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Electricity usage of buildings (including offices, malls, and
residential apartments) represents a significant portion of
a nation’s energy expenditure and carbon footprint. In the
US, the buildings’ appliances consume 72% of the total pro-
duced electricity approximately. In this regard, cyber-physical
system (CPS) researchers have put forth associated research
questions to reduce cyber-physical building environment
energy consumption by minimizing the energy dissipation
while securing occupants’ comfort. Some of the questions
in CPS building include finding the optimal HVAC control,
monitoring appliances’ energy usage, detecting insulation
problems, estimating the occupants’ number and activities,
managing thermal comfort, intelligently interactingwith the
smart grid. VariousMachine Learning (ML) applications have
been studied in recent CPS researches to improve build-
ing energy efficiency by addressing these questions. In this
paper, we comprehensively review and report the contem-
porary applications of ML algorithms such as deep learn-
ing, transfer learning, active learning, reinforcement learn-
ing, and other emerging techniques that propose and en-
vision to address the above challenges in the CPS building
environment. Finally, we conclude this article by discussing
diverse existing open questions and prospective future di-
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rections in the CPS building environment research.

K E YWORD S

Deep Learning, Transfer Learning, Active Learning, Reinforcement
Learning and Control, Cyber-physical building environment.

1 | INTRODUCTION

According to the United States Environmental Protection Agency (EPA), households and commercial buildings con-
sume 70% of the total electricity. The EPA further sorts the Heating, Ventilation, and Air Conditioning (HVAC) system,
lighting, and other appliances as the major contributors to household energy usage. HVAC system alone accounts
for more than 40% of the total household energy Energy (2010). The HVAC and some electrical appliances are not
optimized for the occupants. Moreover, the existing thermal leakage in the building envelope forces the HVAC ap-
pliances to consume more energy to keep up the comfort level and cover the unwanted thermal losses. Still, this
tremendous energy consumption causes thermal discomfort for occupants because of poor management, scheduling,
and retrofitting. This gap has created a research opportunity both in energy-saving and appropriate comfort level
management. To enable building as an intelligent system, the processing, modeling, learning, and inference of a large
amount of the information on the building energy profile, thermal quality, occupancy, and comfort level are warranted.
Numerous studies show that the intelligent usage of building electric appliances is a potential solution. The goal is
to simultaneously improve the comfort of the occupants while minimizing the energy usage of household appliances
such as the HVAC and other appliances. To solve these myriad sets of cyber-physical building environment challenges,
various machine learning and data-driven solutions have been postulated.

Various machine learning methodologies from the literature have already been designed to practical models in
order to solve the building decision-making problems such as effective usage of energy, occupancy detection, and
comfort level navigation. Nevertheless, the ML algorithms’ performance greatly depends on the data quality and
quantity to develop them. However, some of the ML approaches can operate and sustain during data scarcity and
sparsity, missing data, and limited ground truth information.

In this article, we review and study the most recent applications of ML algorithms to cyber-physical building
environment energy efficiency-related problems. We posit the work related to solving the cyber-physical building
environment decision problems such as occupancy detection, HVAC control, the activities of daily lives (ADL), en-
ergy disaggregation, and thermal leakage detection. We primarily focus on the trending ML methodologies used by
researchers in the cyber-physical building environment in recent years. We put forth the challenges and solutions re-
lated to modeling, learning, and inferring the contextual information about the building leveraging novel technological
innovations in Internet-of-Things devices such as smart plugs, smart thermostats, low-power IR cameras, Drones, etc.
We articulate different experiments along with empirical and evaluation methods applied to building-related data for
validating the ML models and approaches.

This review article is organized as follows. We look into the previous survey papers on the cyber-physical building
environment and discuss the research gap we plan to bridge in this review article in section 2. We outline the relevant
contents, scopes, and the focuses the review paper covers in section 3. We discuss the deep learning methodolo-
gies in section 4. Section 5 depicts the transfer learning, section 6 covers the active learning and section. Section
7 describes ensemble and classical machine learning algorithms with application to the cyber-physical building envi-
ronment. We discuss machine learning control problems and summarizes their application, particularly reinforcement
learning in the context of decision-making problems for cyber-physical building environment in section 8. Section
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9 discusses a comparative analysis of the different methodologies, and section 10 positions the prospective future
research directions in the field of ML application in the cyber-physical building environment. We conclude the review
paper in section 11.

2 | RELATED WORKS

Various research groups, focused on different aspects of the problem, conduct multiple types of research on cyber-
physical building environments. Several review papers cover various branches of current literature in conjunction
with the cyber-physical building environment and signal processing section. Guo et al. (2019) provided an overview
focusing on the recent products and technologies for the cyber-physical building environment. Qolomany et al. (2019)
reviewed the application of ML and big data in different systems for comfort, security, and energy efficiency. Huang
(2018) included the advancements in occupancy detection and energy-saving adopting Wi-Fi data usage in cyber-
physical building environment. Chen et al. (2018) focused on reviewing occupancy estimation from the fusion of
sensor data. Kim et al. (2018) provided the overall paradigm for the thermal comfort models. Vázquez-Canteli and
Nagy (2019) comprehensively discussed works and advancements on multi-agent learning to control diverse energy
systems for demand response using reinforcement learning algorithms. Miller et al. (2018) reviewed the applications
of only unsupervised statistical learning algorithms, smart meter operation, optimization, and control. Saberi and
Menes (2020) reported the prospect of application of artificial intelligence to improve building design and construction.
Nguyen and Aiello (2013) surveyed the researches relevant to energy-saving and user activity recognition in the
building domain. Their report analyzed the importance and impacts of activity recognition on energy savings for
HVAC systems, lights, and plug loads.

To our knowledge to date, we found no review paper covering the spectrum of ML applications in cyber-physical
building environments. A comprehensive review including the diverse domain focusing on data-drivenMLmethodolo-
gieswould provide a helpful overviewof this particular research area. This reviewwould allowdata domain researchers
to perceive the state-of-the-art and trendingML solutions to these decision problems in cyber-physical buildings. This
review would also provide a baseline and represent the state of the arts for new researchers in this field with potential
research directions.

3 | SCOPE OF THIS REVIEW PAPER

In this paper, we have comprehensively studied the recent trending machine learning methodologies in the context
of the cyber-physical building environment. We have focused on minimizing energy usage in building environments
without any major retrofitting. We have covered scientific advancements in machine learning applications in cyber-
physical building environments from 2015 - June 2020. We have incorporated the application specific to the field of
occupancy detection, thermal leakage detection, non-intrusive load monitoring (NILM), ADL in a cyber-physical build-
ing environment for energy-saving, HVAC control, non-intrusive loadmonitoring, occupant’s thermal comfort. Besides
accumulating recent applications, we have explored and discussed the potential challenges, prospective directions in
this field of the cyber-physical building environment for ML researchers to contribute and enhance as depicted in fig-
ure 1. We have searched for the potential papers by exhaustively looking at the top conferences, workshops featuring
cyber-physical building envelopes. We have also navigated the researches of the leading researchers, research groups
contributing to the cyber-physical building environment and machine learning applications. We have also used the
dblp, google scholar, researchgate to explore the recent and follow-up publications in our selected timeline.
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F IGURE 1 Contents and scope of this review paper.

4 | DEEP LEARNING

Deep learning (DL) methods cover a family of artificial neural network-based machine learning methods. DL enables
representation learning from the input to the output by parametric function approximation. The recent advancement
in algorithms, innovation of high power computing resources and storage, and availability of large amounts of data
have contributed significantly to develop DL methods and their widespread applications in numerous fields. With
enough data examples and varieties, appropriate supervised deep learning architecture can learn approximate func-
tions to achieve desired output from input data with generalization. Besides, unsupervised and semi-supervised DL
methods can benefit from the unlabeled data by understanding hidden structure and distribution properties. Learn-
ing the generalized information about data, DL models can perform with high accuracy and reliability in test cases.
Another benefit of DL methods that they can work directly on sensor data as they are capable of extracting features
by learning better data representation, whereas traditional ML methods require different selected features (mean,
median, max, Fourier of the sensor data) to work with. Various state-of-the-art DL techniques have been deployed
to cyber-physical building environment building settings. These models leverage the raw or minimum prepossessed
input data to infer the target information. In this section, we will cover Generative Adversarial Network (GAN), convo-
lutional neural network (CNN), recurrent neural network (RNN), deep neural network (DNN), long short-termmemory
(LSTM) method based applications in cyber-physical system (CPS) building environment research.

Chen and Jiang (2018) applied a generative adversarial network (GAN) to learn the occupancy distribution in
the office environment via a generator network. Their result demonstrates the effectiveness of GAN to predict oc-
cupancy characteristics in a certain setting. Convolutional network architectures perform excellently in computer
vision-related problems. Royuela-del Val et al. (2019) applied CNN architecture on thermal images to estimate the
leakage and air infiltration rate through the building environment. Their report shows the CNN model outperforms
the fully connected neural network. Chaudhuri et al. (2019) proposed a personal thermal comfort model using CNN.
They also design a neural network to find optimal operating conditions for HVAC to meet thermal comfort while
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saving energy. Jia et al. (2019b) applied tree-based CNN (TreeCNN) architecture to iterative energy disaggregation.
They claim applying TreeCNN does better to separate the energy of different appliances of different load scales. They
extract the heavy load first and carry on for further energy disaggregation. Adeogun et al. (2019) analyzed Lora-based
Internet of things (IoT) sensor data by applying a fully connected neural network to estimate occupancy in office set-
tings. Abedi and Jazizadeh (2019) applied a deep neural network to detect occupancy presence using Doppler radar
sensors. Bienvenido-Huertas et al. (2019) applied two layers of a neural network to estimate building envelope U-
value within certain confidence bound using multi-modality data. Gayathri et al. (2017) applied a multi-layer neural
network on fusion of motion, temperature sensors data for monitoring ADL. Park et al. (2019a) presented a poster de-
scribing the modeling of occupancy using CNN-based autoencoder. They represented the American time use survey
data in their low dimensional latent space to infer important insight into the occupancy profiles. For quick diagnostic
of building wall defects, Perez et al. (2019) proposed CNN-based classifiers to classify three types of building weak-
nesses; Moulds, deterioration, strain. The further localized building defects area from building envelope images via
class activation map (CAM) techniques using their trained CNN architectures. The author argued about the potential
of their methods to scale up and automation using mobile devices and drones.

RNN architectures are designed to work with time-series data. Wang et al. (2018b) proposed a Markov-based
feedback RNN occupancy estimation system. The authors used a sequential Wi-Fi signal strength index (RSSI), MAC
address to estimate occupancy in an office environment with high accuracy. Zhao et al. (2018) used Elman RNN
architecture on temperature and light features of the office environment to accurately estimate occupancy. LSTM
(Long Short-TermMemory) and GRU (Gated Recurrent Units) overcomes the vanishing or exploding gradient problems
of RNN architecture for time series by gating mechanism. Kelly and Knottenbelt (2015) demonstrated that LSTM
outperformed other methodologies in their nonintrusive load monitoring problem on their collected data. Pathak
et al. (2018) proposed architecture consists of one CNN and two LSTM layers to disaggregate energy on the Dataport
dataset psd (2020). The authors further proposed an autoencoder-based network to the same problem and considered
different time sampling to energy disaggregation problems. Singh et al. (2017) applied a network of convolutional and
LSTM layers to detect activities of daily lives on data from Van Kasteren et al. (2008). Their architecture outperforms
the probabilistic baseline models in the test case. Recently, Wi-Fi routers’ signals have gained attention for building
occupancy monitoring due to their ubiquitous presence in both household and commercial buildings. Wang et al.
(2019) applied the LSTM network to estimate a large number of the occupant in a commercial building environment
by monitoring Wi-Fi access points data simultaneously considering the privacy issues.

5 | TRANSFER LEARNING

F IGURE 2 Transfer learning scheme for home.

Transfer learning uses the gained knowledge and informa-
tion of one problem domain to different but somewhat re-
lated domains. Cyber-physical building domain researchers
have massive opportunities to apply transfer learning due
to commonalities among source domains and target tasks as
in figure 2. The trained ML models expect to perform ac-
curately and consistently on different data environments it
was originally trained upon by learning better generalization
and scale-ability. But various proposed cyber-physical build-
ing environment system performs only on the training envi-
ronment. The change in input data distribution impacts the
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decision accuracy. Transfer learning strategies would make the ML models robust under diverse scenarios by learning
better representation. It also reduces the necessity of enormous data and training time for the fine-tuning models for
the target domain as the models have already converged and contained domain knowledge. In the case of dissimilarity
between source and target domain heterogeneous transfer learning (HTL) methods performswell. Domain adaptation
(DA) can be formulated as HTL problems in the case of source domain variability.

Transfer learning algorithms and strategies have their wide application as a prospective solution in the cyber-
physical building environment domain. Hu et al. (2019) proposed amulti-layer neural network-based HTL architecture
to decide on personal thermal comfort intelligently. The authors include heterogeneous features in two staged learn-
ing architectures. Their architecture can successfully integrate different features in the target domain with the learned
parameters from the source domain. In Arief-Ang et al. (2017) the authors incremented their earlier developed model
in different settings using DA methods to estimate occupancy with higher precision. The author reported reducing
the training data while maintaining a similar model performance. Zheng et al. (2018) applied clusteredmultitaskingML
model to predict and measure the performance of the chiller-based HVAC system combining different temporal and
mechanical features of the HVAC. Zimmermann et al. (2017) experimented and discussed the performance variability
across various environments for the residential house occupancy detection model using environmental sensors. The
authors of Jiang and Lee (2019) proposed deep neural network-based domain adaption for developing temperature
evolution and energy consumption model disregarding the explicit knowledge about the state of building’s physics.
The authors’ experiment showed improved predictive performance in estimating building thermal evolution using pre-
training weights and fine-tuning LSTM models on a publicly available dataset. The authors of Zhang et al. (2019b)
implemented and open-sourced python based machine learning toolkits using different supervised learning models
for occupancy detection named ODToolkit. The authors extended their methods by enabling scaling and DA by in-
corporating three semi-supervised domain-adaptive occupancy detection algorithms to develop a better accurate
occupancy detection model.

6 | ACTIVE LEARNING

F IGURE 3 Active learning setup for building data.

Data with limited labeling options offer a great opportunity
in cyber-physical building environment research areas. It’s
not always convenient to collect and accurately label a large
amount of data in a home-based setting due to privacy, con-
venience, and memory constraint device issues. There are
existing techniques to overcome data limitations like data
augmentation, self-supervised learning, active learning (AL).
AL prioritizes the data whose labels would have the highest
impact to train a supervised learning model. AL actively se-
lects the most informative data in a smart structured way
to be labeled iterative to train the supervised models. AL
algorithms use the annotator in the loop to get the most in-
formative data annotated after querying the unlabeled data as shown in figure 3. These algorithms select theminimum
training data to build a robust model. These reveal the most informative data to label from the data pool in the building
environment domain to develop learning architectures. The model can perform with similar accuracy to models that
have been trained upon massive labeled data.
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Jia et al. (2019a) applied the active learning-based algorithm to perform energy disaggregation on household
energy consumption with requiring labels for a small amount of data after query. The authors validated their approach
from the Dataport dataset psd (2020) by systematically selecting necessary information to feed the learning agent.
In this work, the authors proposed an active sensors’ placement strategy to maximize the model output using a fixed
number of sensors. The authors also considered the cost of sensor placement and searched for the optimal position
and number of the sensors. Lin et al. (2019) applied and validated sequential active learning-based algorithms to map
metadata for building sensor labeling. Further, to reduce human efforts, their algorithm utilizes the partial labeling of
the data.

7 | OTHER ML ALGORITHMS

CPS researchers are applying different machine learning algorithms like instance-based, tree-based, ensemble algo-
rithms, matrix factorization, cluster-based algorithms suitable for multiple settings in the cyber-physical building envi-
ronment context numerous times. We have covered the most recent implementation of these classical and ensemble-
based machine learning algorithms with various trending data modalities in our review. We have considered the latest
technologies used to collect data and infer them using different ML methods.

Zou et al. (2017) considered channel state information (CSI) and signal tendency index (STI) ofWi-Fi information to
detect active occupants in the loving home environment. The authors applied random forest (RF) on greedily selected
sub-carrier features to decide on occupants. Petrovic et al. (2018) proposed two models based on the random forest
from Wi-Fi power consumption by connecting the smart plug to monitor power usage. The authors validated their
proposed RF-based model for both single and multiple Wi-Fi routers. Wang et al. (2018a) proposed a neural network
architecture to estimate occupancy in a large office environment. The authors used the fusion of Wi-Fi sensor data
and environmental sensor data to validate the precision of occupancy detection via the neural network.

Javed et al. (2015) used a random neural network architecture to control HVAC by detecting occupancy. The
authors chose the environment and current HVAC setting features for their target. Javed et al. (2016) later extended
their works onmultiple room occupancy estimation andHVAC control by using cloud computing from the base station.
Kraipeerapun and Amornsamankul (2017) applied two variants of the neural network; stacking method and comple-
mentary neural network, to detect presence from environmental sensor data. Feng et al. (2019) estimated occupancy
in a teaching room from Wi-Fi indicators and RSSI from Wi-Fi sniffer by applying neural networks. Georgievski et al.
(2017) adopted the hierarchical task network planning of Erol et al. (1994) to solve building energy coordination prob-
lem by incorporating building occupants’ behavior detection. Their experiments in offices and restaurant settings
showed a significant reduction in energy usage.

Pathak et al. (2019) focused on learning the distribution of building envelope parameters such as thermal re-
sistance per unit (R-value), heat transfer coefficient (U-value). The authors proposed a computational efficient and
precise automatic differentiation variational interface (VI) based algorithm to find the distribution of building parame-
ters. The authors extensively validated their proposed generative process method on two datasets. Rahimpour et al.
(2017) proposed a non-negative matrix factorization method to monitor the load consumption of electrical appliances
non-intrusively.

The building researchers have explored control optimization-based approaches to obviate the manual fine-tuning
in Building Optimization Control (BOC). Particularly, Parametrized Cognitive Adaptive Optimization (PCAO) have been
proposed for Building Optimization Control because of its’ flexibility in terms of model-based and model-free design
Baldi et al. (2013), Baldi et al. (2014). In the BOC research, Baldi et al. (2015) used PCAO to design BOC systems while
reducing human input in both model-based and model-free settings. Their experiments on simulated data and 10-
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office building data demonstrated improved energy efficiency while maintaining higher thermal comfort. Michailidis
et al. (2018) focused the PCAO application on the decentralized model-free BOC system. Their experiments with
practical building controllable-HVAC system depicted the state-of-the-art results with fewer data. It showed the
PCAO’s adaptiveness under complex building dynamics, building occupancy, and thermal characteristics. Baldi et al.
(2018) proposed rule-based PCAO to solve load management with smart zoning problem described in Turner (2008).
The authors experimented in a realistic office building and dynamically provided dedicated thermal setpoints for each
room to optimize the building’s thermal and comfort performance.

8 | REINFORCEMENT LEARNING

F IGURE 4 Reinforcement learning for HVAC and device
control system for the building/home.

Reinforcement learning (RL) stands as one of the
three basic ML paradigms along with supervised
and unsupervised learning. RL algorithms aim to
train the agents to take action based on the ob-
served state information to maximize the notion
of cumulative rewards as in figure 4. Deep learn-
ing methods have enabled the function approxima-
tion for the RL agents using available knowledge
from the state. Recently, researchers have applied
RL methods in the domain of cyber-physical build-
ing environment appliances to enable data-driven
smart control. Observing the current building envi-
ronment from different sensors, the RL agent learns
to intelligently control and schedule both the household and commercial building appliances to maximize both energy-
saving and occupant’s comfort simultaneously.

Yu et al. (2019) formulated the building energy usage as a Markov decision process (MDP). The author considered
the load, generation, temperature, and electric price as state descriptors. Based on the descriptors’ state the agent
assigns a schedule for the energy storage system andHVAC to reduce cost andmaximize comfort. The author applied a
Deep Deterministic Policy Gradient (DDPG) algorithm to optimize the decision network. Park et al. (2019b) proposed
a occupant centered controller system named LightLearn. The authors formulated an MDP problem and designed
a workflow to learn to control light using the value iteration algorithm. The defined state by four parameters and
trained the agent to perform three actions based on the rewards of saving and comfort. Gao et al. (2019) used the
DDPG algorithm to optimize a neural network to control the HVAC system given the state described by temperature,
humidity, and some other building environment sensor data. Zhang and Lam (2018) applied deep reinforcement
learning algorithm Asynchronous Advantage Actor-Critic (A3C) algorithms to train the agent to control an HVAC
heating in office setup. The learned agent performed to save more than 17% energy without compromising comfort.
Zhang et al. (2019a) designed simulation on OpenAi gym environment. The authors proposed a model to learn system
dynamics learning and energy saving using the proximal policy optimization (PPO) algorithm. Wei et al. (2017) trained
an agent to control theHVAC system by learningQ-value using a neural network. The authors considered a simulation-
based state and designed reward function as cost and temperature discomfort. The agent saved 20∼70%more energy.
Mirra et al. (2018) used the notion of delayed reward to train an agent using a policy-basedmethod to control light and
appliances. In the work of Chen et al. (2019), the author proposed differentiable model predictive control (MPC) based
policy to counter the sample inefficiency problem in the practice of controlling HVAC in the real scenario. The authors
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focused on learning better representation in RL by pre-training on historical data by imitation learning. They have been
shown to save more than 6% energy in both simulation and real-world test-bed by adopting their proposed Gnu-RL
approach. The authors of Nagarathinam et al. (2020) proposed a multi-agent-based reinforcement learning system to
control the HVAC systems. The authors proposed multiple learning agents for multiple set points by considering both
the air-handling units and the water-side chiller control. They validated and scaled their approach in both simulation
and real-world environments.

9 | COMPARATIVE ANALYSIS

Recently, different ML methodologies and a family of algorithms have been proposed and validated in various envi-
ronments and settings to solve diverse cyber-physical building decision and fault detection problems. These method-
ologies have their advantages and disadvantages. DL methods generalize and perform better than other handcrafted
feature-dependent models in case of the availability of enough quality data examples to train models by optimizing
appropriate loss function. Moreover, DL models can learn approximate task-performing functions directly from raw
sensor data. DL models learn the better representation from the data towards the target output. This enables scal-
ing and transferring knowledge to the new target domain. On the other hand, DL algorithms require a considerable
amount of data and memory to train properly and fast. Sometimes it’s not feasible to integrate with memory con-
straint low-cost devices. Besides, DL models work like a black box and hard to interpret decision reasoning. It takes
exhaustive efforts to devise the optimized network architecture, hyper-parameters, loss functions, optimization tech-
niques for the specific task. To avoid data limitation, transfer learning is intervening to get better performance all
around. Transfer learning techniques are utilizing different trained networks and domain knowledge in building en-
vironments. On the downside, transfer learning may transfer irrelevant knowledge, class imbalance, and sometimes
complementary knowledge, to cause performance degrading instead of boosting. The source domain data quality
impacts learning. Another line of researches focuses on using available building data efficiently via active learning
methodologies. Active learning algorithms greatly rely on the available high-quality data and error-free labeling in
the crucial data points. In other cases, rule-based algorithms are still in practice among researchers. This is mainly
due to the fast learning, convenient to apply, design, and interpret the outcomes more explicitly. But the classical
rule-based ML methodologies suffer from generalization issues and bias towards model and algorithm selection and
are often under-performed compared to the DL models. For control and learning dynamics, RL methodologies are
ubiquitously applied in the building domain. RL performs well in the control problems and learning activities based on
environment states. The RL agents need proper environment information and a well-formulated reward function to
train the agent. Sometimes it not straightforward to set up RL problems with appropriate designs like reward function,
optimization algorithms for agents. It is not always desirable to train RL agents in a real-life environment because of
sample inefficiency and safety reasons. But, appropriate RL algorithms with the proper setup and sensor information
would enable RL agents to efficiently control the appliance for a better reward under dynamic circumstances. Table 1
summarizes the application of different methodologies to cyber-physical building environment setting so far.

10 | FUTURE DIRECTION AND TRENDS

The first research direction may target the generalization performance of the models. Most ML models work in a
controlled setting where test data distributions are the same as the training data. During our survey, we have found
different methods that enabled decision-making in building settings that perform only to a particular scenario. These
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TABLE 1 Summary of different ML Methodologies with Application to Cyber-Physical Building

Algorithms Scope and application Advantages Disadvantages

Deep Learning ADL, Occupancy estimation, NILM,
Thermal leakage detection, RL
function approximation, Thermal
comfort design, Data generation

Better generalization
and performance, Fea-
tures extraction, Raw
sensor data

Need large dataset,
computationally heavy,
Needs large memory

Active Learning ADL, Occupancy estimation, NILM,
Thermal leakage detection, Ther-
mal comfort design

Consider the cost of
data collection. Iden-
tifies the most infor-
mative data to learn
from. Performs on
smaller dataset

Requires high quality
processed data.

Transfer Learning
and Domain Adap-
tation

ADL, Occupancy estimation, NILM,
Thermal leakage detection, Ther-
mal comfort design

Utilizes already learned
knowledge, requires
less data for target
domain

May transfer irrelevant
or negative knowledge,
target domain and
source domain needs
to be related.

Reinforcement
Learning

Appliance Control and personal
thermal comfort

Iterative learning based
on reward feedback

Needs correct un-
derstanding of envi-
ronment and proper
reward design

Other Machine
Learning methods

ADL, Occupancy estimation, NILM,
Thermal leakage detection, Ther-
mal comfort design

Smaller dataset, com-
putational simplicity,
context aware solu-
tions

lack of generalization,
may need hand crafted
features

models were validated using a controlled dataset and from specific applications. This diversity in data collection,
preprocessing, and developing models makes it hard to compare these models from the common ground since varying
distribution in the train and test data from a different building. ML researchers may look into the robustness and scope
of the model in multiple environments. The transferability of the models should be more thoroughly studied in diverse
conditions. Research can focus on identifying and overcoming hindering factors for the re-usability of the ML models.

The second direction may target to overcome the issues with the large dataset collection and repository. The
dataset comes from different settings each time. They vary in sampling rate, scene, time, and other observable vari-
ables like room size, shape, room position, window condition, etc. The training dataset influences the performance and
safety of the target function to minimize the loss Gu and Easwaran (2019). Collecting reliable data from a home set-
ting remains challenging because of the privacy and convenience consideration of the occupants. These independent
variables change the data distribution and affect the model testing performance significantly. This scarcity of datasets
hinders the application of many data-hungry powerful ML algorithms. There exist different learning strategies that
may be further analyzed to leverage small datasets efficiently. Active learning, transfer learning, careful dataset aug-
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mentation may play a crucial role in overcoming the data barriers. GAN can learn the distribution of the collected
dataset and learn to generate the synthetic dataset. Another major issue with the ML methods with the scale-ability
of the model. The observed data distribution may vary across multiple buildings due to their construction variation.
ML models need to adapt this change to effective decision-making across different platforms. ML model needs to
adapt to different unseen situations in a new home environment. Zero-shot and few-shot learning settings address
the unavailability of data issues. They may add robustness to the ML models in case of data scarcity. These may
reduce the influence of independent variables involved in building data using semantic or other related information.
We have not encountered any paper to explore this spectrum to improve cyber-physical building environment ML
model performance. Further analysis requires to narrow down the scaling and scope of the method used to solve
cyber-physical building environment problems.

The third direction may search for the appropriate model selection with theoretical justification and standardiza-
tion. We have encountered experiment results by applying ML algorithms without justification and based on intuition.
The data collection procedure varies significantly from one research to another. These pose a hindrance to stan-
dardize the experiments. ML researchers may investigate these disjointed efforts and call for standardization of data
collection of different modality and model applications. These would enable validation and test the performance of
various models based on a common platform. It would also facilitate various algorithms’ application in cyber-physical
building environment decision and control problems with a proper benchmark. Standardization would remove the
model performance variance with commonalities between the train and test data. Suitable models with the optimum
hyper-parameters with the relevant data should providemore reliable estimations across experiments. ML researchers
should also be concerned with the model implementation on limited memory devices. Different compression tech-
niques for large-scale ML models can provide matching performance on cheap portable memory-constrained devices.
RL problems should be applied carefully by properly designing state, action, and rewards. Standardization of data and
models certainly would enable controller agents to learn cross-domain for human benefits.

ML with control is an intriguing recent trend in modeling the behaviors of the dynamic system. These particular
branches have application scope in real-life dynamic systems. It is expensive to model building behaviors over time
due to the buildings’ dynamic properties. Further, the process depends on specific physics-based building information.
Moreover, complex modeling is construction-specific and needs a timely update. ML and data-driven approach can
save the complexity of learning hand-crafted building physics-model for decision and control regarding home and
buildings. Recently, Jain et al. (2020) applied an MPC-based neural network for efficient energy management in an
academic building. Yang et al. (2020) proposed anML-based building dynamics model to regularly update the building
model parameters. The update process uses online building operation data via a nonlinear ANN. Their proposed MPC
approach outperformed reactive control systems in energy efficiency and indoor thermal comfort by controlling theAC
and mechanical ventilation in two separate single-zone test-beds. Wolisz et al. (2020) developed a self-learning MPC
algorithm to measure structural thermal mass (STM) based residential load shifting (LS) without requiring extensive
data or expert knowledge. Their approach dynamically optimized the necessary heating operations for LS and reduces
energy demand while maintaining thermal comfort in a simulated environment. Drgoňa et al. (2018) explored simple
MPC for ubiquitous temperature control using edge hardware to replace rule-based controller for energy efficiency.
Their experiments with temperature control in six-zone building demonstrated the linearMPC’s ability to approximate
the performance of the complexMPCwhile reducing the complexity and cost during the real-scenario implementation.
Besides energymanagement, a framework for learning building dynamics explicitly and efficiently would enable better
monitoring of thermal energy leakage, envelope conditions, faults detection for timely repair.

We believe data-driven dynamic physics learning prospects for building and home would allow learning better ap-
proximation of complex building models across time, environments, and building types efficiently. Buisson-Fenet et al.
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(2019) proposed and validated a data-efficient active learning approach to learn dynamic systems lately. Khojasteh
et al. (2019) used Bayesian learning to autonomously identify the distribution of the high degree system dynamics
to optimize with high probabilities the system behavior and safety. The control and dynamic system learning have
applications in automatic building properties inspection, monitoring via autonomous unmanned sensors like drones,
robots, and learning building system dynamics.

11 | CONCLUSION

The recent advent of machine learning algorithms and data availability offers a powerful data-driven solution to the
cyber-physical building environment energy-saving and occupants’ comfort. In this paper, we have studied and dis-
cussed the application of recent and emerging ML algorithms to solve cyber-physical building environment decision
problems. Our report aims at grouping and assembling trending methodologies, innovative solutions to a different
cyber-physical building environment-related problem probable in real-life cases together in single literature as a bench-
mark for building domain researchers. To achieve that, we have included and reviewed both decision-making and
control problems extensively with their contributions and overview of approaches. In our study, we have found DL
algorithms edge over other traditional algorithms in decision makings. It’s because of their better generalization abil-
ity, increasing data availability, and the development of heavy computational power across devices. On the anther
hand, we reviewed existing reinforcement learning methods performing appliance control to optimize comfort and en-
ergy usage in cyber-physical building environment settings. Still, there are challenging problems that require further
research to achieve better performance and cover unexplored territories in the cyber-physical building environment
domain. We have also pointed out some potential challenges and prospective future directions that may shape theML
applications in the building environment research domain. This review article comprehensively discusses the trend-
ing and emerging machine learning methodologies in energy-saving decision-making and control without occupant
comfort compromise in cyber-physical building environment domains.
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