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Abstract 

Background: Evaluation of fluid responsiveness during veno-arterial extracorporeal membrane oxygenation (VA-

ECMO) support is crucial. The aim of this study was to investigate whether changes in left ventricular outflow tract 

velocity–time integral (∆VTI), induced by a Trendelenburg maneuver, could predict fluid responsiveness during 

VA-ECMO.

Methods: This prospective study was conducted in patients with VA-ECMO support. The protocol included four 

sequential steps: (1) baseline-1, a supine position with a 15° upward bed angulation; (2) Trendelenburg maneuver, 15° 

downward bed angulation; (3) baseline-2, the same position as baseline-1, and (4) fluid challenge, administration of 

500 mL gelatin over 15 min without postural change. Hemodynamic parameters were recorded at each step. Fluid 

responsiveness was defined as ∆VTI of 15% or more, after volume expansion.

Results: From June 2018 to December 2019, 22 patients with VA-ECMO were included, and a total of 39 measure-

ments were performed. Of these, 22 measurements (56%) met fluid responsiveness. The R2 of the linear regression 

was 0.76, between ∆VTIs induced by Trendelenburg maneuver and the fluid challenge. The area under the receiver 

operating characteristic curve of ∆VTI induced by Trendelenburg maneuver to predict fluid responsiveness was 0.93 

[95% confidence interval (CI) 0.81–0.98], with a sensitivity of 82% (95% CI 60–95%), and specificity of 88% (95% CI 

64–99%), at a best threshold of 10% (95% CI 6–12%).

Conclusions: Changes in VTI induced by the Trendelenburg maneuver could effectively predict fluid responsiveness 

in VA-ECMO patients.
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Background
Veno-arterial extracorporeal membrane oxygena-

tion (VA-ECMO) is a rescue therapy for patients with 

refractory cardiogenic shock [1, 2]. During VA-ECMO 

support, hypotension may frequently occur due to dete-

riorated cardiac function, vasoplegia, or hypovolemia 

[3, 4]. Volume expansion is a common means to correct 

hypotension and improve systemic perfusion, but inap-

propriate fluid therapy is associated with adverse out-

comes [5]. Prediction of fluid responsiveness before fluid 

resuscitation could achieve a lower fluid balance, reduce 

the risk of renal and respiratory failure, and improve out-

comes for critically ill patients [6].
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Several methods are currently available to evalu-

ate fluid responsiveness in critically ill patients [7–9]. 

Mechanical ventilation generates a cyclical change in 

intra-thoracic pressure and venous return. Based on this 

interaction, stroke volume variation (SVV) and pulse 

pressure variation (PPV) are often used as dynamic 

parameters to predict fluid responsiveness [8]. However, 

VA-ECMO patients frequently present with low tidal 

volume, cardiac arrhythmia and especially pulselessness, 

thus making these parameters less reliable [8, 10, 11]. 

Respiratory variations in the inferior vena cava diameter 

(ΔIVCD) have previously been used as accurate predic-

tors for fluid responsiveness in mechanically ventilated 

patients [12]. However, drainage cannulation placed in 

the inferior vena cava impedes the application of ΔIVCD. 

Simulation of a revisable “autotransfusion” is another fea-

sible approach to assess fluid responsiveness. Passive leg 

raising (PLR) test transiently increases venous return by 

postural maneuver [8]. Unfortunately, the risk of cannula 

distortion or displacement precluded the application of 

this maneuver to VA-ECMO patients. Overall, the physi-

ological features of VA-ECMO patients restrict the use of 

conventional methods to assess fluid responsiveness [11].

�e Trendelenburg maneuver is a “self” volumetric 

loading maneuver [13], and has demonstrated good accu-

racy in predicting responsiveness for acute respiratory 

distress syndrome [14] and surgical patients [15], and 

can be performed for the majority of VA-ECMO patients. 

Transthoracic echocardiography (TTE) is now routinely 

used to evaluate cardiac function recovery, and allows the 

measurement of stroke volume and cardiac output in VA-

ECMO patients [16]. �us, the combination of the Tren-

delenburg maneuver and TTE facilitates the evaluation of 

fluid responsiveness during VA-ECMO support.

�is study was designed to investigate whether a 

change in velocity–time integral (ΔVTI) measured by 

TTE induced by the Trendelenburg maneuver, could pre-

dict fluid responsiveness in patients on VA-ECMO.

Methods
Patients

�is study was approved by the Institutional Review 

Board (Zhongshan Hospital, Fudan University, Shanghai, 

China: Number B2018-074), and conducted in a 40-bed 

cardiac surgical intensive care unit (ICU). During the 

study period (June 2018–December 2019), 22 postopera-

tive patients were prospectively enrolled after informed 

consent was received from the patient’s next of kin. We 

included ventilated patients with relatively low VA-

ECMO pump flow (2–3  L/min) for whom the decision 

to perform volume expansion was made by the attending 

physician (hypotension, hypoperfusion [oliguria or skin 

mottling], or attempt to reduce vasopressor dose [17, 

18]). Exclusion criteria were patients < 18 years old, preg-

nant, pulselessness (pulse pressure (PP) < 15 mmHg [19]), 

contraindication to the Trendelenburg position (cerebral 

edema, intra-abdominal hypertension and gastric reten-

tion), or unsatisfactory cardiac echogenicity (an inability 

to correctly align the Doppler beam to generate reliable 

VTI measurements at the left ventricular outflow tract 

[LVOT]). Patients with evidence of significant hypov-

olemia, such as kicking drainage cannula [20] (suggesting 

a transient venous or atrial collapse) and persistent hem-

orrhage, were also excluded.

Protocol

�roughout the study, patients were sedated with a com-

bination of remifentanil and midazolam, with the aim of 

achieving a Richmond Agitation–Sedation Scale [21] of 

− 5. �e protocol included four sequential steps (Fig. 1):

1. Baseline-1: a supine position with a 15° upward bed 

angulation,

2. Trendelenburg maneuver: 15° downward bed angula-

tion [22],

3. Baseline-2: recover to the same position as base-

line-1, and

4. Fluid challenge: administration of 500  mL gelatin 

over 15 min without postural change.

After 1 min stabilization for each step, VTI, heart rate 

(HR), systolic blood pressure (SBP), diastolic blood pres-

sure (DBP), central venous pressure (CVP) and pulse 

pressure (PP) were recorded. In our center, the tip of the 

drainage cannula was placed in the right atrium to guar-

antee adequate blood collection [11]. �e pressure trans-

ducer was fixed at the level of the patient’s right atrium, 

which was located at the intersection of the mid-axillary 

line and the fourth interspace. During the study, the 

pump was maintained at the same rotation speed. Other 

therapies such as sedation, vasopressors and ventila-

tion also remained unchanged. To acquire as much data 

as feasible, some patients underwent the test more than 

once (on different days) if required, therefore 39 meas-

urements were conducted and recorded.

VTI measurements

Transthoracic echocardiography was performed on 

a CX50 instrument (Philips Healthcare, Eindhoven, 

�e Netherlands) by the same experienced opera-

tor (LL Dong) who was blinded to patient clinical data. 

VTI was measured at the level of the LVOT, using the 

5-chamber apical view. Five consecutive measurements 

were recorded to calculate a mean VTI value. For TTE 

measurement, some indices were defined to estimate 

the reproducibility [17, 23]: (1) coefficient of variation 
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(CV) = standard deviation (SD)/mean; (2) coefficient 

of error (CE) = CV/√n (the number of replicate TTE); 

(3) precision = 2 × CE; (4) least significant change 

(LSC) = CE × 1.96 × √2, indicting the minimal observed 

change value can be considered as real. �ese assess-

ments were performed in eight patients at baseline posi-

tion by obtaining twice by the same operator (LL Dong; 

intra-observer reproducibility) and a second operator 

(Y Liu; inter-observer reproducibility). �e CV was 4% 

for intra-observer variability, and 5% for inter-observer 

variability. �e intra-observer LSC was 8% for VTI 

measurements.

Data collection

Upon patient inclusion, demographic information, sur-

gical procedures, Acute Physiologic and Chronic Health 

Evaluation (APACHE) II scores, left ventricular ejection 

fraction (LVEF), laboratory examinations and blood gas 

analyses were collected. Supportive therapies included 

VA-ECMO and mechanical ventilation (MV) indices, 

vasoactive drug doses (transferred to equivalent ino-

tropic scores) [24], and the concomitant use of intra-

aortic balloon pumps (IABP), renal replacement therapy 

(RRT) or inspired nitric oxide (iNO). We recorded all 

data related to these parameters. All study patients were 

followed up until hospital discharge or death, to record 

clinical outcomes, such as length of MV, tracheotomy 

rate, length of ICU stay, length of hospital stay and hos-

pital mortality.

Statistical analysis

Sample size estimation was performed using PASS soft-

ware. We used the following settings: AUC 0 = 0.5, AUC 

1 = 0.80, power = 0.9, alpha = 0.05, allocation ratio = 1, 

lower false positive rate (FPR) = 0, upper FPR = 1.00, type 

of data = continuous, and alternative hypothesis = two-

sided test, therefore the least number of measurements 

required was 34.

Continuous variables were expressed as medians (with 

interquartile ranges [IQR]) and compared between 

groups using the Wilcoxon or Friedman rank sum tests. 

For pairwise multiple comparisons, we used the Neme-

nyi post hoc test. Categorical variables were expressed 

as numbers (and percentages) and compared using the 

Fisher’s exact test. Linear regression analysis was used 

to demonstrate relationships between percent change 

of VTI (ΔVTI) induced by the Trendelenburg position, 

and fluid challenge. Fluid responsiveness was defined as 

a VTI increase of 15% or more after volume expansion 

[17].

Receiver operating characteristic (ROC) curves were 

generated to evaluate percent changes in VTI and arterial 

Fig. 1 The study protocols. a An outline of each step; b a clinical scenery of VA-ECMO patient; c the 15° upward bed angulation for measurements 

at baselines and fluid challenge. d The 15° downward bed angulation for measurements in the Trendelenburg position
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pressure parameters (ΔSBP, ΔDBP and ΔPP), induced by 

the Trendelenburg maneuver to predicts fluid respon-

siveness. �e area under ROC curves (AUROC) were 

compared using the DeLong test [25]. Sensitivity, speci-

ficity, positive and negative predictive values (PPV and 

NPV), and associated 95% confidence intervals (CI) were 

calculated based on the cutoff value as determined by 

the Youden Index (specificity + sensitivity  −  1) [26]. To 

evaluate the variation of best threshold, we conducted 

a gray-zone analysis, as described by Georges et al. [17]. 

To visualize whether a predictive test can recognize 

the positive events fully and accurately, the recall (i.e., 

true positive rate)-precision (i.e., PPV) curves (PRC) 

were generated and area under precision–recall curve 

(AUPRC) were calculated [27].

All statistical tests were two-tailed, and a value of 

p < 0.05 indicated statistical significance. Statistical 

analyses were performed using R, version 3.6.2 (R Foun-

dation for Statistical Computing, Vienna, Austria).

Results
Patients

�e study flowchart is shown in Additional file 1: Figure 

S1. Due to unavailability of echocardiography staff in per-

sonal vacations, the study period became inconsecutive 

and 3 patients were not included. Besides, 3 (9%) patients 

were excluded for poor echogenicity. �e main charac-

teristics of the 22 enrolled patients are shown (Table 1). 

�e major surgical procedures were heart transplanta-

tion (45%), valve surgery (32%), and Sun’s procedure [28] 

Table 1 Characteristics and  clinical outcomes of  included 

population

Values are median [IQR] or number of patients (n)

BMI body mass index, APACHE II score Acute Physiology and Chronic Health 

Evaluation II score, LVEF left ventricular ejection fraction, ECMO extracorporeal 

membrane oxygenation, IABP intra-aortic balloon pump, RRT  renal replacement 

therapy, iNO inspired nitric oxide, MV mechanical ventilation, ICU intensive care 

unit

Variables

Patients (n) 22

Demographic information

 Gender, n (%) 15 (68)

 Age, year 57 [43–63]

 BMI, kg/m2 24 [21–26] 

Surgical procedure

 Heart transplantation, n (%) 10 (45)

 Valve surgery, n (%) 7 (32)

 Sun’s procedure, n (%) 3 (14)

 Others, n (%) 2 (9)

Postoperative critical ill status

 APACHE II score 20 [18–23]

 LVEF, % 52 [36–62]

Concomitant therapies

 IABP, n (%) 1 (5)

 RRT, n (%) 11 (50)

 iNO, n (%) 13 (59)

Clinical outcomes

 Length of MV, day 16 [7–23]

 Tracheotomy, n (%) 14 (64)

 Length of ECMO, day 6 [4–10]

 Weaning from ECMO, n (%) 17 (77)

 Length of ICU stay, day 20 [14–36]

 Length of hospital stay, day 36 [26–42]

 Hospital mortality, n (%) 8(36)

Table 2 Laboratory examinations and  supportive 

therapies

Values are median [IQR] or number of patients (n)

PaO2 arterial partial pressure of oxygen, PaCO2 arterial partial pressure of carbon 

dioxide, FiO2 inspiratory fraction of oxygen, FdO2 oxygen concentration of 

device, PEEP positive end-expiratory pressure, ECMO extracorporeal membrane 

oxygenation, PBW predicted body weight

Variables

Measurements (n) 39

Laboratory and blood gas variables

 Bilirubin, μmol/L 28 [17–62]

 Hemoglobin, g/L 84 [75–90]

 Platelet,  109/L 56 [33–71]

 PaCO2, mmHg 36 [32–40]

 PaO2, mmHg 101 [80–177]

 Lactate, mmol/L 1.4 [1.2–1.7]

Ventilation setting

 FiO2, % 50 [50–55]

 Tidal volume, mL/kg of PBW 7.0 [6.7–7.6]

 PEEP,  cmH2O 6 [5–8]

ECMO setting

 Blood flow, L/min 2.4 [2.2–2.8]

 Blood flow, mL/kg/min 37 [31–43]

 FdO2, % 60 [50–70]

 Sweep gas flow, L/min 2.5 [2.4–3.0]

 Pump rotation speed, round/min 2800 [2550–3150]

 Implementation to measurement, day 4 [3–5]

 Measurement to decannulation or death, day 2 [1–3]

Vasopressors and inotropes

 Norepinephrine, n (%) 19 (49)

  Dose, µg/kg/min 0.11 [0.06–0.15]

 Epinephrine, n (%) 14 (36)

  Dose, µg/kg/min 0.03 [0.02–0.06]

 Dobutamine, n (%) 20 (51)

  Dose, µg/kg/min 1.1 [1.0–1.6]

 Milrinone, n (%) 4 (10)

  Dose, µg/kg/min 0.1 [0.1–0.2]

 Equivalent inotropic score, µg/kg/min 6 [1–12]
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(14%). �e median length of VA-ECMO support was 

6  days (IQR 4–10), and 17 patients (77%) were weaned 

from VA-ECMO. IABP, RRT and iNO were performed in 

1 (5%), 11 (50%) and 13 (59%) patients, respectively. �e 

median length of MV was 16  days (IQR 7–23), and 14 

patients (64%) underwent a tracheotomy. Eight patients 

(36%) died during a median length stay of 20 days (IQR 

14–36) in ICU.

Measurements

�irty-nine measurements were performed at a median 

of 4  days (IQR 3–5) after VA-ECMO support initiation 

(Table  2). Of these measurements, volume expansions 

were decided for hypotension, oliguria, skin mottling, 

and attempt to reduce vasopressor dose in 30 (77%), 4 

(10%), 1 (3%) and 4 (10%) measurements, respectively. 

All laboratory examinations and supportive therapies 

are presented (Table  2). ECMO flow, tidal volume, and 

equivalent inotropic scores were 2.4 L/min (IQR 2.2–2.8), 

7.0  mL/kg (IQR 6.7–7.6), and 6  μg/kg/min (IQR 1–12), 

respectively. During the study protocol, no patients 

developed cannula-related complications (i.e., hemor-

rhages, thrombosis or cannula displacement) following 

the Trendelenburg maneuver.

The e�ects of the Trendelenburg maneuver and �uid 

challenge

Fluid responsiveness was observed in 22 of the 39 meas-

urements (56%). Hemodynamic parameters from each 

step are shown (Table 3 and Fig. 3a, b). Higher baseline 

CVP was observed in non-responders. No variables 

recorded after return to baseline values exhibited sig-

nificant differences. CVP, SBP, DBP, PP, and VTI indices 

were higher for either Trendelenburg or fluid challenges 

than their corresponding baseline values. �e fluid chal-

lenge induced higher ΔSBP (9% [IQR 5–18%] vs. 8% [IQR 

4–14%], p = 0.019), ΔPP (17% [IQR 1–21%] vs. 12% [IQR 

4–21%], p = 0.044), and ΔVTI (16% [IQR 4–30%] vs. 10% 

[IQR 5–21%], p < 0.001) than the Trendelenburg maneu-

ver. �e ΔVTI between the Trendelenburg position and 

fluid challenge was highly related, with an R2 of 0.7614 

and a slope of 0.58 (Fig.  2a). In comparison, the R2 of 

ΔSBP, ΔDBP and ΔPP were 0.2167, 0.0715 and 0.2187, 

respectively (Fig. 2b–d).

Prediction of �uid responsiveness

Data on fluid responsiveness predictions are shown 

(Fig.  3 C&D, Additional file  1: Figure S2 and Table  4). 

�e AUROC of ΔVTI induced by Trendelenburg to pre-

dict fluid responsiveness was 0.93 (95% CI 0.81–0.98), 

Table 3 Hemodynamic parameters at  baselines, at  the Trendelenburg position and  after  �uid challenge in  responders 

(n = 22) and non-responders (n = 17)

Values are median [IQR]

HR heart rate, SBP systolic blood pressure, DBP diastolic blood pressure, CVP central venous pressure, PP pulse pressure, VTI velocity–time integral

a p < 0.05, comparison between responders (n = 22) and non-responders (n = 17)

b p < 0.05, comparison between Trendelenburg position and baseline 1 or �uid challenge and baseline 2

Variables Baseline 1 Trendelenburg position Baseline 2 Fluid challenge p value

HR, beat/min 105 [90–115] 107 [89–113] 106 [88–113] 106 [87–113] 0.232

 Responders 103 [86–110] 102 [85–112] 104 [85–110] 101 [84–109] 0.051

 Non-responders 112 [93–116] 113 [98–115] 111 [92–104] 111 [98–101] 0.629

CVP, mmHg 13 [11–15] 15 [13–17]b 13 [10–15] 15 [13–17]b < 0.001

 Responders 12 [10–15] 14 [11–16]b 12 [9–14] 14 [12–17]b < 0.001

 Non-responders 14 [13–15] 15 [14–17]b 14 [13–15]a 15 [14–17]b < 0.001

SBP, mmHg 98 [86–107] 107 [101–115]b 98 [89–106] 111 [105–120]b < 0.001

 Responders 97 [85–109] 108 [102–115]b 98 [87–107] 116 [109–123]b < 0.001

 Non-responders 98 [87–105] 105 [99–111]b 98 [90–102] 105[94–111] a, b < 0.001

DBP, mmHg 59 [51–68] 63 [56–72]b 60 [53–68] 64 [58–72]b < 0.001

 Responders 56 [48–67] 62 [54–71]b 58 [48–68] 63 [60–72]b < 0.001

 Non-responders 60 [54–68] 63 [57–72]b 60 [55–68] 66 [57–71]b < 0.001

PP, mmHg 37 [31–45] 44 [38–48]b 39 [31–45] 46 [38–55]b < 0.001

 Responders 41 [36–47] 46 [40–51]b 40 [32–47] 51 [46–57]b < 0.001

 Non-responders 36 [26–43] 38 [32–45]a 36 [30–42] 38 [30–45]a 0.035

VTI, cm 11.5 [9.4–13.3] 12.9 [11.0–14.6]b 11.9 [9.1–13.7] 13.7 [11.5–15.6]b < 0.001

 Responders 11.8 [8.8–13] 13.5 [10.4–15.5]b 11.7 [9.0–13.1] 14.0 [12.2–16.4]b < 0.001

 Non-responders 11.5 [11.1–13.7] 12.4 [11.1–13.4] 12.2 [11.0–13.8] 12.4 [11.5–14.0] 0.008
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with a sensitivity of 82% (95% CI 60–95%), and specific-

ity of 88% (95% CI 64–99%), at a best threshold of 10%. 

�e corresponding gray-zone was 6–12%, covering 32% 

of measurements. �e percent change in arterial pres-

sure variables, i.e., ΔSBP, ΔDBP and ΔPP, displayed lower 

predictive accuracies (AUROCs: 0.76 [95% CI 0.56–0.87], 

0.73 [95% CI 0.52–0.85] and 0.69 [95% CI 0.48–0.82], 

respectively), whereas wider ranges of best thresholds 

(13% [95% CI 6–14%], 6% [95% CI 2–13%] and 10% [95% 

CI 2–23%]) than ΔVTI. Also, the ΔVTI showed higher 

AUPRC (0.96 [95% CI 0.88–0.99]) than ΔPP (0.70 [95% 

CI 0.61–0.92]), ΔSBP (0.85 [95% CI 0.71–0.95]) and 

ΔDBP (0.80 [95% CI 0.61–0.94]) (Additional file 1: Figure 

S3).

Discussion
To the best of our knowledge, this is the first study to 

explore the predictive value of ΔVTI, induced by the 

Trendelenburg position for fluid responsiveness in 

patients with VA-ECMO support. Our work demon-

strated that ΔVTI monitoring during the Trendelenburg 

position was a reliable parameter in predicting fluid 

responsiveness in this population.

VA-ECMO could provide extracorporeal life sup-

port, as well as reducing the workload of the injured 

heart, thereby creating favorable conditions for myo-

cardial recovery [1, 2]. During this support, clinicians 

usually increase ECMO flow to correct hypotension, 

which would lead to a higher left ventricular afterload 

and a downward shift of the Frank–Starling curve [29]. 

Apart from device flow, native cardiac output also plays 

an important role in maintaining systemic circulation, 

especially when the heart is in recovery, and device flow 

decreases correspondingly. Moreover, the volume status 

of the heart varies at any time due to hemorrhage, capil-

lary leak, fluid therapy and changes in cardiac function, 

and hence should be dynamically evaluated.

Fluid responsiveness, as a cardiac response parameter 

to additional preload, is typically used for septic shock 

patients [8]; however, it may also be useful for patients 

with VA-ECMO support. On one hand, during VA-

ECMO support, traditional parameters such as ejection 

Fig. 2 Linear regression between changes in velocity–time integral (∆VTI, a), systolic blood pressure (∆SBP, b), diastolic blood pressure (∆DBP, c) and 

pulse pressure (∆PP, d) induced by the Trendelenburg position and the fluid challenge. Solid and dashed lines indicate regression lines and their 

95% confidential intervals
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fraction may not fully reflect cardiac function [30]. Fluid 

responsiveness may indicate whether the heart works at 

the steeper part of the Frank–Starling curve, thus guid-

ing volume administration  for hypotension, thereby 

providing indications for myocardial recovery and wean-

ing feasibility from VA-ECMO. On the other hand, 

fluid unresponsiveness could also be used to guide fluid 

removal in ventilated patients with fluid overload [31], 

which may induce heart congestion, pulmonary edema, 

and acute kidney injury [32, 33], potentially increasing 

mortality [34]. Hence, assessment of fluid responsiveness 

could help to optimize preload and also evaluate cardiac 

function.

�e Trendelenburg maneuver is a method that facili-

tates “autotransfusion”. Geerts et  al. concluded that the 

final changes in cardiac output induced by the Trende-

lenburg position were similar to PLR [13]. In this study, 

the Trendelenburg position induced a 58% change in 

VTI, induced by a 500-mL fluid challenge, indicating a 

similar physiological effect to PLR. �e high correlation 

between changes in VTI induced by the Trendelenburg 

position or fluid challenge allowed us to accurately pre-

dict fluid responsiveness in VA-ECMO patients.

Arterial pulsatility, coming from left ventricular ejec-

tion, is often considered as a marker of cardiac recov-

ery during VA-ECMO [4, 35]. PP, as a parameter of 

pulsatile-flow, has been used as a predictor of successful 

Fig. 3 Individual values of velocity–time integral (VTI) of each step in non-responders (a) and responders (b) as well as receiver operating 

characteristics curve (c) and grey zone analysis (d) of changes in VTI induced by the Trendelenburg position to predict fluid responsiveness
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weaning from VA-ECMO [36, 37]. However, in this study, 

changes in PP had a poorer predictive performance for 

fluid responsiveness than VTI. Although both variables 

could reflect the stroke volume, the PP is just a differ-

ence between SBP and DBP, rather than the area under 

the pulse contour per se. In fact, the relationship between 

SV and peripheral PP changes were not straightforward 

because they depended on arterial compliance, and pulse 

wave amplification from the aorta to the periphery. Pre-

vious studies have indicated that changes in PP exerted 

significant heterogeneity towards predictive accuracy for 

fluid responsiveness [38, 39]. Similarly, neither ΔSBP nor 

ΔDBP, induced by the Trendelenburg maneuver, demon-

strated an acceptable predictive accuracy in this study.

Study limitations

Our study had several limitations. First, it was conducted 

in a single center, which may have limited generaliz-

ability across different clinical settings. Second, a larger 

angle of Trendelenburg positioning may have introduced 

more  “autotransfusion” to the central circulation [13], 

and was not evaluated in this study. �ird, measurement 

of LVOT VTI is not the gold standard for evaluating car-

diac output, because of its dependence on patient echo-

genicity and operator expertise. However, techniques 

based on thermodilution have proven unreliable in VA-

ECMO patients [3], although they were accurate in esti-

mating cardiac output under most circumstances [40]. 

Fourth, all patients in this study were under deep seda-

tion, thus the Trendelenburg maneuver may be less reli-

able in predicting fluid responsiveness in non-sedated 

patients. Finally, because the study was conducted in a 

low VA-ECMO pump flow setting, our data may not be 

extrapolated to the acute phase of heart failure requiring 

full mechanical circulatory support.

Conclusions
Our study suggested that an increase in VTI of at least 

10%, induced by the Trendelenburg maneuver, was reli-

able in predicting fluid responsiveness in patients with 

VA-ECMO.
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