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Abstract

Background: Identifying the temporal trends of kidney cancer (KC) incidence in both the past and the future at

the global and national levels is critical for KC prevention.

Methods: We retrieved annual KC case data between 1990 and 2017 from the Global Burden of Disease (GBD)

online database. The average annual percentage change (AAPC) was used to quantify the temporal trends of KC

age-standardized incidence rates (ASRs) from 1990 to 2017. Bayesian age-period-cohort models were used to

predict KC incidence through 2030.

Results: Worldwide, the number of newly diagnosed KC cases increased from 207.3 thousand in 1990 to 393.0

thousand in 2017. The KC ASR increased from 4.72 per 100,000 to 4.94 per 100,000 during the same period.

Between 2018 and 2030, the number of KC cases is projected to increase further to 475.4 thousand (95% highest

density interval [HDI] 423.9, 526.9). The KC ASR is predicted to decrease slightly to 4.46 per 100,000 (95% HDI 4.06,

4.86). A total of 90, 2, and 80 countries or territories are projected to experience increases, remain stable, and

experience decreases in KC ASR between 2018 and 2030, respectively. In most developed countries, the KC

incidence is forecasted to decrease irrespective of past trends. In most developing countries, the KC incidence is

predicted to increase persistently through 2030.

Conclusions: KC incidence is predicted to decrease in the next decade, and this predicted decrease is mainly

driven by the decreases in developed countries. More attention should be placed on developing countries.
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Introduction
Kidney cancer (KC) develops from the renal paren-

chyma, and approximately 70% of KC cases are clear

renal cell carcinomas [1]. According to the latest statis-

tics, there were more than 400 thousand newly

diagnosed KC cases and nearly 180 thousand KC-related

deaths in 2018 [2]. The KC incidence is highly heteroge-

neous worldwide, with North America having the high-

est incidence, followed by Western Europe and Australia

[3]. In South America, Africa, and Asia, the KC inci-

dences are relatively low [4, 5]. Within continents, KC

incidence rates also differ by country. Across Europe,

the incidence ranged more than fourfold: from 4.5 per

100,000 in Albania to approximately 16.8 per 100,000 in

the Belarus [6]. Additionally, the temporal trends of KC
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incidence vary worldwide [7]. For example, in the USA,

the rate was 8.0/100,000 in males in 1975 and increased

steadily to 13.4/100,000 in 2012. In contrast, Austria and

Poland have reported significantly decreasing rates since

the early 2000s [7].

Many factors, including lifestyle changes, exposure to

risk factors, and expanding coverage of tumor detection

and reporting, have contributed to the temporal trends of

KC incidence. Incidence trends can serve as a good indica-

tor of shifting disease patterns and changing risk factors

within a population [8] and are of importance for KC pre-

vention. More importantly, since the marked alterations

in risk factors over the last decades [9, 10], KC incidence

might be subsequently changed in the near future. Further

knowledge of the future trends of KC incidence is there-

fore critical for understanding and planning in regard to

this disease burden and permits the modification of the

national health system to respond to future challenges.

Previous studies have described KC incidence, but these

studies were retrospective in nature and consequently

lacked insight into the future KC burden [5, 11–13]. Add-

itionally, the number of cancer cases or deaths is the total

number of people within a population who have either

been diagnosed with or die from cancer, and this is greatly

influenced by the size and age composition of the popula-

tion. This information is critical to understanding and

planning for the disease burden. To address this limita-

tion, we used a Bayesian age-period-cohort (APC) model

on KC incidence at the global and nation levels between

1990 and 2017 to project both the future number of can-

cer cases and incidence through 2030. Our predictions are

of importance for the re-allocation of limited medical re-

sources and to update the prevention strategies for KC.

Materials and methods
Study data

We collected annual KC case data between 1990 and

2017 by sex, region (195 countries or territories), age

(from under 5 to ≥80 years in 5-year intervals) from the

Global Burden of Disease (GBD) online query tool [14].

The general procedures for data collection and process-

ing in the GBD study have been detailed and validated

elsewhere [15, 16]. In brief, the annual number of newly

diagnosed KC cases was sought from individual cancer

registries or aggregated databases of cancer registry data

such as “Cancer Incidence in Five Continents (CI5)”,

EUREG, SEER, or NORDCAN. The ICD-10 codes (C62-

C62.92, Z80.43, and Z85.47-Z85.48) and ICD-9 codes

(186–186.9, V10.47-V10.48, and V16.43) were used to

identify KC cases [15]. The national sociodemographic

index (SDI), a composite index measuring average

achievement in several basic dimensions of country de-

velopment, was collected from the GBD database. We

also retrieved the corresponding population data for

each country or territory by year (1990–2030), sex, and

age (from under 5 to ≥80 years in 5-year intervals) from

the United Nations Department of Economics and Social

Affairs (DESA) Population Division. Only 185 countries

or territories were available at population data.

Statistical analysis

Model selection

Several models, including the Joinpoint model, age-

period-cohort (APC) model, Nordpred model, and

Bayesian APC model, have been previously used to pre-

dict cancer incidence based on population data [17–20].

We first conducted a model selection in terms of model

prediction performance. KC case data from the USA,

France, Brazil, Indonesia, and Vietnam, in which the KC

incidence ranged from 2.5 per 100,000 to 13.0 per 100,

000, were retrieved. These case data were then split into

two intervals (1990–2012 and 2013–2017). We used the

data between 1990 and 2012 to train the five prediction

models (i.e., APC, Bayesian APC, Nordpred, nature-

spline, and Joinpoint). KC incidence data between 2013

and 2017 were predicted and compared with the obser-

vational values in the same period. The prediction error

rate was applied to assess the model performance. The

error rate was calculated as ðŷ−yÞ=y, where ŷ and y de-

note the prediction values and the observational values,

respectively. The results of model selection are shown in

S-Figure 1. Because of the relatively lower error rate of

the Bayesian APC model, we used it to predict the KC

cases and incidence rates through 2030.

The rationalities of the Bayesian APC model have been

previously described [21]. Briefly, since the expectation

that effects adjacent in time might be similar, the

second-order random walk (RW2) model with inverse-

gamma prior distribution was used for age, period and

cohort effects. RW2 assumes an independent mean-zero

normal distribution of the second differences of all time

effects. This is a natural target for smoothing since the

second differences in APC models are identifiable. Con-

sider the age effects, for which the RW2 prior is identi-

fied as follows:
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where i denotes the age index that ranges from 1 to I =

17 in this study, because we projected the cancer inci-

dence of people aged 0 to 84, and age was divided into

17 groups. Moreover, κα
− 1 denotes the variance param-

eter. Note that Q is rank deficient. To complete the

RW2 model specification, we use the usual conjugate

hyperprior for precision, κα ~ Gamma(α, λ). This leads

to the full conditional κα|α ~ Gamma(α + 0.5 rank(Q),

λ + 0.5α’Qα), which may be directly simulated [20]. In

this study, we used the parameter values α = 0.5, 1, and

1 and λ = 0.0005, 0.00005, and 0.00005 for age, period,

and cohort effects, respectively. The World-2000 popula-

tion was used to standardize the KC incidence rates. To

ensure the smoothness of predictions, countries or terri-

tories that experienced a striking fluctuation in KC case

numbers within a small time interval were excluded. A

total of 172 countries or territories were finally included.

Quantifying the KC incidence trends

The average annual percentage change (AAPC) was used

to quantify the temporal trends of KC age-standardized

incidence rates (ASRs) in 1990–2017 and 2018–2030,

which indicate the past trends and future trends, re-

spectively. A regression line was fitted to the natural

logarithm of the rates, i.e., y = α + βx + ɛ, where y = ln

(ASR) and x = calendar year, and the AAPC was calcu-

lated as 100 × (exp(β)-1) [22]. To overcome over disper-

sion, the AAPC of 2018–2030 was calculated with the

inverse of the standardized error (i.e., 1/se) of the esti-

mated incidence rate as the weights in the regression

models [20].

Sensitivity analysis

Because the KC case data in the GBD database were es-

timates from surveillance data instead of the surveillance

data itself [23], we conducted a sensitivity analysis to

verify the robustness of the prediction results derived

from our models. Herein, we collected the KC case data

from the Cancer Incidence in Five Continents plus

(CI5p) database. Bayesian APC model was used to pre-

dict the KC cases and incidence rates based on the

surveillance data from CI5p database [24]. Cancer sur-

veillance data that covering more population and having

a longer time span were preferable. Finally, data from

Australia (from 1993 to 2012 and covering 7 cancer

registries), Spain (from 1993 to 2010 and covering9 can-

cer registries), France (from 1998 to 2010 and covering 9

cancer registries), Italy (from 1998 to 2010 and covering

8 cancer registries), and the USA (from 1990 to 2012

and covering 9 cancer registries) were used. All statis-

tical analyses were conducted in the R program (R core

team, V3.5.1). A P value less than 0.05 was deemed sta-

tistically significant.

Results
KC case numbers and incidence, 1990–2017

Worldwide, the number of newly diagnosed KC cases in-

creased from 207.3 thousand in 1990 to 393.0 thousand

in 2017, and the KC ASR increased from 4.72 per 100,

000 to 4.94 per 100,000 during the same period

(AAPC = 0.14, 95% confidence interval [CI] 0.08, 0.20)

(Table 1; Figs. 1 and 2). The case numbers increased in

both sexes (Table 1; Fig. 1). The ASR increased signifi-

cantly among males (AAPC = 0.38, 95% CI, 0.30, 0.46).

In contrast, a significant decrease in ASR was detected

among females (AAPC = − 0.26, 95% CI -0.30, − 0.23).

The KC case numbers increased in all age groups, with

the exception of people aged 0–19 years (Table 1; Fig. 3).

The most pronounced increase was found in older

people (≥ 65 years), among whom the case number in-

creased by more than 100 thousand between 1990 and

2017. At the national level, the highest KC ASR was

found in Uruguay (16.15 per 100,000), followed by

Slovakia, Iceland, and the Czech Republic in 2017

(Fig. 4a). During the study period, a total of 134, 8, and

30 countries or territories experienced increases,

remained stable, and experienced decreases in KC ASR,

respectively (Fig. 4c; S-Table 1). The greatest increase

was detected in Armenia (AAPC = 6.24, 95% CI 5.12,

7.36), followed by Bulgaria and Belarus (Fig. 4c; S-Table

1). The most pronounced decrease was found in Sri

Lanka (AAPC = − 2.71, 95% CI -3.85, − 1.56), followed

by Trinidad and Tobago and Qatar (Fig. 4c; S-Table 1).

KC case numbers and incidence, 2018–2030

Between 2018 and 2030, the KC case number will fur-

ther increase to 475.4 thousand (95% highest density

interval [HDI] 423.9, 526.9) (Table 1; Fig. 1). The KC

ASR will decrease slightly to 4.46 per 100,000 (95% HDI

4.06, 4.86) during the same period (AAPC = − 0.97, 95%

CI -0.99, − 0.95) (Table 1; Fig. 2). A decreasing trend is

expected for both sexes, although the case numbers will

still increase (Table 1; Fig. 2). The case numbers are pre-

dicted to decrease for people aged 0–19 years and 20–

39 years between 2018 and 2030. However, a persistent

increase is expected for people aged 40–64 years and ≥

65 years (Table 1; Fig. 3). S-Tables 2 and 3 show the pre-

dicted KC case numbers and ASRs at the national level.

Briefly, the case numbers will increase in all 172 coun-

tries or territories from 2018 to 2030. The temporal

trends of KC ASR varied from country to country. In

2030, the highest KC ASR will be found in Uruguay

(17.71 per 100,000), followed by the USA and Iceland

(Fig. 4b; S-Table 3). A total of 90, 2, and 80 countries or

territories will experience increases, remain stable, and

experience decreases in KC ASR between 2018 and 2030

(Fig. 4d; S-Table 1). The greatest increase is expected in

the United Arab Emirates (AAPC = 3.68, 95% 3.63, 3.73),
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followed by Burkina Faso and Ghana. The most pro-

nounced decrease is expected in Ukraine (AAPC = −

6.62, 95% CI -6.65, − 6.58), followed by Croatia and

Slovakia (Fig. 4d; S-Table 1).

Correlations between past trends and future trends of KC

incidence

Between 1990 and 2030, 18 and 72 countries or territor-

ies experienced a continuous decrease and increase in

KC ASR, respectively. Ten countries or territories expe-

rienced a decrease in the past but will experience an un-

favorable increase in the future. For example, we found

that the decreasing trend of KC ASR will be reversed in

the USA after 2017. In contrast, a total of 61 countries

or territories will experience a significant decrease in KC

ASR in the future despite the past increases in these re-

gions. Figure 5 displays the correlations between past

trends and future trends of KC ASR. No significant asso-

ciation was found when taking all countries into consid-

eration as a whole (ρ = 0.044, P = 0.566). However, a

significant negative association was detected for coun-

tries with a high SDI (ρ = − 0.320, P = 0.009), which

means that most developed countries will undergo a fa-

vorable decrease in KC ASR between 2018 and 2030. In

contrast, for countries with low SDI, a significant posi-

tive association was found (ρ = 0.665, P = 0.005), which

means that past trends will remain in the future in most

countries.

The results of the sensitivity analysis are shown in S-

Figure 2. Generally, the predictions based on the GBD

data and CI5plus data were comparable in all five coun-

tries. The predicted trends of KC ASR based on GBD

data were similar to these based on CI5plus data, al-

though the ASR values differed to some extent. These

disparities were mainly ascribed to the differences in

population coverage rate between these two databases.

Discussion
Kidney cancer (KC) is a malignancy whose incidence

varies widely worldwide. Although KC incidence is rela-

tively low compared to bladder and prostate cancer inci-

dence rates, KC is of particular relevance in certain

regions, such as Europe and North America, because of

locally high incidence rates and significantly increasing

rates in most countries in recent decades [5, 13, 15]. In

the current study, we used GBD data to both describe

the temporal trends of KC incidence over the last three

decades and predicted its future trends in the next dec-

ade at the global and national levels. Globally, the num-

ber of KC cases is expected to increase consistently from

1990 through 2030, whereas the KC ASR is expected to

decrease after 2017. The future decreasing trend was

consistent in both sexes and in approximately half of all

countries or territories. Of note, more than half of coun-

tries or territories, particularly developing regions, are

expected to experience a significant increase in KC ASR

between 2018 and 2030. These unfavorable trends might

constitute a major obstacle for KC management and pre-

vention in the near future.

The established risk factors, both environmental and

genetic, for KC have been widely investigated and well

documented [4, 25]. The impact of smoking on KC risk

is modest, with an approximate 30% increased risk in

current smokers and a 15% increased risk in former

smokers compared with the risk among never smokers

[26]. In developed countries, it is estimated that 6 and

24% of kidney cancer deaths are a result of tobacco

smoking among females and males, respectively [13].

Fortunately, these proportions were shown to have de-

creased in the last decade, which was mainly ascribed to

the “smoke-free” campaign in these countries [27, 28].

In contrast, overweight or obesity, another established

risk factor for KC, has increased strikingly over the past

Table 1 The case numbers and incidence rates of kidney cancer between 1990 and 2030 at the global level

1990 2017 2030 AAPC (95% CI) of ASR

No. of cases
(× 1000)

ASR
(/100,000)

No. of cases
(×1000)

ASR
(/100,000)

No. of cases (×1000)
(95% HDI)

ASR (/100,000)
(95% HDI)

1990–2017 2018–2030

Overall 207.3 4.72 393.0 4.94 475.4 (423.9, 526.9) 4.46 (4.06, 4.86) 0.14 (0.08, 0.20)* −0.97 (−0.99, −0.95) *

Sex

Male 114.6 5.65 240.8 6.38 298.1 (270.7, 325.6) 5.81 (5.29, 6.32) 0.38 (0.30, 0.46)* −0.82 (−0.84, − 0.80)*

Female 92.7 3.96 152.3 3.68 187.4 (171.3, 203.4) 3.39 (3.11, 3.67) −0.26 (− 0.30, − 0.23)* −0.73 (− 0.75, − 0.72)*

Age yearsa

0–19 27.0 – 24.4 – 18.4 (15.5, 21.4) – – –

20–39 17.0 – 23.3 – 21.7 (19.7, 23.7) – – –

40–64 90.3 – 171.5 – 189.6 (172.5, 206.7) – – –

65+ 73.0 – 173.8 – 248.8 (226.4, 271.3) – – –

ASR Age-standardized incidence rate, AAPC Average annual percentage change, CI Confidence interval, HDI Highest density interval
a, for each age group, only the number of cancer cases is shown because the ASR was not available when the age was grouped

*, P < 0.001
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Fig. 1 The increasing trends in the numbers of kidney cancer cases between 1990 and 2030 at the global level by sex (a, both sexes; b, male; c,

female). The error bar denotes the 95% highest density interval (HDI) of the prediction values
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four decades [29, 30]. Moreover, the global adult per-

capita alcohol consumption increased from 5.9 L to 6.5 L

and is forecasted to reach 7.6 L by 2030 [31]. These

alarming increases might drive an unexpected increase

in KC incidence rates worldwide. For example, the KC

incidence experienced an unfavorable reversal in the

USA after 2017, despite the prior decrease. Additionally,

the KC incidence trend was also predicted to be increas-

ing in both the UK and Germany, whereas the incidence

trend in the surrounding countries was decreasing. We

speculated that this increase might be attributed to the

following reasons: 1) the dramatic increases in over-

weight and obesity and alcohol use [32, 33]; 2) immi-

grants from Africa and Asia might contribute to some

extent [34]; and 3) the increase among blacks, especially

in the USA, might surpass the decrease among whites

[7]. The underlying causes need further investigation,

and the unexpected increase indicates that KC remains a

hard-to-ignore health concern in those highly developed

countries.

For most countries in Europe and Australia, we ob-

served a favorable decrease in KC incidence after 2017,

Fig. 2 The temporal trends of age-standardized incidence rates (ASRs, per 100,000) of kidney cancer between 1990 and 2030 at the global level

in both sexes (a), males (b), and females (c). The open dots represent the observational values from GBD dataset, and the brick red shadow

denotes the 95% highest density interval of prediction values. The predictive mean value is shown as a black solid line. The vertical dashed line

indicates where the prediction starts
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which might largely drive the global declining trend. The

rising incidence of KC over the last decades in Western

populations has been attributed to the increased use of

imaging techniques, which can result in incidental find-

ings of small renal masses and has been reported to con-

tribute as much as 50% to the overall incidence [7, 35].

The declining trends therefore might be ascribed to not

only the reduction in risk factors but also to the plateau

of imaging utilization. Although a relatively low

incidence rate was observed, a consistent increase was

observed in most countries in Latin America, Africa,

South Asia, and Southeast Asia from 1990 to 2017. This

increase was predicted to remain through 2030. We

speculated that this increase might be partly explained

by the following causes: 1) the increasing KC detection

rates and reporting rates [7]; 2) the growing population,

particularly the aging population [20]; 3) shifting trend

toward the adoption of Western diets, change in occupa-

tional patterns, increased high-risk behaviors (e.g., exces-

sive calorie intake and physical inactivity), and changes

in established cancer risk factors (e.g., smoking and

obesity) [20, 36]; and 4) the increasing prevalence of

chronic kidney diseases [37, 38]. Given the persistent in-

crease, KC might be one of the main public health con-

cerns in the near future in countries that previously had

a lighter disease burden.

Our study has limitations. First, the GBD data were es-

timates from mathematical models based on surveillance

data rather than surveillance data itself. However, the

GBD study provides global-scale data and offers us an

unprecedented opportunity to explore the global disease

burden. Additionally, to ensure the robustness of our

predictive results, we conducted sensitivity analyses

based on observations from the CI5plus database.

Whereas only five countries were included to validate

the prediction values because of the limited data avail-

ability. This incomplete validation might limit the clin-

ical value of our study. Second, the temporal trends of

KC incidence in both the past and the future might be

partly influenced by the detection and reporting rates,

which reflect the quality of cancer registry data for each

country. Cancer registry data can be biased in multiple

ways. For example, changes between coding systems can

lead to artificial differences in disease estimates;

Fig. 3 The changing trends in the number of kidney cancer cases between 1990 and 2030 by age (a, 0–19 years; b, 20–39 years; c, 40–64 years; d,

≥65 years). The vertical dashed line indicates where the prediction starts
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Fig. 4 The global distribution and the average annual percentage changes (AAPCs) in age-standardized incidence rates (ASRs, per 100,000) of

kidney cancer at the national level. (a ASR of kidney cancer in 2017; b ASR of kidney cancer in 2030; c AAPC of kidney cancer ASR between 1990

and 2017; d AAPC of kidney cancer ASR between 2018 and 2030)

Fig. 5 The correlations between the average annual percentage changes (AAPCs) in kidney cancer incidence in 1990–2017 and that in 2018–

2030 at the national level, by sociodemographic index (SDI). The ρ and P values were derived from Pearson correlation tests

Du et al. Biomarker Research            (2020) 8:16 Page 8 of 10



however, this bias has been adjusted by mapping the dif-

ferent coding systems to the GBD causes. Misclassifica-

tion of metastatic sites as primary cancer can lead to

overestimation of cancer sites that are common sites for

metastases such as the brain or liver. Third, the dearth

of histological information of KC in the GBD database

prevented us from pinpointing the KC incidence trends

by histological subtype. Despite these limitations, using

the most up-to-date data and advanced modeling strat-

egies, our study provides a comprehensive understand-

ing of KC incidence from the past to the future.

Conclusions
In summary, the KC incidence was predicted to decrease

in the next decade. However, both the past and the fu-

ture trends of KC incidence were highly heterogeneous

from country to country. In most developed countries,

the KC incidence is forecasted to decrease irrespective of

past trends. In most developing countries, the KC inci-

dence is expected to increase persistently through 2030.

The long-term best practice approach must include the

primary prevention of smoking and obesity, alongside

careful monitoring of trends using high-quality

population-based cancer registries and corresponding

national registration sources.
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