance with a smaller absolute coefficient than that for the trend-fol-

lowing rules. Given the statistically significant negative effect of the larger positive trend direc-

tion ratios on the performance of trend-following rules, the outperformance of the LTDC

relative to the MACO and TMOM for the FTSEALL in the downside protection robustness

result of Table 3 can be understood as the increased adaptability of trend-following rules to a

higher degree of class imbalance, implying the effectiveness of machine classification-based

remedies for class imbalance.

The findings from Fig 10(b) according to market volatility level are mostly like those of Fig

10(a) by market trend direction. However, the overall differences in performance by market, espe-

cially in a risky phase (upper side of the panels) are less obvious in Fig 10(b) than in Fig 10(a).
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Table 4 confirms the correlation between the volatility level of the index and the excess return

of each rule, where the average daily standard deviation of each stock index in a year represents

market volatility. However, the coefficients and significance are smaller than those of the posi-

tive direction ratio. This is consistent with the results in Tables 2 and 3, which indicate that the

trend-following rules are advantageous in terms of downside risk rather than volatility risk. A

large trend reversal tends to accompany a high volatility phase. While high volatility is a possi-

ble factor accounting for the unstable performance of trend-following rules, we find that trend

direction and strength are likely to be more essential factors in the trading behavior of trend-

following rules.

6.3 Towards optimization of the averaging window size

We see that trend direction change (non-stationarity) and the trend direction ratio (class

imbalance) significantly affect the trading performance of trend-following rules. The profit-

maximizing dL should be smaller in a downward trend phase than in an upward trend phase to

ensure the sensitivity to capture trend reversal signals. Given the difficulty of predicting sud-

den trend reversals, the key is to keep the averaging window near the optimal level that bal-

ances the trade-off between the trend and reversal to adapt to each trend direction phase.

Fig 11 shows that the dL that achieves the maximum trading profit best balances the trade-

offs. The figure plots the 25-year out-of-sample results, where the horizontal (vertical) axis is

the average annual returns when the yearly trend direction of the target index is negative (posi-

tive). The black upward-sloping line shows the 25-year average positive/negative ratio of yearly

change direction of the target index, indicating the degree of the yearly trend direction class

imbalance of the target index. The gray 45-degree lines indicate the even yearly trend direction

ratio. The red, pink, and orange figures in each panel indicate the first, second, and third

profit-maximizing dL values, respectively. The blue star located at the upper right end of the

black upward-sloping line indicates the direction that maximizes the profit while keeping the

balance of the yearly trend direction ratio. It also indicates the overall strongest trend point

along the trend direction balancing line, as the positive direction ratio tends to be larger than

the negative direction ratio in stock markets. In Fig 11, the colored dL points tend to be located

closest to the blue stars, mostly in order by profit: red is the closest, followed by pink and

orange. This result suggests that trend strength and the trend direction ratio are the key factors

Table 4. Pearson and Spearman rank correlations between risk factors and excess returns averaged over all dL values.

Risk factor Method Pearson correlation Spearman rank correlation

Coefficient P-value Coefficient P-value

Positive direction ratio(1) LTDC -0.655��� 1.46e-13 -0.623��� 4.55e-12

MACO -0.637��� 1.06e-12 -0.568��� 6.84e-10

TMOM -0.653��� 1.74e-13 -0.626��� 3.27e-12

OSVM -0.440��� 4.56e-06 -0.494��� 1.80e-07

Market volatility(2) LTDC 0.561��� 1.29e-09 0.256�� 0.010

MACO 0.563��� 1.07e-09 0.224�� 0.025

TMOM 0.553��� 2.39e-09 0.301��� 0.002

OSVM 0.198�� 0.048 0.147 0.144

(1) Positive monthly direction ratio of the stock index in a calendar year.
(2) Standard deviation of daily index returns in a calendar year. Results for each index are merged.

���, ��, and � indicate statistically significant p-values at the 1%, 5%, and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0276322.t004
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to consider when selecting the return-maximizing dL best adapted to occasional trend direc-

tion phase changes; that is, non-stationarity.

We suggest the mean returns of the target price series as a simple guideline to select the

optimal dL. The mean returns reflect the key information of both trend strength and the trend

direction ratio. A stronger trend yields a larger mean return. The correlation between the

monthly positive price direction ratio and mean returns in the same year is around 80% for

each market. Fig 12 illustrates the relationship between the mean returns and the return-maxi-

mizing dL value. We divide the 25 out-of-sample test years into five blocks (1995-1999, 2000-

2004, 2005-2009, 2010-2014, and 2015-2019) and plot the mean returns during each block and

the corresponding profit-maximizing dL value. The orange, red, light blue, and blue points

indicate the NYSE, NASDAQ, FTSEALL, and TOPIX, respectively. We find a positive relation-

ship between mean returns and the profit-maximizing dL value. The estimated coefficients of

the simple regression lines in each panel are all significant, with p-values less than 1%.

Using this relation, we can compute a roughly appropriate dL depending on the market con-

dition, namely trend strength and the trend direction ratio. In the case of monthly trading by

LTDC, for example, an appropriate dL to use is determined by d̂L � ¼ 102:27þ 10781:68 �r5y,

where �r5y is the mean returns during the past five years. By incorporating this dL determination

Fig 11. Averaging windows and the balance between positive and negative market directions. The red, pink, and orange figures are the first, second,

and third profit-maximizing dL values, respectively. The blue star at the upper right end of the black upward-sloping line indicates the direction for

maximizing profit while keeping the upward/downward ratio of the corresponding market.

https://doi.org/10.1371/journal.pone.0276322.g011
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step before SVM re-construction, we can implement LTDC trading with adaptive dL condi-

tional on market trend condition. Note that dL must be determined before SVM re-construc-

tion, because dL controls the target trend scale to classify. By executing the backtest, this

method can be implemented to any trend-following rule to trade any price series. The realized

past returns are a helpful first step in selecting the appropriate dL value to maximize the trading

performance of trend-following rules by keeping the best balance of “riding the upward trend”

and “being cautious about occasional trend reversals”.

For further improving the performance of return maximizing dL estimation, it is important

to examine the effect of CV block size to obtain the optimal dL. Whereas our preliminary test

results reveal that the effect from extending the training data period significantly exceeds that

of changing the CV block size, it is desirable to thoroughly examine the direct effect of chang-

ing CV block size to the return maximizing dL determination.

6.4 Number of trades

The selection of dL significantly affects the number of trades, and hence, transaction costs.

We compute the trading results when the trade is executed only when the buy/sell decision

changes from the last month. We depict the relationship between the number of transactions

during the 25-year out-of-sample test period and dL in Fig 13. The number of trades using

the trend-following rules decreases as dL increases because the target trend scale grows as dL
increases, reducing the number of trend reversals. While the number of trades declined signifi-

cantly in the monthly trading experiment, the cumulative returns corresponding to Fig 13

improved slightly from the results in Fig 5. The trend-following rules’ common optimum dL
during the 25-year test period is not less than 100, and the number of trend-following trades

becomes significantly lower around dL� 100 relative to the non-trend-following OSVM rule.

The number of trades using the LTDC is usually the lowest for all dL values and all indices.

7 Discussion

This article studies the problems that trend-following trading confronts, and proposes a simple

data-based method of finding an appropriate averaging window which is the key control

parameter common for trend-following rules. The limitation of this study is that we have not

reached to incorporate our result to provide a practical online trading algorithm. To realize a

practical online trading algorithm where traders enjoy the advantage of LTDC while keeping

Fig 12. The profit-maximizing dL value and mean market returns. In two-way ties, the mean dL values are used.

https://doi.org/10.1371/journal.pone.0276322.g012
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the averaging window at optimal level at every trading decision, it is important to reduce the

computational cost of LTDC. The solution key is to design the learning system customized to

our specific problem, long-term trend direction classification, to make the simplest possible

data-driven system [4–6].

The nature of change we need to handle is determined by our aim, avoiding losses from

long-term trend reversals. Hence LTDC requires the longest available training data period to

learn the comprehensive relationship between return density shape (via moment statistics)

and long-term trend direction including rare large drawdown. Learning longest available data

period affects the design of the learning system in two ways: 1) it makes difficult to reduce

computational cost of model construction, and 2) it makes the durability of constructed model

longer and reduces the gain from re-construction as training period increases.

To reduce the computational cost of windowing techniques in online concept drift learning

literature, most approaches aim at reducing the training data such as “forget memory (discard

old training data)” or “discard irrelevant training data” [30, 37]. The key for reducing the train-

ing cost without shortening training data period, therefore, becomes discriminating the essen-

tial information from the training data. Extracting information necessary to learn the cases

that are easy to mis-classify seems prominent, but immediate implementation is difficult

since it requires further studies on the essential affecting factors to change long-term trend

directions.

As to the model durability, there are studies reporting that the classification performance of

well pre-trained learning machine based on cross-validation can keep offering better solution

than that of online dynamic approach [59, 60]. The SVM of LTDC learns the long-term trend

direction in relation with the density shape expressed by return moment statistics, and the

extra gain of model re-construction by adding new data decreases as the training data period

becomes longer. If the initial learning based on the longest available data has sufficient quality,

frequent model re-construction might not be required by implementing some fine-tuning

algorithm in generating decision.

Given above discussion, a possible solution is a system combining full-learning model and

detection strategy: 1) multiple model (re-)construction with different averaging window (dL)

settings by SVM in LTDC framework, and 2) online optimum dL model selection based on the

latest past mean returns. The relationship between return maximizing dL and the latest past

mean returns is estimated at the timing of model (re-)construction. Before every trade deci-

sion, the recent return moment statistics is input to the selected model using most appropriate

Fig 13. Number of transactions.

https://doi.org/10.1371/journal.pone.0276322.g013
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dL to generate a trade decision. Here, the trend strength (the status of non-stationarity) and

trend direction ratio (the degree of class imbalance) is monitored via the recent mean return

levels to keep selecting the return-maximizing dL model.

Another direction to reduce computational cost is employing unsupervised learning which

does not require training data. This study adopts supervised learning through k-fold CV since

the current unsupervised learning yet remains placed as challenging approach especially in

terms of the accuracy [61, 62], and cross-validation-selected algorithm is guaranteed as best-

performing algorithm [60]. LTDC rule learns return density shape via moment statistics,

therefore, it might also be a prominent direction to pursue unsupervised learning such as

online density estimation exploiting more detailed information about the non-stationarity

status.

8 Conclusions

This study confirms the advantage of trend-following trading in avoiding losses from long-

term trend reversals, and empirically demonstrates that the long-term trend direction change

(non-stationarity) and trend direction ratio (class imbalance) are the fundamental affecting

factors to trend-following trading performance. The difference in the optimum averaging win-

dow, dL, by trend direction phase is found to lead to the stability-plasticity dilemma: the trade-

off between “keep riding the upward price trend” and “be cautious about sudden trend rever-

sals” in adapting to the time-varying trend reversal risks. That is, the dilemma of selecting a

high dL value for a stable identification of the upward trend direction, and a low dL value for

the sensitivity (plasticity) to capture trend reversal signals. We demonstrate several effective

directions to improve conventional trend-following trading performance by outperformance

of LTDC rule, and propose a data-based appropriate averaging window finding method adap-

tive to the market condition.

This study explains that the unstable profitability of trend-following is caused by insuffi-

cient chances of avoiding trend reversals. It provides insight to investors that trend-following

strategies performs best relative to BHR in risky markets when downside risk protection is

most needed. The proposed averaging window finding method is the first data-based guideline

easily applicable in practical trading, which is realized through investigation of comprehensive

relationship between the optimal averaging window size and various market conditions. It

would be more helpful for investors than using some popular averaging window size. More-

over, we are the first to introduce machine classification of smoothed long-term trend direc-

tion to generate trading decision, paving the way to explore the significant improvement of

long-term downside risk aversion ability.

The remaining problem is incorporating our result to provide the practical online trading

algorithm. It is needed to evaluate the practical performance of the suggested learning system

combining the full-learning LTDC model and online optimal dL selection algorithm. Further

understanding about long-term trend direction behavior is also the key for discriminating

unnecessary instances from the training data to achieve computational cost reduction.

Predicting large long-term trend reversal is quite challenging, and few studies have tackled

with it. Trend following is currently the only trading strategy that aims making profit by

avoiding large losses from long-term trend reversals. Trend direction classification studies of

machine-learning-based approaches have focused on short-term trend direction because of

the challenging nature of long-term trend direction classification. By directly handling the

essential difficulties lying behind it, non-stationarity with class imbalance, this study helps

improve the performance of all trend-following rules, being beneficial to both academia and

practitioners.
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