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W. Nowacki

Coupled Fields in Elasticity

1 Introduction

In the 19th century the mechanics of a solid def ormable body consisted mainly
of the theory of elasticity, treated as a branch of the mathematical physics.

Parallel with the theory of elasticity its technological applications were
being developed within the frame of the strength of materials, the theory of
plates and structural mechanics.

During the after-war period new branches of the mechanics of def ormable
solids started developing, namely, the theory of plasticity, visco-elasticity,
and rheology. Simultaneously one could observe a revival of interest in the
theory of elasticity itself. The nonlinear theory was successfully developing.
Within the linear theory of elasticity the problems of cracks, important in the
physics of fracture, played the main role.

Simultaneously we observe a rapid development of the coupled theory of
elastic bodies. By this name we understand an interrelation of two or more
branches of phenomenological physics, so far being developed separately. As
a typical example we may mention thermoelasticity. Here the classical theory
of elasticity and the theory of heat conduction in solid bodies are coupled into
one synthesized branch. We investigate the effect of temperature deviation on
solid deformation and the effect of change of deformation on variation of
temperature.

Investigations in the coupled fields have been stimulated by the develop-
ment of technology, progress in aviation and machine constructions, and
principally by the development of chemical engineering (especially nuclear
engineering). Elements of constructions are more and more exposed to
elevated temperature, higher pressure; they work in conditions of
radiation, diffusion and in strong magnetic fields.

The investigation of coupled fields in elasticity is connected with a revision
of the thermodynamical fundamentals. The thermodynamics of irreversible
processes has to be used.

In this review we shall consider only some coupled fields, namely those in
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which the system is hyperbolic with respect to some of the unknown functions,
and parabolic with respect to the remaining ones. We shall consider only fields
with energy dissipation. As an illustration we have selected the three
domains: thermoelasticity, thermodiffusion in solids, and magnetoelasticity.
The main role, in our discussion, will be played by the field of displacements,
disturbed by the remaining fields: temperature, concentration, and electro-
magnetic.

We shall consider the linear theory of elasticity, and we confine ourselves to
elastic, homogeneous and isotropic bodies.

2 Thermoelasticity

It is a known fact that different thermodynamical assumptions are applied in
the theory of elasticity in the case of statics and elastodynamics. Moreover
other assumptions lie in the basis of the theory of thermal stresses.

In elastostatics we assume that during a slow increase of loading, and the
resulting deformation, exchange of heat with the environment is complete. It
is assumed that there is a constant temperature To over the entire solid, called
the temperature of the natural state. The displacement vector u(x) satisfies the
differential equation

O (2.1)

where

/JL>0, 3A + 2 /X>0 . (2.2)

Here X denotes the body forces vector, while (u. and A are Lame's material
constants for the isothermal state. Inequalities (2.2) result from the
assumption that the deformation energy constitutes a positively denned
quadratic form.

On the other hand, it is assumed in classical elastodynamics that the heat
exchange due to heat conduction is very slow, and that there are no heat
sources within the solid. This assumption corresponds to the conditions of an
adiabatic process.

Now the displacement vector u(x, f) satisfies the equation of motion

Q>u + (A + JLL) grad div u + X = 0 (2.3)

where

Here p denotes the density while Q> is d'Alembert's operator. The Lame
constants p., A in equation (2.3) refer to the adiabatic state. Also here the same
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inequalities hold

lx>0, 3A+2jx>0. (2.4)

A different type of assumptions is assumed in the theory of thermal stresses.
In this case a heat source may exist, but the effect of the change of deformation
on the deviation of temperature is neglected.

The total strain eij consists of two parts, namely thermal distortion e?j, and
elastic deformation ei,. In the result we obtain

(2.5)

where

Here 6 = T -To denotes the increment of temperature; T(x, t) is the absolute
temperature, and a, denotes the coefficient of linear thermal expansion. The
relation e?/ = a,08i, describes a known physical phenomenon, namely the
proportionality of the thermal distortion to the temperature deviation. <ji,
denotes the stress tensor. Solving equations (2.5) with respect to stresses we
obtain the Duhamel-Neumann equations:

o-i, = 2/xei,+(Aekk-70)5ij, 7 = (3A + 2/x) a,. (2.6)

Substituting the relations (2.6) into the equations of motion (for X = 0)

ox/ — pUi = 0 (2.7')

and making use of the definition of the total deformation ei; = u<i,,) we arrive at
the equation of the theory of elasticity with the thermal term

•211 + (A + ii) grad div u = 7 grad 9. (2.7")

Now we have to determine the field of temperature. From the equation of

thermal equilibrium

divq + c E ^ = - W (2.8)

at

and the Fourier law of thermal conduction

q = - k grade, k > 0 (2-9)

we obtain the equation of thermal conduction

kV20-cj = -W. (2-10)

Here q denotes the vector of heat flux, W is the heat amount generated in a
unit of volume and unit of time, cE denotes the specific heat at constant
deformation. Here the equation of heat conduction has been derived without
taking into account the body deformation. This is why it is not possible to
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determine the change of temperature generated by the deformation from
equations (2.7") and (2.10).

In the cases considered we have obtained systems of differential equations
for different thermodynamic assumptions. The theory of coupled ther-
moelasticity attempts to derive a unified system of differential equations for
all possible thermodynamic processes.

The coupling between the deformation and temperature fields was first
postulated by Duhamel [1], the founder of the theory of thermal stresses, who
introduced the dilatation term into the equation of thermal conductivity:

D0-T)divu = -W, D = kV2-c»d,. (2.11)

This equation, however, was not well justified on thermodynamic grounds.
An attempt to justify thermodynamically equation (2.11) was undertaken by
Voigt [2] and Jeffreys [3], Only recently, however, in 1956, Biot [4] gave a
satisfactory justification of the thermal conduction equation on the basis of
the thermodynamics of irreversible processes.

As the point of departure of the discussion we take the principle of energy,
the entropy balance, and the Clausius-Duhem inequality [5]:

U = oije,, - qw + W (2.12)

^ (2.14)

Here U is the internal energy, S denotes the entropy while 0 is a source of
entropy. The Clausius-Duhem inequality satisfies the postulates of the
thermodynamics of irreversible processes. Inequality (2.14) is satisfied by the
Fourier law of heat conduction

q, = -kTM fc>0. (2.15)

Introducing the Helmholtz free energy F= U-ST and eliminating the
quantity q,,; from equations (2.12) and (2.13), we obtain

F = o-i,ei)-Sf. (2.16)

The free energy F is a function of state. Comparing the terms in the total
differential of F we obtain

Expanding the free energy F into the Taylor series in the neighbourhood of
the natural state, for an isotropicbody, we obtain the following representation

F = + - elk-yOekk-^62. (2.18)
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In the expansion we have retained only the quadratic terms, thus obtaining the
linear relations between the stresses crtj, strains eq and the deviation of
temperature 0.

From equation (2.17) we obtain the constitutive equations

oil = 2(xey +

Xo

Combining equations (2.13) and (2.15) we arrive at the non-linear heat
conduction equation. The equation can be linearized by the assumption that
the temperature field differs only slightly from a prescribed uniform
temperature To, i.e. |0/To|« 1, and that the rate of change of the temperature
and the temperature gradient are small. Thus we obtain [4]:

kV2e-ce0-Tidivu = -W, T) = YTO. (2.20)

Equation (2.20), together with the displacement equation

(2.21)

constitute a complete system of thermoelasticity equations. The equations
are coupled. The deformation and temperature are caused by body forces,
heat sources, prescribed boundary conditions (loadings, displacements and
the temperature over the surface A bounding the body), and the initial
conditions.

Thermoelasticity describes a wide range of phenomena. It constitutes a
generalization of the classical theory of elasticity and thermal conduction.
Thermoelasticity is of fundamental importance in cases for which the
investigation of elastic dissipation is the main purpose. The significance of
thermoelasticity consists primarily in its recognition of the generalized nature
of the associated phenomena. Despite its mathematical complexity, ther-
moelasticity permits a deeper insight into the mechanism of deformation
processes connected with thermal effects in elastic solids.

There are a number of particular cases of the thermoelasticity equations
(2.20) and (2.21). If the causes generating the displacement and the change of
temperature vary very slowly in time, then the inertia term pii-, in equation
(2.21) can be neglected. The coupled equations of thermoelasticity can be
uncoupled in the case of a stationary process. The heat conduction equation
becomes Poisson's equation, while the displacement equation is of elliptic
type. The case of classical elastodynamics, considered previously, becomes
also a particular case of the thermoelasticity equations. Namely, in the
adiabatic case we have S = 0,andmakinguseofequation(2.19)2weobtain

9 = -|3 divu, 0 = YTO/C£. (2.22)

Substituting (2.22) into equation (2.21) we obtain the displacement equation
of classical elastodynamics (2.3).
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In many problems of practical importance a simplifying assumption is
made, facilitating the solution of the boundary value problem. Thus the
uncoupled theory is obtained and the term T) div u in the heat conduction
equation can be neglected.

Let us return to the equations of thermoelasticity (2.20) and (2.21) and
decompose the displacement vector and the body force vector into the
potential and rotational parts:

0

X = grad 6 +curlx, d ivx=0
Substituting then relations (2.23) into equations (2.20) and (2.21) we
transform the equations of thermoelasticity to the following form [6]:

D,<J> = Y 0 - # (2.24)

C W = - x (2.25)

D0-riV2<i>=-W (2.26)

where the following symbols have been used

• i = (A+2/x)V2-pd,2, D = kV2-c,dt.

Equations (2.24) and (2.26) are coupled. Eliminating the function 6 we obtain
the longitudinal wave equation

(2.27)

Equation (2.25) describes the shear wave. Eliminating the function $> from
equations (2.24) and (2.26) we obtain the equation

(n,D-yT)d,V2)0= - • 1 W-- n a ,V 2 d (2.27")

which has the same form as equation (2.27'). The completeness of these
solutions has been established by Sternberg [7].

One can prove, considering the propagation of a plane wave and causes and
effects varying harmonically in time, that the longitudinal wave is attenuated
and dispersed. The same effect refers to the thermal wave. The shear wave,
propagating in an infinite space, is purely elastic and is neither attenuated nor
dispersed.

It should be noted that the solutions obtained within the framework of
thermoelasticity differ quantitatively only slightly from those of the classical
theory of elasticity or the theory of thermal stresses. Although the coupling
between the deformation and the temperature field is weak, qualitative
differences are fundamental. Neglecting the term TJ div u in equation (2.20)
we obtain the following system of waves (for X = 0)

| (2.28)
D6=-W)
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It is apparent from equation (2.28) that the longitudinal wave consists of two
waves, namely an elastic wave <t>i, which is neither attenuated nor dispersed,
and a diffusive wave <$>2, where

To illustrate the procedure we consider the function <E> for a longitudinal
spherical wave. Let a concentrated instant heat source of intensity Wo act in an
infinite space at the origin of the co-ordinate system. The function <& is given
by the formula [8]:

^ - « ] (2.29)

Here

~

Fi is a purely elastic wave, while F2 denotes a diffusive wave.
Podstrichac [9], Kaliski [10] and Rtidiger [11] have considered an analogue

of the Cauchy-Kovalewski-Somigliana solution of the isothermal theory.
The displacement vector u and the temperature field d can be represented by
the vector function <p and scalar function i|/:

u =-fl«p + grad div F<p - 7 grad i|/ (2.31)

8 = —r\d, divQ><p-[IH (2.32)

where

Substituting the above representation into the equations of thermoelasticity
we obtain the following set of wave equations:

2)«p = X (2.33)

= W . (2.34)

Here the vector <p plays a role analogous to that of Galerkin's vector in
elastostatics. The form of equations (2.33) and (2.34) is particularly suitable
for the determination of fundamental solutionsin an infinite elasticspace.

At present thermoelasticity constitutes a fully developed field theory.
Numerous methods of solving the differential equations have been derived
and the fundamental energy theorem and variational theorems have been
deduced.

A number of theorems of classical elastodynamics have been generalized

on thermoelasticity.
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The following theorems have been generalized: the reciprocity theorem,
variational theorems, the Somigliana, Helmholtz, Kirchhoff, Weber, and
Volterra theorems. The radiation conditions have been given. Here we
discuss only Helmholtz's formula [12] and the reciprocity theorem [13].

Consider an internal region B + bounded by a surface A. Let B denote the
complement of B+ with respect to all of three-dimensional space. We shall
study the propagation of longitudinal waves inside the region B+. We are
interested in an expression for the value of the functions <t> and d at the point t,
in terms of distribution of <£, d<J>/dn, 6, dd/dn on the closed surface A.

For the special case of causes harmonically varying in time we obtain the
following formulae:

(2.35)

(2.36)

Here <E>*, 6*,... are the amplitudes of the functions <5, 6,... . We have
introduced the notation

G = ( * e i )

The quanti t ies k\,kz are roots of the equation

k4-k2(a2 + q(l+E)) + qcr2 = 0 (2.37)

where

—

The roots ki, k2 are complex

kp = aP + jfeg, aP > 0, bp > 0, |3 = 1, 2.

G* is here the Green function of the wave equation (2.27'). Equation (2.35),
obtained within the framework of coupled thermoelasticity, is similar to the
Helmholtz formula in classical elastodynamics. Equation (2.36) may be
regarded as a generalization of Green's theorem in the theory of heat
conduction to the problems in coupled thermoelasticity.

The reciprocity theorem has the following form [13]

l *^-dA-y{ W*6'<iV =
A dn 'Jv

fOui dV+ f p',OmdA) + yk{ 6'*^dA-y{ W'*6dV. (2.38)
JA J JA dn Jv
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Here we have introduced the following notation

\ i f v/ \ du!(x, T) .
ui = X,(\,t- T) —•^—L dT,

Jo dr

W*0' = f W(x,t-T)6'{x,r)dr,...
Jo

and so on.

All the causes and effects of both the systems occur in equation (2.38), The
reciprocity theorem includes a number of particular cases, for example
Gram's theorem [14] for elastodynamics and Maysel's theorem [15] for the
theory of thermal stresses.

The proof of the uniqueness of the thermoelasticity equations has been
given by Weiner [16] under the assumption that the elasticity tensor cijki is
positive semi-definite. Knops & Payne [17] have proved the same theorem
disregarding that assumption and have shown that the solution depends
continuously on the initial date. Brun [18] has shown that the elasticity tensor
Cijki does not need to be positive semi-definite. Existence, uniqueness and
asymptotic stability theorems for the relevant mixed problem have been
derived by Dafermos [19]. Under the assumption of periodic time-
dependence Kupradze and his co-workers [20] have proved the existence
theorem for internal and external problems.

Compared with classical elastodynamics only few solutions of coupled
thermoelasticity have been obtained in the closed form: only in the case of the
simplest types of initial and boundary value problems, first of all for the causes
and effects varying periodically with time.

Let us return to the classical heat conduction equation. The equation is of
parabolic type, implying infinite speed of thermal wave propagation.

Since the idea of a thermal disturbance propagating with infinite speed is
unacceptable, modifications of the Fourier law have recently had to be
devised to provide for a finite signal time. Cattaneo [21] proposes to replace
Fourier's law by the extended law:

(l + Td,)q = - k grade. (2.39)

Here T is a positive quantity of time dimension, small on the time scale. The
substitution of (2.39) into the equation of heat flow balance leads to the
'telegraphic' heat conduction equation

kV2e-c80-TCB0 = O. (2.40)

This equation is hyperbolic. The wave velocity v is defined by the equation

v2=k/rc. (2.41)

The other modifications of Fourier's law have been given by Gurtin &
Pipkin [22].
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Below we present the coupled equations of thermoelasticity with the
modified Fourier's law taken into account (2.39). These equations form a
system of four hyperbolic equations [23],

(2.42)

divu) = 0. (2.43)

3 Diffusion and Thermo-diffusion in Solids

Let us consider the diffusion of a substance into a solid. We deal with a
two-component model in which a mobile component co-exists with the
immobile one. In particular, a gas diffusing into a solid body may be described
by such a model (also diffusion in stable solutions.) A crystal lattice of the
immobile component can be assumed as a reference system for the diffusion
flow.

As in the theory of thermal stresses, also here we shall introduce the initial
deformation e°a due to diffusion into an elastic solid. Here we have

e?j = acc8ii (3.1)

where c (x, t) denotes the concentration, while ac is the coefficient of diffusive
expansion. The relations between the stresses and deformations are here
analogous to the Duhamel-Neumann equations

yc = (3X + 2/x)ac. (3.2)

Substitution of the above relations into the equations of motion leads to the
displacement equations of the theory of elasticity

D2u + (\ + (x)graddivu + X= 7C grade. (3.3)

The concentration variation in time and space is described by the following
equations

— =-div»i + CT i\ = -Dc grade. (3.4)

Here TI(X, t) denotes the vector of the flow of diffusing mass, a is the amount of
mass generated in a unit of time and unit of volume. Dc is the diffusion
coefficient.

Equation (3.4)i represents the balance of the flow of mass, the relation
(3.4)2 is the phenomenological Fick's law. The elimination of the vector t]
from equations (3.4) leads to the diffusion equation

(DcV
2-d,)c = -a. (3.5)

Equations (3.3) and (3.5) constitute a complete system of uncoupled
equations of diffusion in solid bodies, valid for the isothermal state. These
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equations enable us to represent the effect of diffusion on a solid deformation,
but on the other hand they do not give an answer if we wish to estimate the
influence of the mechanical quantities (ultrasonic vibrations, say) on the
process of diffusion.

An analogous system of equations can be obtained for the problem of
humidity change in a porous solid body, in problems of shrinkage and bulging.

Let us consider the diffusion phenomenon combined with the process of
heating (or cooling) of a solid body and its deformation. In order to combine
the three fields, concentration, temperature and deformation, we depart from
the equations of the balance of energy and entropy, assuming that the
procedure is thermodynamically irreversible

(3.6)

•0. (3.8)

In these equations •& denotes the chemical potential. Here we have made a
simplifying assumption, namely that the temperature of both the components
is the same.

The following equations result from the Clausius-Duhem inequalities

I \ *• I A

^ = ~ifT,irL,n[f) (3.10)

where

Lq(|>0, L w > 0 ,

The above equations generalize Fourier's law and Fick's law to the problems
of thermodiffusion. From the expression for free energy one obtains the
following constitutive equations

= ̂ —= 2UE- +(AE — -v 0 — "V c)S- (3 11)

Equations (3.11) constitute here a generalization of the Duhamel-Neumann
equations. Combining the equations of motion with the entropy balance, and
the flow equation we arrive at the system of three coupled differential
equations, where the following functions enter: the displacement u,
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temperature 0 and the chemical potential •&. These equations were derived by

Podstrichac [24], and take the following form:

Q>u + (A + ju.) grad div u + X = grad (y<>0 + y#&), (3.14)

D10-d-&-7Odivu = -Wi (3.15)

D2ft-d6-yedi\u = -W2. (3.16)

Here we have introduced the following symbols

Da = hV2- Cad,, a = 1,2.

Equation (3.14) is the equation of the theory of elasticity, equation (3.15) is
the heat conduction equation, and finally equation (3.16) is the diffusion
equation. The equations are coupled, the uncoupling occurring for a
stationary state.

The system of thermodiffusion equations includes a number of particular
cases. If the diffusion process is isothermal, then 0 = 0; and the remaining
equations (3.14) and (3.16) do not contain the thermal terms. In the absence
of diffusion, •& = 0, we obtain the equations of thermoelasticity (3.14) and
(3.15) without the diffusion terms. If we neglect the dilatation terms in
equations (3.15) and (3.16) then we obtain the system of parabolic equations:

DiO-dd = -Wi (3.17)

D2&-d6 = -W2. (3.18)

The solutions of this system of equations, namely the functions 0 and #, can be
substituted into equation (3.14) as the known functions.

The coupled equations of thermodiffusion (3.14) •*• (3.16) can be reduced to
simple wave equations. Similarly to thermoelasticity the longitudinal waves
are attenuated and dispersed while the transversal wave is independent of
thermal and diffusion effects and propagates with the speed v = (^/p)1/2.

The theory of thermodiffusion in solids, in the form derived by Podstrichac
is in the course of development. A number of general theorems have
already been obtained (variational theorem and the reciprocity theorem
with the resulting conclusions [25]).

An important contribution in thermodiffusion is due to Fichera [26] who
investigated the problem of uniqueness in existence, and estimated the
solution of the dynamical problem. The coupled thermoelasticity constitutes
a particular case.

The system of thermodiffusion equations (3.14)+ (3.16) will be extended
considerably in the case of diffusion of the multicomponent systems.

4 Magneto-elasticity and Magneto-thermoelasticity

In the last two decades a new domain has been developed in which the
investigations concern the interactions between the strain and electromagne-
tic fields. This new discipline is called magneto-elasticity. Its development was
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stimulated by possible applications to the problems of geophysics, certain
topics in optics, acoustics, investigations on the damping of acoustic waves in
magnetic fields, etc.

If an elastic solid in a strong magnetic static field is set into motion by
external mechanical forces, then in addition to a deformation an electro-
magnetic field is generated. The two fields interact and are coupled. In the
equations of electrodynamics of slowly moving bodies strain rate effects
appear while the derivatives of the Maxwell electromagnetic stresses, the
Lorentz forces enter the equations of motion.

In magneto-elasticity the motion is regarded as adiabatic, as in classical
elastodynamics. It is assumed that the heat exchange between parts of the
solid is slow.

In the sequel we present a complete system of magneto-elasticity equations
for an isotropic solid with a finite electric conductivity. The first system of
equations constitutes the systems of equations of electrodynamics of slowly
moving bodies [27-29]

ff (4.1)
4ir

curlh = — j (4.2)
c

div h = 0 (4.3)

div E = 0 (4.4)

where

[ l
D = eo EH—L c

Here the vectors h and E denote the perturbations of the magnetic and electric
fields respectively, j is the electric current density vector, H denotes the initial
constant magnetic field, D is the electric induction vector, B is the magnetic
induction vector, u denotes the displacement vector, while c is the speed of
light, fio and eo denote the magnetic and electric permeability, respectively, \0

is the electric conductivity.
The equations of motion constitute the second group of equation

where Ti( denotes the Maxwell electro-magnetic stress tensor. The quantities
f, = TN are the Lorentz forces. The Maxwell tensor is related to the vector h in
the following manner:

k), i,j = l ,2 ,3 . (4.7)
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Since the values of the quantities /LLO and e0 are close to one, the term
o- 1 can be neglected. Moreover, the displacement current (eo/c)(dE/dt)

can also be neglected, since its influence on the electro-magnetic quantities is
very small. Eliminating the vector E and j , and the stresses and strains, and
expressing the tensor T), by the components of the vector h we arrive at the
system of equations

V 2 h-0h = - |3curl(uxH), / 3 = ^ ^ (4.8)
c

^ ± O. (4.9)

Equations (4.8) and (4.9) constitute a complete system of the fundamental
differential equations of magneto-elasticity. They represent quasistatic
electric fields and dynamic mechanical behaviour.

Consider now the mechanical, electro-magnetic and thermal couplings.
Equations of electro-magnetics (4. l)-(4.4) equations of motion (4.5) and the
tensor Ti, remain unchanged. Hooke's law relations are now replaced by the
Duhamel-Neumann equations (2.6). The complete system of magneto-
thermoelastic equations assumes the form [30]:

(4.10)

^ 7 grad 6 (4.11)

kV20 - cj - T) div u = - W. (4.12)

The last equation is a well known heat conduction equation. Magneto-
elasticity and magneto-thermoelasticity are little developed domains. Even
the particular case of a solid ideally conducting electricity [p = °°, h =
curl (u x H)] is not well analysed. This case leads to the following system of
equations:

•211 + (A + |u,) grad div u + ̂  [curl curl (u x H) x H] = y grad 0 (4.13)

fcV20-ce0-T) divu = -VVr. (4.14)

So far only few one- and two-dimensional problems have been solved: the
propagation of plane and cylindrical waves. In these cases dispersion and
attenuation of waves is observed.

The interrelation of three coupled fields—displacement, temperature and
magneto-electric field—distinctly occurs in the fundamental energy theorem
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expressing both the thermodynamic laws [30]:

%W + x*=:\ Xiv, dV+\ pv, dA

Io JA on 4TTP JA dn

H=(0,0,H3) . (4.15)

Here 9Sf and "W" denote kineticenergy and the strain-energy, respectively:

V. (4.16)

is the heat potential, while if denotes the electrodynamic potential

(4.17)

Finally, xo and #, denote the thermal and magnetic dissipation functions
respectively:

The first expression on the left-hand side of the equation denotes the time
derivative of the kinetic energy, the strain-energy, the thermal and
electrodynamical potentials. The two remaining terms determine the thermal
and magnetic dissipation respectively. On the right-hand side of the equation
the first two terms denote the power of external forces, the remaining terms
denote the non-mechanical power. All the causes generating the motion of
the body occur on the right-hand side of equation.

The above discussion can easily be generalized on more complicated
interactions of electromagnetic and elastic fields in elastic dielectrics,
piezoelectrics, magnetizable elastic solids, etc. [31-33].

The above presentation of coupled fields can be enlarged on bodies with
microstructure, the Cosserat media, micromorphic media, etc.

Below we cite the system of differential equations of thermoelasticity for a
micropolar media [34]

- a ) grad div u + 2a rot<p + X=pi i+y grad 0
(4-19)

((7+ e)V2-4a)<p + ((3+7-e)graddiv«p + 2a rotu + Y = ̂ <p (4.20)

k V 2 0-ce-T)d ivu = -W. . (4.21)

The motion of a solid body in the micropolar theory of elasticity is described
by the displacement vector u, and independent of it by the rotation vector <p.
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The quantities /x, A, a, |3, y and e entering equations (4.19) and (4.20) denote
the material constants.

As I have mentioned already the coupling of various fields has become a
main trend of development. It concerns not only the disturbance of the elastic
field but also the coupling of the general mechanics of continuous media with
other fields. A number of papers show this trend, among them two recently
published by Collet & Maugin [35,36]. Their general theory of continuous
media with interactions comprises as particular cases magneto-
hydrodynamics and electro-hydrodynamics, as well as the theory of elastic
dielectrics and magnetizable solids.

The mechanicians are first of all interested in the influence of fields on the
state of stresses and strains. They investigate the conditions for which the
non-mechanical interactions lead to significant, sometimes dominating,
stresses. Such is the case with elevated temperatures, strong magnetic fields,
strong radiation, etc.

The coupled field equations of the theory of elasticity lead to more
complicated types of differential equation, and frequently to new types of
mathematical physics equations. Here I see the further field of collaboration
between mathematicians and mechanicians.
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