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Abstract

Data quality is one of the most important problems in data manage-

ment, since dirty data often leads to inaccurate data analytics results

and wrong business decisions. Poor data across businesses and the gov-

ernment cost the U.S. economy $3.1 trillion a year, according to a report

by InsightSquared in 2012.

To detect data errors, data quality rules or integrity constraints

(ICs) have been proposed as a declarative way to describe legal or

correct data instances. Any subset of data that does not conform to

the defined rules is considered erroneous, which is also referred to as a

violation.

Various kinds of data repairing techniques with different objectives

have been introduced, where algorithms are used to detect subsets of

the data that violate the declared integrity constraints, and even to

suggest updates to the database such that the new database instance

conforms with these constraints. While some of these algorithms aim to

minimally change the database, others involve human experts or knowl-

edge bases to verify the repairs suggested by the automatic repeating

algorithms.

In this paper, we discuss the main facets and directions in design-

ing error detection and repairing techniques. We propose a taxonomy

of current anomaly detection techniques, including error types, the au-

tomation of the detection process, and error propagation. We also pro-

pose a taxonomy of current data repairing techniques, including the

repair target, the automation of the repair process, and the update

model. We conclude by highlighting current trends in “big data” clean-

ing.

I. F. Ilyas and X. Chu. Trends in Cleaning Relational Data: Consistency and

Deduplication. Foundations and Trends R© in Databases, vol. 5, no. 4, pp. 281–393,
2012.
DOI: 10.1561/1900000045.
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1

Introduction

As businesses generate and consume data more than ever, enforcing and

maintaining the quality of their data assets become critical tasks. One

in three business leaders does not trust the information used to make

decisions [36], since establishing trust in data becomes a challenge as

the variety and the number of sources grow. For example, in health care

domains, inaccurate or incorrect data may threaten patient safety [75].

Gartner predicted that more than 25% of critical data in the world’s

top companies is flawed [106]. Poor data across businesses and the

government costs the U.S. economy $3.1 trillion a year, according to a

report by InsightSquared [29]. With the increasing popularity of data

science, it became evident that data curation, preparation, cleaning,

and other “janitorial” data tasks, are key enablers in unleashing value

of data, as indicated in a 2014 article in the New York Times1.

Even when the data is ingested in JSON, XML, or text format,

many of data quality assessment and cleaning activities happen after

transforming the data into relational tables. There are many notions

related to relational data quality: data consistency, data accuracy, data

completeness, and data currency. Data consistency refers to the valid-

1http://nyti.ms/1t8IzfE

2
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3

ity and integrity of data; data accuracy refers to how accurate the data

values in a database with respect to the true values; data completeness

indicates whether all the data needed to meet the information needs

is available; and data currency, also known as, data timeliness, gives

the degree to which the data is current with respect to the world or

the process it models. There are various surveys and books on rela-

tional data quality. Rahm and Do [93] give a classification of different

types of errors that can happen in an Extract-Transform-Load (ETL)

process, and survey the tools available for cleaning data in an ETL pro-

cess; some focus on the effect of incompleteness data on query answer-

ing [61], and the use of a Chase procedure for dealing with incomplete

data [62]; Hellerstein [67] focuses on cleaning quantitative data, such

as integers and floating points, using mainly statistical outlier detec-

tion techniques. Bertossi [8] provides complexity results for repairing

inconsistent data, and performing consistent query answering on in-

consistent data; Fan and Geerts [44] discuss the use of data quality

rules in data consistency, data currency, and data completeness, how

different aspects of data quality issues might interact; and Dasu and

Johnson [33] summarize how techniques in exploratory data mining can

be integrated with data quality management.

In this paper, we focus on the data consistency aspect of relational

data quality. To ensure data consistency, data quality rules are often

used. We use integrity constraints (ICs) to express data quality rules.

Any part of the data that does not conform to a given set of ICs is con-

sidered erroneous, also known as a violation of ICs. Data deduplication

can be seen as enforcing a key constraint defined on all the attributes of

a relational schema, since two duplicate tuples can be seen as a viola-

tion of the key constraint. Data cleaning, in this context, is the exercise

of detecting errors, and possibly modifying the database, such that the

data conforms to a set of data quality rules expressed in a variety of

languages. This paper covers techniques to detect data inconsistencies,

as well as techniques to repair data inconsistencies.

The following example illustrates a real world tax record database

that has various data quality problems due to the violations of different

data quality rules, and the existence of duplicate records.

Full text available at: http://dx.doi.org/10.1561/1900000045



4 Introduction

Example 1.1. Consider the US tax records in Table 1.1. Each record de-

scribes an individual’s address and tax information with 15 attributes:

first and last name (FN, LN), gender (GD), area code (AC), mobile

phone number (PH), city (CT), state (ST), zip code (ZIP), marital

status (MS), has children (CH), salary (SAL), tax rate (TR), tax ex-

emption amount if single (STX), married (MTX), and having children

(CTX).

The following constraints hold: (1) area code and phone identify a

person; (2) two persons with the same zip code live in the same state;

(3) a person who lives in Los Angeles lives in California; (4) if two

persons live in the same state, the one with lower salary has a lower

tax rate; (5) tax exemption is less than the salary.

A violation with respect to an IC is defined as the minimal subset

of database cells, such that at least one of the cells has to be modified

to satisfy the IC, where a cell is an attribute value of a tuple, e.g., Cell

t1[FN] corresponds to Attribute FN of Tuple t1 . For instance, the

set of four cells {t1[ZIP], t8[ZIP], t1[ST], t8[ST]} is a violation with

respect to the second constraint. Furthermore, Record t4 and t9 refer

to the same person, even though t4[FN] and t9[FN] are different, and

t9[AC] is empty. Given a relational database instance I of schema R

and a set of integrity constraints Σ, we need to find another database

instance I ′ with no violations with respect to Σ.

1.1 Notations

Let R denote a relational schema, and I be an instance of that schema.

Attributes of R are denoted as attr(R) = {A1, . . . , Am}. For each At-

tribute A in R, let Dom(A) denote the domain of A. I consists of a set of

tuples, each of which belongs to the domain Dom(A1)×. . .×Dom(Am).

We assume that there is a unique tuple identifier associated with each

tuple t ∈ I. Let TIDs(I) denote the set of all tuple identifiers. We

identify a cell of Attribute A of a tuple t in I by I(t[A]), simply re-

ferred to as t[A] when the context is clear. Let CIDs(I) denote the set

of all cell identifiers in I.

Full text available at: http://dx.doi.org/10.1561/1900000045
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6 Introduction

1.2 Outline

The remainder of the paper is organized as follows. Section 2 discusses

different ways to detect anomalies in the data, such as data duplica-

tion, integrity constraints languages, along with algorithms for their

automatic discovery, and provenance-based error propagation, based

on what, how, and where to detect. Section 3 introduces the taxonomy

we adopt to classify data repairing techniques, based on what, how,

and where to repair, and presents the details of multiple techniques in

each dimension. Section 4 discusses the techniques proposed for deal-

ing with big data cleaning. Section 5 concludes and summarizes future

research directions.
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