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Abstract. In this paper I present new methods for bias adjust-

ment and statistical downscaling that are tailored to the re-

quirements of the Inter-Sectoral Impact Model Intercompar-

ison Project (ISIMIP). In comparison to their predecessors,

the new methods allow for a more robust bias adjustment

of extreme values, preserve trends more accurately across

quantiles, and facilitate a clearer separation of bias adjust-

ment and statistical downscaling. The new statistical down-

scaling method is stochastic and better at adjusting spatial

variability than the old interpolation method. Improvements

in bias adjustment and trend preservation are demonstrated

in a cross-validation framework.

1 Introduction

Bias adjustment in climate research is the adjustment of

statistics of climate simulation data for the purpose of mak-

ing them more similar to climate observation data. In many

application cases, these climate simulation and observation

data have different spatial resolution. In most of these cases,

the climate observation data are more highly resolved. In any

of these cases, bias adjustment requires bridging the resolu-

tion gap.

In previous phases of the Inter-Sectoral Impact Model

Intercomparison Project (ISIMIP; Warszawski et al., 2014;

Frieler et al., 2017), climate simulation data were always

more coarsely resolved than the climate observation data

used for their bias adjustment, and the goal of this bias ad-

justment was not just to remove systematic biases from the

simulation data but also to increase their spatial resolution to

that of the observation data. In application cases like these,

bias adjustment as it is commonly understood involves two

distinct problems: (i) the actual bias adjustment at the spatial

resolution of the simulation data and (ii) a statistical down-

scaling to the spatial resolution of the observation data.

Commonly, the bulk of resources for the development of

solutions to these problems is allocated to problem (i), and

problem (ii) is solved by a mere spatial interpolation of the

simulation data to the spatial resolution of the observation

data prior to bias adjustment. For example, this approach

was adopted in the ISIMIP Fast Track (Hempel et al., 2013),

in ISIMIP2b (Frieler et al., 2017) and for the generation of

the NASA Earth Exchange Global Daily Downscaled Pro-

jections data set (NEX-GDDP; Thrasher et al., 2012). The

simplicity of this approach comes at a price if, as usual, the

same univariate bias adjustment method is independently ap-

plied in every cell of the observation data grid. The bias ad-

justment then retains the spatial coherence of the interpolated

simulation data and inflates temporal variability at their orig-

inal spatial resolution (Maraun, 2013).

These issues can be overcome by spatially multivariate

bias adjustment or, as suggested by Maraun (2013), using a

statistical downscaling method which is able to add the spa-

tiotemporal variability that is missing at the simulation data

resolution. He argues that such a method should be stochas-

tic, given the multivalued nature of statistical downscaling

(there are infinitely many high-resolution fields compatible

with the same low-resolution field) and the multifaceted in-

flation issues caused by deterministic methods such as spatial

interpolation.

In this paper, I present the bias adjustment and statisti-

cal downscaling methods to be used in phase 3 of ISIMIP.

These methods have been developed following the paradigm
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of a clear separation of bias adjustment and statistical down-

scaling. In ISIMIP3, climate simulation data shall first be

bias-adjusted at their original spatial resolution using spa-

tially aggregated climate observation data. In a second step,

their spatial resolution shall be increased using the original

climate observation data and a stochastic statistical down-

scaling method.

In addition to this paradigm shift, the new bias adjust-

ment method has been developed to work better than its

predecessor in several respects. The following design deci-

sions were taken in this context. While structurally differ-

ent bias adjustment methods (including but not restricted to

quantile mapping methods) were used for different climate

variables in ISIMIP2b (Frieler et al., 2017), the ISIMIP3

method applies a newly developed quantile mapping method

to all climate variables since this allows for the controlled

adjustment of biases in all quantiles. The new method is

approximately trend-preserving in all quantiles and there-

fore features a more comprehensive trend preservation than

the ISIMIP2b method. The new quantile mapping method is

parametric because this promises a more robust adjustment

of biases in extreme quantiles than nonparametric quantile

mapping (Switanek et al., 2017). The new bias adjustment

method also includes a modified version of the event likeli-

hood adjustment introduced by Switanek et al. (2017). This

new feature facilitates a confinement of extreme values to the

physically plausible range, which had to be enforced using

cap values in ISIMIP2b.

The remainder of this paper is organized as follows. Cli-

mate simulation and observation data used in this study are

described in Sect. 2. Details of the ISIMIP2b and ISIMIP3

bias adjustment and statistical downscaling methods are pre-

sented in Sect. 3. Also in Sect. 3 I explain how the new and

old methods are tested in the following. Test results are pre-

sented and compared in Sect. 4. Conclusions are drawn in

Sect. 5.

2 Data

2.1 Climate simulation data

Climate simulation data are taken from the fifth phase of

the Coupled Model Intercomparison Project (CMIP5; Tay-

lor et al., 2011). I use data produced with the four climate

models that were also used in ISIMIP2b (GFDL-ESM2M,

HadGEM2-ES, IPSL-CM5A-LR, MIROC5; Frieler et al.,

2017). For bias adjustment at 2◦ spatial resolution, daily data

for 10 variables (see Table 1) are conservatively interpolated

(Jones, 1999) to a global 2◦ × 2◦ latitude–longitude grid. I

concatenate output data of the historical CMIP5 experiment

with output data of the rcp85 CMIP5 experiment to obtain

climate simulation data representing the historical time pe-

riod 1980–2015. Only output data of the rcp85 CMIP5 exper-

iment are used to obtain climate simulation data representing

the future time period 2064–2099.

2.2 Climate observation data

As observational reference data for bias adjustment and sta-

tistical downscaling I use the EartH2Observe, WFDEI and

ERA-Interim data Merged and Bias-corrected for ISIMIP

(EWEMBI; Lange, 2019a), which cover the entire globe at

0.5◦ spatial and daily temporal resolution from 1979 to 2016.

For a description of the EWEMBI data set including vari-

ables covered, data sources used, and bias adjustments ap-

plied, see Frieler et al. (2017, Sect. 3.1 and Table 1). For

statistical downscaling from 2 to 1◦ and for bias adjustment

at 2◦ spatial resolution, these data are conservatively aggre-

gated to global 1◦ × 1◦ and 2◦ × 2◦ latitude–longitude grids,

respectively.

3 Methods

3.1 ISIMIP2b method

The ISIMIP2b bias adjustment and statistical downscaling

method is comprehensively described in Frieler et al. (2017),

Lange (2018), and Hempel et al. (2013). For statistical down-

scaling, simulation data are bilinearly interpolated to the ob-

servation data grid. These interpolated data are then bias-

adjusted in different ways for different climate variables.

For pr, psl, rlds, sfcWind, and tas, monthly mean values

are adjusted for the purpose of removing the bias in their his-

torical multiyear mean value (for abbreviations for variables,

see Table 1). This adjustment is done multiplicatively for pr,

rlds, and sfcWind and additively for psl and tas. In order to

preserve trends in multiyear monthly mean values, the same

scaling factor or offset is used in all application periods. In a

second step, day-to-day variability around the monthly mean

value is adjusted using transfer functions derived for every

calendar month from historical simulations and observations.

An indirect bias adjustment of tasmax and tasmin is done

by adjusting tasmax−tas and tas−tasmin using monthly scal-

ing factors which remove the bias in the mean value of all

historical daily values of these nonnegative variables from a

given calendar month. The adjusted values are then added to

and subtracted from bias-adjusted tas values in order to ob-

tain bias-adjusted tasmax and tasmin values, respectively.

Bias adjustment of rsds is done by parametric quantile

mapping using beta distributions with lower bounds of zero

and upper bounds estimated by rescaled climatologies of

downwelling shortwave radiation at the top of the atmo-

sphere. For trend preservation, upper bounds, mean values,

and variances of historical observations are modified using

simulated trends prior to quantile mapping. Using beta dis-

tributions with fixed lower and upper bounds of 0 and 100 %,

respectively, this method is also used to bias-adjust hurs.

Bias-adjusted prsn values are obtained by multiplying bias-
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Table 1. Climate variables considered in this study.

Variable Short name Unit

Daily mean near-surface relative humidity hurs %

Daily mean precipitation pr kg m−2 s−1

Daily mean snowfall flux prsn kg m−2 s−1

Daily mean sea-level pressure psl Pa

Daily mean surface downwelling longwave radiation rlds W m−2

Daily mean surface downwelling shortwave radiation rsds W m−2

Daily mean near-surface wind speed sfcWind m s−1

Daily mean near-surface air temperature tas K

Daily maximum near-surface air temperature tasmax K

Daily minimum near-surface air temperature tasmin K

adjusted pr values with the original prsn-over-pr ratio. This

ratio is therefore not bias-adjusted.

3.2 ISIMIP3 method

The newly developed ISIMIP3 bias adjustment and statistical

downscaling method is comprehensively described in the fol-

lowing. It consists of a bias adjustment method that is applied

at the spatial resolution of the climate simulation data and

a statistical downscaling method that is applied to the bias-

adjusted climate simulation data for the purpose of increasing

its spatial resolution to that of the climate observation data.

These two new methods are presented in the following two

subsections.

3.2.1 ISIMIP3 bias adjustment method

This section describes the new bias adjustment method. Be-

fore diving into details I will explain the concept of the

method and outline how the new unified bias adjustment

framework can be customized for an application to the cli-

mate variables listed in Table 1.

The ISIMIP3 bias adjustment method is a parametric

quantile mapping method that has been designed to (i) ro-

bustly adjust biases in all percentiles of a distribution and

(ii) preserve trends in these percentiles. It is applicable for

bias adjustment of different kinds of climate variables includ-

ing those listed in Table 1. Like the ISIMIP2b bias adjust-

ment method, it is independently applied to every variable,

grid cell, and calendar month.

In order to overcome the multitude of approaches to bias

adjustment used for different variables in ISIMIP2b, the new

method features a unified framework, which can be cus-

tomized for an application to one particular climate variable.

Customization specifications for the variables considered

here are listed in Table 2. Note that biases in prsn, tasmax,

and tasmin are not adjusted directly. Instead, the ISIMIP3

method adjusts biases in pr and prsnratio = prsn/pr, and mul-

tiplies the resulting values to arrive at bias-adjusted prsn val-

ues. This is done in order to (i) ensure 0 ≤ prsnratio ≤ 1

and (ii) preserve trends in prsnratio. For tasmax and tas-

min, Piani et al. (2010) point out that an independent bias

adjustment of tas, tasmax, and tasmin may result in large

relative errors in the daily temperature range, tasrange =

tasmax − tasmin, and the skewness of the daily temperature

cycle, tasskew = (tas − tasmin)/tasrange. They also demon-

strate that these errors can be minimized by a direct and inde-

pendent bias adjustment of tas, tasrange, and tasskew. There-

fore, the ISIMIP3 method derives bias-adjusted tasmax and

tasmin values from bias-adjusted tas, tasrange, and tasskew

values.

In the following, I will describe the unified framework of

the ISIMIP3 bias adjustment method in detail. In this con-

text, let xobs
hist be the time series of historical observations for

one climate variable, grid cell, and calendar month. Further,

let xsim
hist and xsim

fut be the simulated time series for the histori-

cal and future time period, respectively, and the same climate

variable, grid cell, and calendar month. Since the bias adjust-

ment method is trained on xobs
hist and xsim

hist , the historical time

period is also called the training period. Since it is applied

to xsim
fut the future time period is also called the application

period.

The bias adjustment algorithm with inputs xobs
hist, xsim

hist , and

xsim
fut and output ysim

fut proceeds in the following steps, which

are explained in more detail below.

1. (For rsds only.) Scale values in xobs
hist, xsim

hist , and xsim
fut to

the interval [0,1].

2. (For prsnratio only.) Replace missing values in xobs
hist,

xsim
hist , and xsim

fut by random sampling from available val-

ues.

3. (For psl, rlds, and tas only.) Detrend xobs
hist, x

sim
hist , and xsim

fut .

4. (For bounded variables only.) Randomize values be-

yond thresholds in xobs
hist, xsim

hist , and xsim
fut .

5. (For all variables.) Transfer the simulated climate

change signal for every distribution quantile from xsim
hist

and xsim
fut to xobs

hist. Let xobs
fut be the resulting time series of

pseudo future observations.
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Table 2. Specification of the ISIMIP3 bias adjustment method for all climate variables considered in this study. Where a lower (upper)

bound is specified, no values smaller (greater) than this bound will occur in the bias-adjusted data. For every lower (upper) bound, a lower

(upper) threshold is defined, which is only slightly greater (smaller) than the bound. The lower (upper) threshold is used to adjust the

relative frequency of values smaller (greater) than the threshold. Note that the units of prsnratio = prsn/pr, tasrange = tasmax − tasmin, and

tasskew = (tas− tasmin)/tasrange are 1, kelvin, and 1, respectively. For units of the other climate variables, see Table 1. The lower threshold

of pr is equivalent to 0.1 mm d−1. For a description of the different kinds of trend preservation, see Eqs. (1)–(8) and the text around them.

Variable Lower Lower Upper Upper Distribution Trend Detrending Other

short name bound threshold bound threshold preservation

hurs 0 0.01 100 99.99 beta bounded no –

pr 0 0.1/86400 – – gamma mixed no –

prsnratio 0 0.0001 1 0.9999 beta bounded no sampling of missing values

psl – – – – normal additive yes –

rlds – – – – normal additive yes –

rsds 0 0.0001 1 0.9999 beta bounded no upper bound scaling

sfcWind 0 0.01 – – Weibull mixed no –

tas – – – – normal additive yes event likelihood not adjusted

tasrange 0 0.01 – – Rice mixed no –

tasskew 0 0.0001 1 0.9999 beta bounded no –

6. (For all variables.) Use parametric quantile mapping to

adjust the distribution of values in xsim
fut to the distribu-

tion of values in xobs
fut . For bounded variables, also bias-

adjust the frequency of values beyond thresholds. Let

ysim
fut be the resulting time series.

7. (For psl, rlds, and tas only.) Add trend subtracted from

xsim
fut in step 3 to ysim

fut .

8. (For rsds only.) Scale values in ysim
fut back to their actual

range.

Steps 1 and 8 are only applied to rsds and reflect that this

climate variable has a physical upper bound which varies

over the annual cycle. In order to fit this case into the uni-

fied framework, which at its core assumes constant bounds

and thresholds, rsds values are scaled to the interval [0,1] in

step 1 and back to their actual range in step 8. These scal-

ings are done using annual cycles of upper bounds that are

estimated from the rsds values in xobs
hist, xsim

hist , and xsim
fut . Fol-

lowing Lange (2018), annual cycles of upper bounds at daily

temporal resolution are estimated as running mean values of

running maximum values of multiyear daily maximum val-

ues. Here, a window length of 31 d is used for the running

window calculations. Let bobs
hist, b

sim
hist, and bsim

fut be these annual

cycles estimated for time series xobs
hist, xsim

hist , and xsim
fut , respec-

tively. Further, let xij be the value of one of these time series

on day j of year i, and let bj be the upper bound for that day

of the year according to the corresponding annual cycle, then

xij ≤ bj holds true for all years i and j = 1, . . .,366. The

scaling in step 1 is done according to xij 7−→ xij/bj . The

scaling in step 8 requires an annual cycle of upper bounds

to the bias-adjusted rsds values. Let bobs
fut denote this annual

cycle. Following Frieler et al. (2017, Eq. 2), it is estimated

according to bobs
fut = bobs

histb
sim
fut /bsim

hist. The scaling in step 8 is

then done according to yij 7−→ yijbj , where yij is the value

of ysim
fut on day j of year i, and bj is the upper bound for that

day of the year according to bobs
fut .

Step 2 is only applied to prsnratio and reflects that val-

ues of this variable are missing on days of zero precipita-

tion because on these days the ratio prsn/pr is not defined.

In order to fit this case into the unified framework, which at

its core assumes gap-less time series, missing prsnratio val-

ues are replaced by random sampling from available values.

More precisely, for every missing value in xobs
hist, xsim

hist , and

xsim
fut , an independent random number p is drawn from the in-

terval [0,100] ⊂ R with uniform probability, and the missing

value is replaced by the pth empirical percentile of all avail-

able values in xobs
hist, xsim

hist , and xsim
fut , respectively. This proce-

dure approximately preserves the distribution of values in the

time series.

Steps 3 and 7 are only applied to psl, rlds, and tas and re-

flect that these variables can have significant trends not only

between but also within training period and application pe-

riod. In order to prevent a confusion of these trends with in-

terannual variability during quantile mapping (steps 5 and

6), linear trends within xobs
hist, xsim

hist , and xsim
fut are removed in

step 3 and restored in step 7. Trend lines tobs
hist , t sim

hist , and t sim
fut

are estimated at annual temporal resolution, i.e., by linear

regression of annual mean values of the daily values of the

respective time series. Let xij be the value of one of these

time series on day j of year i, and let ti be the value for

year i of the corresponding trend line, which is shifted such

that
∑

i ti = 0. Then detrending in step 3 is done according to

xij 7−→ xij − ti , and the trend simulated within the applica-

tion period is restored in step 7 according to yij 7−→ yij + ti ,

where yij is the value of ysim
fut on day j of year i, and ti is the

value for that year of trend line t sim
fut .

Step 4 is only applied to bounded variables, i.e., vari-

ables which have either a lower bound (and threshold) or
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an upper bound (and threshold) or both (see Table 2). These

bounds reflect physical limits to values these variables can

take. Thresholds located slightly above the lower bound and

slightly below the upper bound are used in step 6 to bias-

adjust the frequencies of occurrence of values close to the

bounds. In particular, the lower threshold of pr is used to

bias-adjust the dry-day frequency, i.e., the frequency of oc-

currence of pr < 0.1 mm d−1. In most cases, the simulated

dry-day frequency will be lower than the observed one (driz-

zle effect), and its bias adjustment is easily done by setting pr

values on some initially wet days to 0. Conversely, if the sim-

ulated dry-day frequency is too high, its bias adjustment re-

quires turning initially dry days into wet days. These days are

randomly selected following Cannon et al. (2015): all values

below the lower threshold, α, and above the upper threshold,

β, are replaced by random numbers drawn from the open in-

terval (a,α) and (β,b), where a and b are the lower bound

and the upper bound, respectively. These new values can then

be moved across the respective threshold by quantile map-

ping in step 6. In contrast to Cannon et al. (2015), random

numbers from (a,α) and (β,b) are not drawn with uniform

probability but with power-law probability that increases to-

wards the respective bound, as this approach is found to al-

leviate kinks in the distribution of wet-day precipitation after

bias adjustment.

Step 5 generates pseudo future observations, which are

needed for parametric quantile mapping in step 6. These

pseudo future observations are generated such that trends in

all quantiles between any two application periods are approx-

imately the same before and after quantile mapping. This

makes the bias adjustment method trend-preserving in all

quantiles. Different kinds of trends are preserved for different

climate variables (Table 2).

Pseudo future observations for one specific future time pe-

riod are generated by transferring simulated climate change

signals between the historical and the future time period to

the historical observations. This transfer is done quantile by

quantile using a nonparametric kind of quantile mapping. In

the following, I will describe the transfer for additive, multi-

plicative, mixed, and bounded trend preservation. Figure 1

provides an illustration for the former three of these four

cases.

In what follows, let F obs
hist , F sim

hist , and F sim
fut be the empirical

cumulative distribution function of all values in xobs
hist, xsim

hist ,

and xsim
fut , respectively. Let Qobs

hist, Q
sim
hist, and Qsim

fut be the corre-

sponding quantile functions. Let x be one of the many values

of xobs
hist, let p = F obs

hist (x) be the cumulative probability of x,

and let y be the pseudo future observation corresponding to

x. Additive trend preservation is achieved by an additive cli-

mate change signal transfer, i.e., in this case, y is generated

according to

y = x + 1additive(p), where (1)

1additive(p) = Qsim
fut (p) − Qsim

hist(p). (2)

Additive trend preservation is the goal here for climate vari-

ables psl, rlds, and tas.

Multiplicative trend preservation is achieved by a multi-

plicative climate change signal transfer, i.e., in this case, y is

generated according to

y = x 1multiplicative(p), where (3)

1multiplicative(p) =

max
(

0.01,min
(

100,1∗
multiplicative(p)

))
, and (4)

1∗
multiplicative(p) =
{

1 if Qsim
hist(p) = 0,

Qsim
fut (p)/Qsim

hist(p) otherwise.
(5)

Note that the limits imposed in Eq. (4) are usually only

reached for very small values of x. Multiplicative trend

preservation is in most cases but not always the goal here

for climate variables pr, sfcWind, and tasrange. It is not the

goal here if x = Qobs
hist(p) is much larger than the correspond-

ing quantile of the historical simulations Qsim
hist(p) (this cor-

responds to a large negative bias in the historical time pe-

riod) because in this case even moderate multiplicative cli-

mate change signals Qsim
fut (p)/Qsim

hist(p) can result in unreal-

istically large y values, as illustrated in Fig. 1.

In order to prevent generating such unrealistically large y

values, pseudo future observations for pr, sfcWind, and tas-

range are generated by a mixed (multiplicative and additive)

climate change signal transfer; i.e., for these climate vari-

ables, y is generated according to

y =γ (p)x 1multiplicative(p)

+ (1 − γ (p))(x + 1additive(p)), where (6)

γ (p) =




1 if Qsim
hist(p) ≥ Qobs

hist(p),

0.5
(
1 + cos

((
Qobs

hist(p)

/Qsim
hist(p) − 1

)
π/8

))
if Qsim

hist(p) < Qobs
hist(p) < 9Qsim

hist(p),

0 otherwise.

(7)

This translates to a multiplicative trend preservation for pos-

itive biases, an additive trend preservation for large negative

biases, and a mixed trend preservation for moderate negative

biases in the historical time period. A smooth transition from

multiplicative to additive trend preservation is facilitated by

the function γ (p) (Eq. 7 and Fig. 2).

For climate variables with both lower bound a and upper

bound b, climate change signals are transferred respecting

these bounds, i.e., for these climate variables, y is generated

www.geosci-model-dev.net/12/3055/2019/ Geosci. Model Dev., 12, 3055–3070, 2019
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Figure 1. Schematic of climate change signal transfer from simulations to observations for wet-day precipitation. Empirical cumulative

distribution functions of historical and future simulations and observations are displayed using a linear precipitation scale in (a) and a

logarithmic precipitation scale in (b). Pseudo future observations generated preserving different kinds of trends are shown in red with

different line styles. For the 90th percentile, black double-headed arrows indicate additive trend preservation in (a) and multiplicative trend

preservation in (b). Mixed trend preservation is explained in the text.

Figure 2. Function γ (p) used to transition from multiplicative to

additive trend preservation in mixed trend preservation (Eqs. 6–7).

according to

y =




a + (x − a)
(
Qsim

fut (p) − a
)
/(

Qsim
hist(p) − a

)
if Qsim

hist(p) > Qsim
fut (p),

x if Qsim
hist(p) = Qsim

fut (p),

b − (b − x)
(
b − Qsim

fut (p)
)
/(

b − Qsim
hist(p)

)
otherwise.

(8)

Bounded trend preservation is the goal here for climate vari-

ables hurs, prsnratio, scaled rsds, and tasskew.

Step 6 is the core of the new unified bias adjustment frame-

work. For unbounded climate variables, it consists of a para-

metric quantile mapping of xsim
fut to the pseudo future obser-

vations generated in step 5. For climate variables with at least

one bound, it consists of a bias adjustment of the frequency

of values beyond thresholds and a parametric quantile map-

ping of all other values in xsim
fut .

Frequencies of values beyond thresholds (see Table 2) are

bias-adjusted as follows. For climate variables with a lower

bound a and lower threshold α, let P obs
hist , P sim

hist , and P sim
fut be

the relative frequency of values smaller than α in xobs
hist, xsim

hist ,

and xsim
fut , respectively. Similar to step 5, a pseudo future ob-

servation of this frequency, P obs
fut , is generated by transfer-

ring the simulated climate change signal to the historically

observed value,

P obs
fut =





P obs
hist P

sim
fut /P sim

hist if P sim
hist > P sim

fut ,

P obs
hist if P sim

hist = P sim
fut ,

1 −
(
1 − P obs

hist

)(
1 − P sim

fut

)
/(

1 − P sim
hist

)
otherwise.

(9)

Then, if xsim
fut is of length n, the nP obs

fut lowest values of xsim
fut

are set to a. Similarly, for climate variables with an upper

bound b and upper threshold β, the relative frequency of val-

ues greater than β is bias-adjusted by setting the nP obs
fut high-

est values of xsim
fut to b, where P obs

fut is generated using Eq. (9)

with relative frequencies of values smaller than α replaced

by relative frequencies of values greater than β.

All other values in xsim
fut (or all values in the case of an un-

bounded climate variable) are bias-adjusted using parametric

quantile mapping, the pseudo observations xobs
fut generated in

step 5, as well as the historical observations and simulations

xobs
hist and xsim

hist , respectively. Distributions used for paramet-

ric quantile mapping are the beta distribution for bounded

climate variables (hurs, prsnratio, scaled rsds, tasskew), the

gamma distribution for pr, the normal distribution for un-

bounded climate variables (psl, rlds, tas), the Weibull dis-

tribution for sfcWind, and the Rice distribution for tasrange.

For unbounded climate variables, distributions are fitted to

all values in xobs
hist, xobs

fut , xsim
hist , and xsim

fut . For climate variables

with a lower and/or upper bound, distributions are only fit-
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ted to values greater than α and/or smaller than β in xobs
hist,

xobs
fut , and xsim

hist , and to all values in xsim
fut that where not set to

a or b in the first part of step 6. Let F̂ obs
hist , F̂ obs

fut , F̂ sim
hist , and

F̂ sim
fut be the cumulative distribution functions of these fitted

distributions.

The parametric quantile mapping method used in ISIMIP3

is inspired by the scaled distribution mapping method intro-

duced by Switanek et al. (2017), which in addition to biases

in quantiles also adjusts biases in the likelihood of individ-

ual events. For the sake of argument, let me assume that the

number of values F̂ obs
hist , F̂ obs

fut , F̂ sim
hist , and F̂ sim

fut were fitted to

is the same for all four cumulative distribution functions, and

let x̂sim
hist , x̂sim

hist , x̂sim
fut , and x̂sim

fut be the lowest of these values,

respectively. Then x̂sim
fut is quantile-mapped according to (see

Eq. (15) for the definition of the logit function)

x̂sim
fut 7−→ F̂ obs

fut

−1
(

logit−1
(
Lobs

hist + 1log−odds

))
, where

(10)

1log−odds = max
(
− log10,min

(
log10,Lsim

fut − Lsim
hist

))
, (11)

and

Lobs
hist = logit

(
F̂ obs

hist

(
x̂obs

hist

))
, (12)

Lsim
hist = logit

(
F̂ sim

hist

(
x̂sim

hist

))
, (13)

Lsim
fut = logit

(
F̂ sim

fut

(
x̂sim

fut

))
. (14)

Values of higher rank are quantile-mapped in the same way,

i.e., using Eqs. (10)–(14) and x̂sim
hist , x̂sim

hist , x̂sim
fut , and x̂sim

fut of

equal rank. Additional interpolations need to be introduced

in Eqs. (10)–(14) to make them work in the general case of

unequal sample sizes, as explained by Switanek et al. (2017).

Equations (10)–(14) result in a perfect match in distribu-

tion if training and application period are identical. In this

case, 1log−odds = 0 and likelihoods of events are mapped

from F̂ sim
fut

(
x̂sim

fut

)
= F̂ sim

hist

(
x̂sim

hist

)
to F̂ obs

hist

(
x̂obs

hist

)
. In all other

cases, the simulated climate change signal in event likelihood

is transferred to the historically observed event likelihood

such that changes in odds are multiplicatively preserved. To

see that this is true, note that

logitp1 + logitp2 − logitp3

= log

(
p1

1 − p1

)
+ log

(
p2

1 − p2

)
− log

(
p3

1 − p3

)

= log

(
p1

1 − p1

p2

1 − p2

/
p3

1 − p3

)
. (15)

Asymptotically, i.e., for extreme values, the odds scaling

used here is equivalent to the return interval scaling used by

Switanek et al. (2017). The limits imposed in Eq. (11) are to

prevent the generation of unrealistic event likelihoods.

Note that in contrast to all other climate variables, the

likelihood of individual events is not adjusted for tas. In-

stead, in this case, Eqs. (10)–(14) are replaced by x̂sim
fut 7−→

F̂ obs
fut

−1
(
F̂ sim

fut

(
x̂sim

fut

))
. The reason for this exception is that

the event likelihood adjustment can produce artifacts if large

nonlinear trends are present within the training or applica-

tion period. Examples of such cases have (only) been found

for tas.

3.2.2 ISIMIP3 statistical downscaling method

This section describes the new statistical downscaling

method. Before diving into details I will explain the concept

of the method, reveal its algorithmic origin, and elaborate on

prerequisites and best practices of its application.

As described in the introduction, the ISIMIP3 bias adjust-

ment method shall be applied at the spatial resolution of

the climate simulation data using spatially aggregated cli-

mate observation data. Since the resulting data can be con-

sidered to have unbiased distributions of daily values per

climate variable, grid cell, and calendar month, their subse-

quent statistical downscaling should be done using a method

which preserves values at the aggregated spatial resolution.

The ISIMIP3 statistical downscaling method has this prop-

erty. Since the new method is based on the MBCn algorithm

by Cannon (2017) it is abbreviated to MBCnSD in the fol-

lowing.

The MBCnSD algorithm is independently applied to every

climate variable and calendar month. It requires the coarse

grid of the climate simulation data and the fine grid of the

climate observation data to be compatible in the sense that

every fine grid cell is entirely contained in one coarse grid

cell. For example, that is the case if the coarse and fine grid

are the global 2◦ ×2◦ and 1◦ ×1◦ latitude–longitude grid, re-

spectively, since then every coarse grid cell contains exactly

K = 4 fine grid cells. In order to make MBCnSD applicable

in cases with originally incompatible coarse and fine grids as

well, the original climate simulation data need to be interpo-

lated (before bias adjustment) to a grid that is both compati-

ble with the fine grid and similar in resolution to the original

coarse grid.

The MBCn algorithm by Cannon (2017) is a multivari-

ate quantile mapping bias adjustment method. It is employed

here in the context of statistical downscaling because the

downscaling problem at hand can be regarded as yet another

bias adjustment problem: once the climate data to be down-

scaled have been broadcasted to the fine grid, their statistical

downscaling can be achieved by an adjustment of the multi-

variate distribution of all time series contained in one coarse

grid cell.

The MBCn algorithm applies a series of univariate non-

parametric quantile mappings along randomly chosen axes.

Mathematically, this is achieved by repeatedly rotating the

climate simulation and observation data using random K×K
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Figure 3. Two-dimensional illustration of one iteration of the mod-

ified MBCn algorithm used for statistical downscaling in ISIMIP3

(MBCnSD), which at its core consists of two steps. In the first step,

data point A is quantile-mapped to data point B like in the original

MBCn algorithm. In the second step, MBCnSD projects data point

B onto the weighted sum-preserving hyperplane of data point A,

here with equal weights on all axes. The result is data point C.

orthogonal matrices, each time followed by K univariate

quantile mappings. This use of random rotation matrices

makes the ISIMIP3 statistical downscaling method stochas-

tic.

The MBCn algorithm cannot be used as it is to solve the

downscaling problem at hand because it does not have the

required preservation property. The preservation of values

at the aggregated spatial resolution translates to a preserva-

tion of the weighted sum of all time series contained in one

coarse grid cell. With MBCnSD, this is achieved by an ad-

ditional conservation step following the K univariate quan-

tile mappings in every iteration of the algorithm. For K = 2,

this is illustrated in Fig. 3. A corner case of what can hap-

pen without this additional step is shown in Fig. 4: for cer-

tain axes rotation sequences, the MBCn algorithm almost re-

verses the ranks of values along one axis, which results in

strongly changed aggregated values. Figure 4 also exempli-

fies that this is prevented by the MBCnSD algorithm.

If the resolution gap between climate simulation and ob-

servation data is large, then statistical downscaling can be

done in one big step or in multiple small steps. Vandal et al.

(2018) have shown that statistical downscaling with neural

networks works better in multiple small steps. For statistical

downscaling with the MBCnSD algorithm, both approaches

yield similar results. But as in the neural network case, down-

scaling in multiple small steps yields slightly smoother fields

than downscaling in one big step (Fig. 5) and is therefore

deemed the preferred approach.

In the following, I will describe the MBCnSD algorithm in

detail. In this context, let xsim
ij be the previously bias-adjusted

Figure 4. Statistical downscaling of artificial two-dimensional cli-

mate data with the original MBCn algorithm by Cannon (2017) and

the modified MBCn algorithm used for statistical downscaling in

ISIMIP3 (MBCnSD). Panel (a) shows an example of observation

and simulation data drawn from a bivariate standard normal distri-

bution with cross-correlation 0 and 1, respectively. Panels (c)–(f)

show the result of statistical downscaling after 4 (c, d) and 32 (e,

f) iterations of the MBCn (c, e) and MBCnSD (d, f) algorithm. To

track changes, the color of a data point in panels (c)–(f) is the same

as the color of the corresponding original data point in panel (a).

Gray lines in panels (c)–(f) represent the axes along which univari-

ate quantile mappings are applied in the respective iteration. Note

that MBCn and MBCnSD use the same sequence of axes rotations

here. Panel (b) shows the energy distance (Székely and Rizzo, 2013)

between observation and simulation data over iterations for 30 ran-

dom data samples (thin dashed lines) and on average over these 30

samples (thick solid lines).

climate simulation data to be statistically downscaled, with i

being the time index and j being the coarse grid cell index.

Further, let xobs
ijk be the historical climate observation data on

the fine grid, with i, j as for xsim
ij , and k = 1, . . .,K being the

index for the fine grid cells contained in one coarse grid cell.

Finally, let wjk be proportional to the area of fine grid cell k

in coarse grid cell j . Then the MBCnSD algorithm works as

follows.
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Figure 5. Statistical downscaling of precipitation from 2 to 0.5◦

spatial resolution in two small steps (2 to 1◦ and 1 to 0.5◦) versus

in one big step. In this example, the MBCnSD algorithm is applied

for statistical downscaling of spatially aggregated historical obser-

vation data. Shown are precipitation fields over Europe for one par-

ticular day: the original precipitation field in panel (a) and the result

of statistical downscaling in two small steps and in one big step in

panels (b) and (c), respectively.

1. (For all variables.) Bilinearly interpolate xsim
ij to the fine

grid. Let xsim
ijk be the result.

2. (For bounded variables only.) Randomize values be-

yond thresholds in xsim
ij , xsim

ijk , and xobs
ijk .

3. (For all variables.) Apply the core of the MBCnSD al-

gorithm independently to every coarse grid cell j . Let

ysim
ijk be the result.

4. (For bounded variables only.) De-randomize values be-

yond thresholds in ysim
ijk .

Step 1 broadcasts the previously bias-adjusted climate

simulation data to the fine grid. This is done using bilinear in-

stead of conservative interpolation, which in this case would

Figure 6. Statistical downscaling of precipitation from 1 to 0.5◦

spatial resolution using different broadcasting methods in step 1 of

the MBCnSD algorithm. In this example, the algorithm is applied

for statistical downscaling of spatially aggregated historical obser-

vation data. Shown are downscaled precipitation fields over Europe

for one particular day, using bilinear and conservative interpolation

for broadcasting in panels (a) and (b), respectively. The correspond-

ing original precipitation field is shown in panel (a) of Fig. 5.

be equivalent to setting xsim
ijk = xsim

ij for all k. Broadcasting

with bilinear interpolation is preferred because it results in

smoother fields than broadcasting with conservative interpo-

lation, as exemplified in Fig. 6. There are two reasons for

this. First, bilinear interpolation already generates some of

the spatial variability within each coarse grid cell that statis-

tical downscaling has to add, whereas conservative interpola-

tion does not. Therefore, the MBCnSD algorithm would have

to add more variability after conservative than bilinear inter-

polation, with the result of more noisy fields. Secondly, bi-

linear interpolation transfers spatial gradients between coarse

grid cells to the fine grid, whereas conservative interpolation

does not. The MBCnsD algorithm can then preserve these

gradients to the degree that they are meaningful, which re-

sults in smoother fields.

Steps 2 and 4 are only applied to variables which have

either a lower bound (and threshold) or an upper bound (and

threshold) or both. The bounds and thresholds used for statis-

tical downscaling are identical to those used for bias adjust-

ment (Table 2) for all climate variables except rsds. For sta-

tistical downscaling, rsds values are not scaled, have a lower

bound of 0, a lower threshold of 0.01 W m−2, and no upper

bound (or threshold). The randomization itself works exactly
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as in step 4 of the ISIMIP3 bias adjustment method. For de-

randomization, all values below the lower threshold are set to

the lower bound, and all values above the upper threshold are

set to the upper bound. Note that the MBCnSD algorithm is

applied for statistical downscaling of hurs, pr, prsnratio, psl,

rlds, rsds, sfcWind, tas, tasrange, and tasskew. Bias-adjusted

and statistically downscaled prsn, tasmax, and tasmin values

are then derived as described in Sect. 3.2.1.

Step 3 is the core of the MBCnSD algorithm and is ap-

plied independently to every coarse grid cell j . Therefore,

in the following, let j be arbitrary but fixed. Let X = (Xi)

be the vector with components Xi = xsim
ij , and let Y = (Yik)

and Z = (Zik) be matrices with components Yik = xsim
ijk and

Zik = xobs
ijk , respectively. Further, let w =

∑
kwjk be the sum

of all fine grid cell area weights and let w̃ =
√∑

kw
2
jk be

their root sum square. Let W = (Wk) be the vector with com-

ponents Wk = wjk/w̃.

The core of the MBCnSD algorithm proceeds in three sub-

steps, which I will refer to as 3a, 3b, and 3c in the following.

Sub-step 3a adjusts Y for the purpose of restoring the spa-

tially aggregated values which shall be preserved by the al-

gorithm but have been altered by bilinear interpolation in step

1. In addition, sub-step 3a adjusts Z for the purpose of trans-

ferring the simulated climate change signal to the historical

climate observation data on the fine grid. This signal is incor-

porated in X, given that X is the result of quantile mapping to

the pseudo future climate observation data generated in step

5 of the ISIMIP3 bias adjustment algorithm. Since the sim-

ulated climate change signal is only available at the coarse

resolution, it is transferred to Z at that resolution, and all sta-

tistical dependencies at higher resolution are left unchanged.

Mathematically, sub-step 3a proceeds as follows.

1. Generate a K ×K orthogonal matrix O whose first col-

umn is equal to W (all other columns can be chosen at

will). Set Ototal = O. Rotate Y,Z, W using O.

2. Set Yi1 to Xi w/w̃ to restore the spatially aggregated

values.

3. Do a nonparametric quantile mapping of (Zi1) to

(Xi w/w̃) to transfer the simulated climate change sig-

nal.

Here and in the following, to rotate Y,Z, W using O means

to apply the matrix multiplications

Y 7−→ YO, (16)

Z 7−→ ZO, (17)

W 7−→ (W T O)T = OT
W , (18)

and to set Y,Z, W to the respective result. To do a non-

parametric quantile mapping of (Ai) to (Bi) means to use

empirically estimated quantiles ap and bp of (Ai) and (Bi),

respectively, corresponding to cumulative probabilities p ∈

{0%,2%,4%, . . .,100%}, with a0 = mini Ai , a1 = maxi Ai ,

and the same for b0, b1, to define a transfer function f using

the linearly interpolated quantile–quantile pairs (ap,bp), to

then map Ai 7−→ f (Ai), and to set Ai to the result for all i.

In sub-step 3b, the following three steps are repeated ei-

ther a fixed number of times or until Y has converged to Z

in distribution. The last two of these steps are illustrated in

Fig. 3.

1. Generate a random K ×K orthogonal matrix O. Rotate

Ototal,Y,Z, W using O. Set Ỹ = Y.

2. For all k, do a nonparametric quantile mapping of (Yik)

to (Zik).

3. Project Y onto the weighted sum-preserving hyperplane

of Ỹ by subtracting ((Y − Ỹ)W ) ⊗ W from Y.

In the first of these steps, random orthogonal matrices are

drawn from the circular real random matrix ensemble using

the algorithm by Mezzadri (2007). In the last step, ⊗ denotes

the outer product of two vectors. Note that the results pre-

sented in Sect. 4 are obtained using a fixed number of 20

iterations in sub-step 3b of the MBCnSD algorithm, as this

was deemed sufficient for the MBCn algorithm by Cannon

(2017).

In sub-step 3c, all data are rotated back to the original axes.

A last quantile mapping along these axes ensures that there

are no values out of bounds in the resulting data. Mathemat-

ically, sub-step 3c proceeds as follows.

1. Set O = OT
total. Rotate Y,Z, W using O.

2. For all k, do a nonparametric quantile mapping of (Yik)

to (Zik).

For the arbitrary but fixed coarse grid cell j , the result ysim
ijk of

step 3 of the MBCnSD algorithm is then given by ysim
ijk = Yik .

3.3 Comparison

Results obtained with the ISIMIP2b and ISIMIP3 bias ad-

justment and statistical downscaling methods will be com-

pared in Sect. 4. This section describes how that comparison

will be done.

I will begin with results of bias adjustment applied at 2◦

spatial resolution, i.e., using climate simulation and observa-

tion data both on the global 2◦ × 2◦ latitude–longitude grid.

In particular, I will compare the methods’ ability to (i) ad-

just biases in percentiles of distributions of daily values and

(ii) preserve trends in these percentiles. Percentiles chosen

for this comparison are the 5th, 50th, and 95th, representing

the lower tail, the center, and the upper tail of a distribution,

respectively. An exception is made for pr and prsn, for which

instead of the 5th percentile I consider the dry-day frequency,

i.e., the frequency of precipitation or snowfall flux, to be less

than 0.1 mm d−1, and instead of the 50th and 95th percentile
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of all values I consider the 50th and 95th percentile of all

values which exceed 0.1 mm d−1, i.e., the 50th and 95th per-

centile of wet-day precipitation.

I will then compare results obtained with the ISIMIP2b

and ISIMIP3 statistical downscaling methods. To that end,

both downscaling methods are combined with the ISIMIP3

bias adjustment method. These bias adjustment–statistical

downscaling method combinations are abbreviated LI+BA

and BA+SD in the following. The combination LI+BA rep-

resents the ISIMIP2b approach to statistical downscaling and

therefore consists of a bilinear interpolation of the climate

simulation data from their original spatial resolution of 2 to

0.5◦ followed by a bias adjustment using the climate observa-

tion data at their original spatial resolution of 0.5◦. The com-

bination BA+SD represents the ISIMIP3 approach to statis-

tical downscaling and therefore consists of a bias adjustment

at 2◦ spatial resolution using the climate observation data ag-

gregated to that resolution followed by statistical downscal-

ing from 2 to 0.5◦ in two steps (2 to 1◦ and 1 to 0.5◦) using

the ISIMIP3 statistical downscaling method.

Results at 2 and 0.5◦ spatial resolution will first be as-

sessed based on the same metrics used to compare the

ISIMIP2b and ISIMIP3 bias adjustment methods at 2◦ spa-

tial resolution. This is done to demonstrate that the BA+SD

approach does not impair data quality with regard to bias

adjustment or trend preservation relative to the LI+BA ap-

proach. For the comparison at 2◦ spatial resolution, the bias-

adjusted and statistically downscaled climate simulation data

are conservatively aggregated back to that resolution.

Secondly, I will compare results at 0.5◦ spatial resolution

with regard to spatial variability within 2◦×2◦ grid cells. Two

ways of placing these grid cells will be considered. The first

way is to place their centers at odd-numbered latitudes and

longitudes (measured in degrees). These grid cells constitute

the regular 2◦ ×2◦ latitude–longitude grid of the original cli-

mate simulation data. The second way is to place their cen-

ters at even-numbered latitudes and longitudes (measured in

degrees). These grid cells form a grid that is staggered by 1◦

latitude and 1◦ longitude relative to the regular one.

For 2◦ × 2◦ grid cells placed in the first way it is ex-

pected that spatial variability within them is better adjusted

by BA+SD than by LI+BA by design. It is less clear if

this also holds true for spatial variability within staggered

2◦ × 2◦ grid cells since these contain time series whose sta-

tistical dependence is not adjusted by the ISIMIP3 statistical

downscaling method. In both cases, spatial variability within

a 2◦ × 2◦ grid cell is measured by the root-mean-square de-

viation (RMSD) of the 16 time series contained in that grid

cell from their spatial average: let xij be the value on day i in

0.5◦ × 0.5◦ grid cell j . Then, for time series of length n, the

RMSD is calculated according to

RMSD =

√√√√√1

n

n∑

i=1

1

16

16∑

j=1

(
xij −

1

16

16∑

k=1

xik

)2

. (19)

The comparison of methods with regard to their ability

to adjust biases and spatial variability is done in a cross-

validation framework. This is done to prevent different ex-

tents of overfitting by different methods to dominate dif-

ferences in results. I first use odd-numbered years from the

time period 1980–2015 for training and even-numbered years

from the same time period for application. Secondly, I swap

these training and application years. Finally, I merge the

results of application to odd-numbered and even-numbered

years to arrive at bias-adjusted and statistically downscaled

data for cross-validation which fully cover the 1980–2015

time period. Compared to the more common use of con-

secutive and nonoverlapping time periods (here 1980–1997

and 1998–2015) for training and validation, the division into

even-numbered and odd-numbered years reduces the influ-

ence of climate trends on cross-validation results (Switanek

et al., 2017). The downside of the cross-validation framework

used here is that the resulting validation and training data sets

are rather similar in terms of decadal climate variability. For

the comparison of methods with regard to trend preservation,

I use the full 1980–2015 time period for training and the full

time periods 1980–2015 and 2064–2099 for application.

The metrics introduced above (RMSD, dry-day frequency,

percentiles) are calculated independently for every data

set (climate observations, original climate simulations, cli-

mate simulations bias-adjusted with the ISIMIP2b/ISIMIP3

method, climate simulations bias-adjusted and statistically

downscaled with the LI+BA/BA+SD method combination),

climate variable, calendar month, and grid cell. The good-

ness of spatial variability adjustment, trend preservation, and

bias adjustment is then quantified using absolute errors: for a

fixed metric, adjustment method, climate variable, calendar

month, and grid cell, let xobs
hist,x

sim
hist ,x

sim
fut ,ysim

hist , and ysim
fut rep-

resent values of the metric calculated for historical observa-

tions, historical simulations, future simulations, adjusted his-

torical simulations, and adjusted future simulations, respec-

tively. Then, in the case of spatial variability adjustment and

bias adjustment, the absolute error e is calculated according

to

e =

∣∣∣ysim
hist − xobs

hist

∣∣∣ . (20)

In the case of trend preservation, the absolute error e is cal-

culated according to

e =

∣∣∣
(
ysim

fut − ysim
hist

)
−
(
xsim

fut − xsim
hist

)∣∣∣ . (21)

Values of these errors are then aggregated over all calendar

months and grid cells using the grid cell area-weighted me-

dian. For prsn I only aggregate errors from higher than 60◦

latitude. The aggregated values are then used to compara-

tively assess method performance.
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4 Results

In the following I will first present results obtained with

the ISIMIP2b and ISIMIP3 bias adjustment methods ap-

plied at 2◦ spatial resolution. I will then compare results ob-

tained with the ISIMIP2b and ISIMIP3 statistical downscal-

ing methods applied for downscaling from 2 to 0.5◦ spatial

resolution.

4.1 Comparison of bias adjustment methods

The goodness of bias adjustment and trend preservation by

the ISIMIP2b and ISIMIP3 bias adjustment methods is as-

sessed based on Fig. 7, which shows how well these methods

adjust biases and preserve trends in the 5th, 50th, and 95th

percentile of daily values of the 10 climate variables listed in

Table 1 (note the special treatment of pr and prsn described in

Sect. 3.3). Results suggest that in most calendar months and

grid cells, biases are better adjusted by the ISIMIP3 method

than by the ISIMIP2b method for all 10 climate variables.

The greatest gains are found for hurs, rlds, rsds, and sfcWind.

The least yet still considerable gains are found for tas, tas-

max, and tasmin. Intermediate gains are found for pr, prsn,

and psl.

Results further suggest that in most calendar months and

grid cells, trends in psl, rlds, and tas are considerably bet-

ter preserved by the ISIMIP3 method than by the ISIMIP2b

method. Trends in hurs, rsds, sfcWind, tasmax, and tasmin

are mostly better preserved by the ISIMIP3 method than

by the ISIMIP2b method, yet there are a few exceptions of

slightly better trend preservation by the ISIMIP2b method

for these climate variables. For pr, results suggest that the

ISIMIP3 method is much better at preserving trends in dry-

day frequency, while both methods are similarly good at pre-

serving trends in the 50th percentile of wet-day precipitation,

and the ISIMIP2b method is a bit better at preserving trends

in the 95th percentile of wet-day precipitation. Trends in prsn

are generally better preserved by the ISIMIP2b method, pre-

sumably because the prsn / pr ratio is left unchanged by this

method, whereas it is adjusted and therefore changed by the

ISIMIP3 method.

4.2 Comparison of statistical downscaling methods

The goodness of bias adjustment and trend preservation by

the LI+BA and BA+SD method combinations applied for

bias adjustment and statistical downscaling from 2 to 0.5◦

spatial resolution is assessed based on Figs. 8 and 9, which

show how well they adjust biases and preserve trends in the

5th, 50th, and 95th percentile of daily values of the 10 climate

variables listed in Table 1 (note again the special treatment of

pr and prsn described in Sect. 3.3). The goodness of bias ad-

justment is assessed at 2 and 0.5◦ spatial resolution in Figs. 8

and 9, respectively, while the goodness of trend preservation

is only assessed at 2◦ spatial resolution (Fig. 8) because sim-

ulated trends are only available at that resolution.

Differences between LI+BA and BA+SD in their ability

to adjust biases at 2◦ spatial resolution reflect structural dif-

ferences between the ISIMIP2b and ISIMIP3 approaches to

statistical downscaling. Bias adjustment in BA+SD is car-

ried out at 2◦ spatial resolution and followed by a statis-

tical downscaling which approximately preserves values at

that resolution. Therefore, biases can be expected to be well

adjusted at 2◦ spatial resolution by BA+SD. In contrast,

bias adjustment in LI+BA follows a bilinear interpolation

to 0.5◦ spatial resolution and is independently applied to ev-

ery 0.5◦ × 0.5◦ grid cell. Spatial dependencies between time

series within 2◦×2◦ grid cells are not adjusted. Therefore, bi-

ases at 2◦ spatial resolution are expected to be better adjusted

by BA+SD than LI+BA. Results shown in Fig. 8 are largely

in line with this expectation. The greatest gains are found

for pr. Only biases in the center of the distribution of tasmax

and tasmin are slightly better adjusted by LI+BA than by

BA+SD in most calendar months and 2◦ × 2◦ grid cells.

At 2◦ spatial resolution, BA+SD is expected to outper-

form LI+BA with regard to trend preservation for the same

structural reason as with regard to bias adjustment. Results

(Fig. 8) are in line with this expectation. Only for pr, prsn,

and psl are there cases in which LI+BA preserves trends

slightly better than BA+SD. Otherwise, trends are better pre-

served by BA+SD, by considerable margins in particular for

sfcWind and tas.

Biases at 0.5◦ spatial resolution (Fig. 9) are slightly bet-

ter adjusted by BA+SD than by LI+BA in most calendar

months and grid cells for all climate variables except pr and

prsn. Dry-day frequency biases are better adjusted by LI+BA

than by BA+SD, arguably because the parametric bias ad-

justment of pr that is done following a bilinear interpola-

tion in LI+BA adjusts it explicitly and therefore precisely,

whereas the nonparametric quantile mapping that is used for

statistical downscaling after bias adjustment in BA+SD ad-

justs it implicitly and only approximately (see Sect. 3.2).

Biases in the 50th percentile of wet-day precipitation are

slightly better adjusted by LI+BA than by BA+SD in most

calendar months and grid cells. The opposite is true for the

95th percentile of wet-day precipitation.

In order to assess the goodness of bias adjustment across

spatial scales, the y = 1/x line in Fig. 9 is considered to sep-

arate cases in which BA+SD outperforms LI+BA (below

the line) from cases in which LI+BA outperforms BA+SD

(above the line). Results suggest that BA+SD adjusts biases

better than LI+BA in the vast majority of cases.

The goodness of spatial variability adjustment by LI+BA

and BA+SD is assessed based on Fig. 10, which shows

how well these method combinations adjust spatial variabil-

ity within regular and staggered 2◦ × 2◦ grid cells. Results

suggest that, as expected, spatial variability within regular

2◦ × 2◦ grid cells is better adjusted by BA+SD than by

Geosci. Model Dev., 12, 3055–3070, 2019 www.geosci-model-dev.net/12/3055/2019/



S. Lange: ISIMIP3BASD 3067

Figure 7. Goodness of bias adjustment (x axis) and trend preservation (y axis) by the ISIMIP2b and ISIMIP3 bias adjustment methods for

the lower tail (a), center (b), and upper tail (c) of the distribution of daily values of 10 different climate variables (color, Table 1) simulated by

four different climate models (symbols) at 2◦ spatial resolution. Values on both axes represent ratios of spatiotemporally aggregated absolute

errors after bias adjustment with the two methods (see Sect. 3.3). Values greater than 1 indicate better bias adjustment or trend preservation

by the ISIMIP2b method than by the ISIMIP3 method and vice versa for values smaller than 1.

Figure 8. Same as Fig. 7 but for LI+BA and BA+SD applied for bias adjustment and statistical downscaling from 2 to 0.5◦ spatial resolution.

Like in Fig. 7, absolute errors are calculated at 2◦ spatial resolution based on conservatively aggregated bias-adjusted and statistically

downscaled climate simulation data.

LI+BA for most calendar months and grid cells in all cases

but one (prsn simulated by HadGEM2-ES).

Spatial variability within staggered 2◦ × 2◦ grid cells is

better adjusted by BA+SD than by LI+BA in most cases

for hurs, tas, tasmax, and tasmin and vice versa for prsn

and psl. Results are mixed for pr, rlds, rsds, and sfcWind.

In order to assess how spatial variability is adjusted over-

all, the y = 1/x line in Fig. 10 is considered to separate

cases in which BA+SD outperforms LI+BA (below the line)

from cases in which LI+BA outperforms BA+SD (above the

line). Results suggest that BA+SD adjusts spatial variability

better than LI+BA in the vast majority of cases.

5 Conclusions

The ISIMIP3 bias adjustment and statistical downscal-

ing methods outperform their predecessors in several re-

spects. The new trend-preserving parametric quantile map-

ping method used for bias adjustment preserves trends and

adjusts biases in distribution quantiles more accurately than

the ISIMIP2b bias adjustment method. The new stochastic

method used for statistical downscaling prevents the variabil-

ity inflation caused by spatial interpolation in ISIMIP2b.

A major fraction of the bias adjustment gains can be at-

tributed to the newly introduced adjustment of the likelihood

of individual events. This new feature effectively corrects

for the imperfections of the distribution fits that are the ba-

sis of parametric quantile mapping. In addition, it simplifies
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Figure 9. Same as Fig. 8 but with goodness of bias adjustment at 0.5◦ spatial resolution on the y axis.

Figure 10. Goodness of adjustment of spatial variability within regular (x axis) and staggered (y axis) 2◦ × 2◦ grid cells by the LI+BA and

BA+SD bias adjustment and statistical downscaling methods for 10 different climate variables (color, Table 1) simulated by four different

climate models (symbols). Values on both axes represent ratios of spatiotemporally aggregated absolute errors after bias adjustment and

statistical downscaling with the two methods (see Sect. 3.3). Values greater than 1 indicate better spatial variability adjustment by LI+BA

than by BA+SD and vice versa for values smaller than 1.

the confinement of extreme values to the physically plausible

range.

Trend preservation works better with the new methods be-

cause they apply it to all distribution quantiles compared an

application to only distribution mean values for most climate

variables in ISIMIP2b. In addition, the new approach of bias

adjustment at the spatial resolution of the climate simulation

data followed by statistical downscaling to the spatial reso-

lution of the climate observation data ensures that trends are

preserved at the spatial resolution at which they were simu-

lated.

The new approach also better adjusts spatial variability at

the spatial resolution of the climate observation data than the

old approach of a bilinear interpolation of climate simulation

data to the spatial resolution of the climate observation data

followed by bias adjustment of these interpolated data. Over-

all, the results presented in this paper can be regarded as a

proof of concept of the new paradigm of a clear separation of

bias adjustment and statistical downscaling.

The next version of the ISIMIP3 bias adjustment and sta-

tistical downscaling method (ISIMIP3BASD) is already un-

der development. In order to improve inter-variable consis-

tency, bias adjustment in ISIMIP3BASD v2.0 will be done

in a multivariate manner. In particular, the MBCn algorithm

will be employed for an adjustment of the inter-variable

copula. This additional adjustment step will be inserted be-

tween steps 4 and 5 of the bias adjustment algorithm pre-

sented herein. Apart from that, ISIMIP3BASD v2.0 and

ISIMIP3BASD v1.0 will be identical: the bias adjustment

method for the marginal distributions of all climate variables

as well as the statistical downscaling method will remain un-

changed.
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Code and data availability. The ISIMIP3 bias adjustment

and statistical downscaling code is publicly available at

https://doi.org/10.5281/zenodo.2549631 (Lange, 2019b).

The ISIMIP2b bias adjustment code is publicly avail-

able at https://doi.org/10.5281/zenodo.1069050 (Lange,

2017). The EWEMBI data set is publicly available via

https://doi.org/10.5880/pik.2019.004 (Lange, 2019a). The

CMIP5 multi-model ensemble output is publicly avail-

able via https://doi.org/10.1594/WDCC/CMIP5.NGEMhi

(Dunne et al., 2014a) for GFDL-ESM2M histori-

cal, https://doi.org/10.1594/WDCC/CMIP5.NGEMr8

(Dunne et al., 2014b) for GFDL-ESM2M rcp85,

https://doi.org/10.1594/WDCC/CMIP5.MOGEhi

(Jones et al., 2014) for HadGEM2-ES histori-

cal, https://doi.org/10.1594/WDCC/CMIP5.MOGEr8

(Sanderson et al., 2014) for HadGEM2-ES

rcp85, https://doi.org/10.1594/WDCC/CMIP5.IPILhi

(Denvil et al., 2016a) for IPSL-CM5A-LR histor-

ical, https://doi.org/10.1594/WDCC/CMIP5.IPILr8

(Denvil et al., 2016b) for IPSL-CM5A-LR rcp85,

https://doi.org/10.1594/WDCC/CMIP5.MIM5hi (AORI,

NIES, and JAMSTEC, 2015a) for MIROC5 historical, and

https://doi.org/10.1594/WDCC/CMIP5.MIM5r8 (AORI, NIES,

and JAMSTEC, 2015b) for MIROC5 rcp85.
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