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ABSTRACT: The temporal evolution of nine daily precipitation indices over the 

northeastern Iberian Peninsula was analyzed for the period 1955−2006, using data from 

217 observatories. Cross-tabulation analysis enabled detection of statistically significant 

overlap among spatial distributions of trends in the study area. There was a general 

decrease in annual precipitation at most observatories, a decrease in the number of rainy 

days and precipitation intensity, and an increase in the duration of dry spells. The 

frequency and contribution to annual precipitation of moderate and heavy rainfall events 

did not change at most observatories, or showed a decreasing trend in these events. 

There was very large spatial and seasonal variability, with implications for water 

management and risk assessment in the region. The decrease in precipitation was very 

marked in headwaters during winter and spring, potentially affecting reservoir 

management in the region. Heavy rainfall events generally decreased in the west of the 

region in winter, and in the east of the region in autumn, when these areas are more 

exposed to hazards related to extreme rainfall. Large differences in the sign and 

magnitude of trends occurred over very short distances, suggesting the need for dense 

networks of observatories to ensure reliable and robust detection of regional trends. 

 

Key words: Daily precipitation, temporal trends, spatial variability, cross-tabulation 

analysis, Iberian Peninsula. 

 

 

1. Introduction 

In recent decades, understanding and predicting climatic variability and change have 

become key issues for the research community. While it is now widely recognized that 
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global temperature is increasing, changes in precipitation parameters are not well 

understood, although it is commonly accepted that they are complex and vary 

regionally. There is great interest in assessing changes in precipitation because of their 

importance to economic activities such as agriculture, energy production and drinking 

water supply, and due to their role in natural hazards such as droughts, floods, 

landslides and severe erosion. Two main directions in research into precipitation change 

are: i) simulation of precipitation under different future scenarios, in order to assess the 

magnitude and spatial distribution of expected changes; and ii) analysis of historical 

climate records to assess spatial patterns and the causes of temporal variability and 

change. Observational records are required to assess the quality of climate simulations 

during control periods. For these reasons the IPCC has recommended the development 

of dense and robust daily precipitation databases to enable analysis of trends in a 

number of indices (Jones et al., 1999; Karl et al., 1999; Nicholls and Murray, 1999; 

Moberg and Jones, 2005). However, there are problems with data availability and 

consistency that make it difficult to obtain a clear picture of worldwide extreme 

precipitation events (Karl et al., 1999). 

A dense network of observatories worldwide, with long records of reliable quality, is 

not available. There are large areas for which appropriate records do not exist, or where 

data are not yet available from national archives. However, in recent decades an 

increasing number of researchers have been involved in gathering available 

meteorological records for specific regions (digitizing them when necessary and 

assessing their quality and homogeneity) in order to devise indices comparable to those 

recommended by the WMO CC1/COVER/JCOMM Expert Team on Climate Change 

Detection and Indices (http://cccma.seos.uvic.ca/etccdi).. As a result it has been possible 

to undertake trend analyses on daily precipitation indices in widely separated and 

contrasting geographical areas including the EEUU (Michaels et al., 2004), Central and 

South America (Aguilar et al., 2005), the UK (Osborn et al., 2000), Central and 

Western Europe (Moberg and Jones, 2005), Germany (Zolina et al., 2008), Switzerland 

(Schimidi and Frei, 2005), some parts of the Iberian Peninsula (Lana et al., 2004 and 

2006; Martín-Vide, 2004; Casas et al., 2007; Martínez et al., 2007; Rodrigo and Trigo, 

2007), Italy (Brunetti et al., 2000 and 2001), the Mediterranean region (Norrant and 

Douguédroit, 2006), India (Sen-Roi and Balling, 2004), Mongolia (Nandinsetseg, 

2007), Australia (Suppiah and Hennessy, 1998; Haylock and Nichols, 2000), New 

http://cccma.seos.uvic.ca/etccdi�
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Zealand (Salinger and Griffiths, 2001), South Africa (Kruger, 2006), and South East 

Asia and the South Pacific (Manton et al., 2001; Griffiths et al., 2003). 

Here we present a trend analysis for a set of daily precipitation indices for the 

northeast area of the Iberian Peninsula over the period 1955−2006. The study was based 

on a recently created quality-controlled database comprised of 828 homogeneous series 

of daily precipitation records for the northeastern Iberian Peninsula (Vicente-Serrano et 

al.2008a). Among these are 217 continuous series covering the period 1955−2006. The 

research interest stems from a number of factors. 

Firstly, the study area has an extraordinarily complex climate. Framed between the 

Atlantic Ocean to the northwest, and the Mediterranean Sea to the east, it encompasses 

an Atlantic−Mediterranean gradient in only a few hundred kilometers. In relief it is very 

heterogeneous, with flat areas such as the Ebro Valley, some coastal stretches, and 

mountainous areas including the Pyrenees, the Iberian Range, the Cantabrian Mountains 

and the Coastland Catalonian Range. This results in vertical gradients and barrier effects 

which modulate the regional or synoptic climatic conditions (Rodó et al., 1997; 

Rodríguez-Puebla et al., 1998; Martín-Vide and López-Bustins, 2006; Vicente-Serrano 

and López-Moreno, 2006; González-Hidalgo et al., 2008). Thus, contrasting spatial 

patterns of rainfall, and temporal variability and trends were expected. Such variability 

can be only analyzed using a dense network of observatories, such as the one used in the 

present study. 

Secondly, water resource availability and water management is a major issue in the 

study area. Precipitation has large spatial variation, with several small humid zones 

(generally coinciding with mountainous headwaters) contributing most of the water 

required for agricultural and industrial activities, and for urban supply (López-Moreno 

et al., 2008). Consequently, spatial differences in the time evolution of precipitation 

across the area is not trivial, as the social impacts of changing precipitation will vary 

depending on which are the most severely affected areas. 

Thirdly, natural hazards related to precipitation, particularly droughts and floods, are 

the most important in the region in terms of economic loss (Llasat and Rodríguez, 1992; 

White et al., 1997; Peñarrocha et al., 2002; Llasat et al., 2003, Vicente-Serrano, 2006). 

Precipitation in the Mediterranean region is one of the most variable in time and space 

worldwide, with water being relatively scarce throughout much of the year, but extreme 

precipitation events threaten lives and property on a small number of days per year 
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(Lana and Burgueño, 1998; Beguería and Vicente-Serrano, 2006; Lana et al., 2006; 

Casas et al., 2007). In addition to natural variability, some studies have suggested trends 

in daily precipitation during the 20th century (Brunetti et al., 2000 and 2001; Gallego et 

al., 2006; Norrant and Douguedroit, 2006; Rodrigo and Trigo, 2007), and climate 

models predict marked changes in the frequency, intensity and duration of extreme 

events in the 21st century (Palutikof and Holt, 2004). 

Although the main aim of the present study was to analyze the time evolution of 

daily precipitation indices on an annual basis, seasonal changes were also assessed. In 

addition, cross-tabulation analysis was used to explore pairwise relationships between 

indices, which enabled detection of spatial associations among trends for the analyzed 

parameters. 

 

2. Study area  

The study area comprises about 160,000 km2 in the northeast of Spain (Fig. 1), with 

boundaries corresponding to administrative areas including 18 provinces. The study 

area has strongly contrasting relief. The main unit is the Ebro Valley, an interior 

depression surrounded by high mountain ranges. It is bounded to the north by the 

Cantabrian Range and the Pyrenees, with maximum elevations above 3000 m a.s.l. The 

Iberian Range encloses the Ebro Valley to the south, with maximum elevations in the 

range of 2000−2300 m. To the west of the study area the main unit is the Meseta, a plain 

with elevations ranging between 700 and 900 m a.s.l. To the east, parallel to the 

Mediterranean coast, the Catalan Coastal Range sharply closes the Ebro Valley, with 

maximum elevations between 1000 and 1200 m a.s.l. 

The heterogeneous topography, contrasting influences of Atlantic (westward) and 

Mediterranean (eastward) conditions, and the influence of various winds (Vicente-

Serrano and López-Moreno, 2006) generates a complex spatial distribution of climate 

parameters, and variations in precipitation and temperature throughout the region 

(Ninyerola et al., 2005). Thus, annual precipitation varies from 307 to 2451 mm yr–1. 
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Most of the precipitation falls in autumn and spring (García-Ruiz et al., 2001). The 

summer is relatively dry (with occasional rainstorms), as is the winter, when extended 

anticyclonic periods occur. However, in the westernmost part of the study area the 

winters are more humid because of continuous exposure to the passage of oceanic 

fronts. Average annual temperature varies from 0.8 to 16.2ºC. 

 

 3. Methods 

3.1. Database 

A database comprising 217 complete daily precipitation series with continuous data 

between January 1955 and December 2006 was used. The series were obtained through 

a process that included reconstruction, gap filling, quality control and homogenization 

testing (see details in Vicente-Serrano et al., 2008a). Although the original database 

contained 828 data series, some more than 80 years in length, we selected the period 

from 1955 to 2006 to achieve an appropriate balance between the spatial density of 

observatories and length of the series. The series have a rather homogeneous 

distribution across the study area, with a slightly higher concentration in the coastal 

Mediterranean (Fig. 1). 

We selected nine indices describing different aspects of the precipitation regime, 

many of which have been used in previous studies (e.g. Moberg and Jones, 2005; 

Nicholls and Murray, 1999). Values of each index were calculated on an annual basis 

and for the different seasons: December to February (DJF), March to May (MAM), June 

to August (JJA) and September to November (SON). 

Table 1 provides the acronyms and a short definition of the selected indices. P is the 

cumulative precipitation during the analysis period; WD is the number of days with 

precipitation higher than 1 mm; PI is the average precipitation per wet day; C90, R90N 
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and R90T are, respectively, the intensity, frequency and contribution of heavy rainfall 

events to total precipitation, i.e. those days exceeding the 90th percentile of the series; 

R5GD is the cumulative precipitation of the five most intense events; WS is the length 

of the longest wet spell, i.e. a series of consecutive rainy days; and DS is the length of 

the longest dry spell, i.e. a series of consecutive days with no rain. 

 

3.2. Statistical analysis 

A trend analysis was performed on the time series of the nine indices, using the 

Spearman’s rank correlation test, which is less affected by the presence of outliers and 

non-normality in the series (Lanzante, 1996). Both sets of data Xi (year i) and Yi (value 

of the precipitation index for Xi) were converted to ranks xi and yi before calculating the 

coefficient, ρ, which is given by: 

)1(
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2

2

−
= ∑

nn

diρ , (1) 

where di = xi−yi (the difference between the ranks of corresponding values of Xi and 

Yi), and n is the number of values in the data set. Statistically significant trends where 

defined as those below the threshold p < 0.05. 

To distinguish more persistent trends, year to year variation in the series was 

smoothed using a nine year Gaussian filter. This is an established procedure in climate 

studies (e.g. Sneyers, 1992; Wheeler and Martín-Vide, 1992; Hulme, 1995; Salinger et 

al., 1995; De Luis et al., 2000; Domonikos, 2003). The filter smoothes the signal and 

removes excessive detail and noise by convolution with a Gaussian function. It is 

similar to a running average filter, but uses a kernel that represents the shape of a 

Gaussian hump (“bell-shaped”) instead of regular weighting. This transformation is 



 8

designed to prevent overshoot in a step function input while minimizing the rise and fall 

time. To map the percentage change of each index per decade, the magnitude of change 

was also calculated using a least square regression applied to the unfiltered data. 

To test the association between pairs of indices with respect to their temporal trends, 

a cross-tabulation analysis was conducted. This method is commonly used to explore 

pairwise relationships among two or more categorical variables. It was used in this 

study to assess the coherence in spatial distributions of trend signs (positive, stationary 

and negative trends) among pairs of indices. This allowed detection of statistical 

similarities among the spatial distributions of the trends in precipitation indices. 

Statistical assessment of the overlaps used chi-squared (χ2) test. Pivot tables were 

constructed to represent the cross-categorized frequency data in a matrix format, from 

the results of the trend analysis. The meteorological observatories (n = 217) were 

included as the random variable, and the “characteristics” of the random variable were 

the signs of the trend analysis (i.e. negative, stationary and positive). The trend 

categories were converted to scores (negative = −1, non-significant = 0 and positive = 

1). The default structure of the consistency tables was 3 × 3. Table 2 shows two of the 

cross-tables used in this study. Of particular interest was whether any precipitation 

indices had a spatial distribution similar to a given index. The χ2 test is commonly used 

to test the significance of the association between categorical variables, and it has been 

applied to trend analysis of climate variables (a full description of the method and the 

computation of Chi-squared statistic may be found in Gonzalez Hidalgo et al., 2003). 

The null hypothesis (H0) is that the spatial distribution of two categorical variables is 

independent and randomly distributed. The alternative hypothesis (H1) is that the spatial 

association between two categorical variables is significant. When the null hypothesis is 

rejected, the degree to which the categorical variables are associated can be calculated 
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by the coefficient of contingency (CC; Clark and Hosking, 1986), which ranges from 0 

to 1 and is calculated as follows: 

2

2

χ
χ
+

=
n

CC . (2) 

 

4. Results 

4.1 Spatial distribution of average daily precipitation indices 

Figure 2 shows the mean annual values of eight of the precipitation indices over the 

study period. The spatial distribution of R90N is not shown because it had the same 

value at all observatories. 

The mean magnitude of the precipitation indices varied markedly throughout the 

study area, as a consequence of the climatic heterogeneity of the region. There was a 

marked gradient in P, from less than 400 mm in the centre of the Ebro Depression to 

more than 1500 mm in the Pyrenees, at the north of the study area. WD ranged from 

less than 50 to more than 110 rainy days per year, and a clear negative trend in this 

index was apparent along a northwest−southeast gradient. The spatial distribution of PI 

showed the highest intensities (PI > 10 mm) occurred along the Mediterranean coast and 

in the central Pyrenees, whereas the lowest intensities (PI < 7 mm) were found in the 

southwest of the study area. 

The spatial distribution of the 90th percentile (C90) and the percentage contributing 

to total precipitation (R90T) were similar to those observed for PI, with the greatest 

frequency and contribution of heavy rainfall events (> 90C) to total precipitation 

occurring along the Mediterranean coast and in some sectors of the north, and the 

lowest contribution occurring towards the southwest of the study area. The highest 

R5GD (cumulative precipitation of the 5 heaviest rainfall events in the year) values, 
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exceeding 200 mm per year, occurred in the north of the study area. The Mediterranean 

coast had values close to these, whereas in the southwest of the study area the value did 

not exceed 150 mm. WS and DS had opposite spatial distributions. Thus, the longest 

wet spells (more than 9 consecutive rainy days) as well as the shortest dry spells (less 

than 30 consecutive dry days) occurred in the northwest of the study area. There was a 

rapid change in these values along a southeast gradient. Thus, wet spells in the 

southernmost part (Mediterranean coast) and in the eastern part of the Ebro Valley did 

not exceed 5 days, whereas the average daily dry spell was greater than 45 days. 

 

4.2. Trends in daily precipitation indices 

Figure 3 shows the annual evolution of P and temporal trends for the period 1955−

2006 at three selected observatories. The evolution of P exhibited large inter-annual 

variability at all three observatories, and also marked inter-decadal cycles that did not 

always coincide among the series. Moreover, the opposing sign of the trends confirms 

the existence of contrasted patterns in temporal evolution of precipitation  over 

relatively short distances in the study area. 

Figure 4 shows the trend sign and percentage change per decade for the nine 

precipitation indices. Appendices I, II, III and IV present the same data as Figure 4, but 

for winter, spring, summer and autumn, respectively. Table 3 shows the percentage of 

observatories with positive, stationary and negative trends. 

These was a negative trend in P across the whole region. The trend was statistically 

significant at 149 observatories (67% of total), there was no significant trend at 69 

observatories (32%), and only 2 observatories (less than 1%) exhibited a significant 

upward trend in precipitation. Results of the seasonal analysis (see appendices I to IV) 

showed that the negative trend was consistent throughout the year at most observatories, 

although several seasonal and spatial differences where found. Thus, winter had the 

greatest number of observatories (59%) showing a significant decrease in precipitation, 

while the remaining 41%, mostly clustered along the Mediterranean coastline, showed 

no significant change. Negative trends also dominated in spring and summer, but most 

observatories (57% and 54%, respectively) showed no significant changes. The decrease 

in precipitation occurred mainly in the north of the study area during spring, and in the 
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northeast and southernmost parts in summer. Almost no positive trends in precipitation 

were observed from winter to the end of summer. In autumn, significant decreases in 

precipitation (20% of the observatories) were mainly centered in the Mediterranean 

area, although most did not exhibit significant trends, and significant increases (16 

observatories, 7% of total) were found in the north and westernmost parts of the area.  

The number of wet days generally decreased at the observatories, with significant 

declines at 54%, positive trends at 7% (apparently randomly distributed across the study 

area), and 39% did not change significantly. As with total precipitation, the greatest 

number of observatories (59%) exhibited a significant decrease in wet days in winter, 

and only 3% showed a significant increase. During autumn the majority of observatories 

showed no significant trend (72%), whereas 26% showed a positive trend. Only four 

observatories had a negative trend. 

The mean daily precipitation intensity (PI) was also characterized on an annual basis 

by a dominance of observatories with negative trends, with 44% being statistically 

significant. However a significant increase in PI was also detected at 14% of 

observatories. Seasonal maps (see appendices) showed that there were similar 

proportions of observatories with trends of each sign in winter, spring and summer than 

proportions shown at the annual basis; in autumn a tendency towards less precipitation 

per rainy day was detected. 

At the majority of observatories (48%) the amount of rainfall corresponding to the 

annual 90th percentile (C90) tended to remain stationary. However, a negative trend 

was observed at 41% of observatories (mostly located in the central part of the study 

area), whilst at 11% the annual 90th percentile tended to increase. Similar observations 

were made in relation to season: in autumn the number of observatories with positive 

trends fell to 3.5%, and in the eastern part of the study area no observatory showed a 

positive trend. 

A generalized decrease (49% of observatories) or no change (46% of observatories) 

was found for the long-term 90th percentile (R90N). The central Ebro Valley had the 

greatest concentration of observatories with a significant R90N decrease, as occurred 

with C90. On a seasonal basis, the percentage of observatories with an upward trend in 

R90N never exceeded 7%, and observatories with no change dominated. In winter and 

spring the downward trend in R90N tended to be concentrated in observatories in the 

western part of the study area, whereas an opposite spatial behavior occurred in summer 

and autumn. The contribution of C90 events to annual precipitation (R90T) did not 
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change over most of the study area (62% of observatories), but 29% of observatories 

(most located in central and western parts) showed a significant decrease in the 

contribution of moderately extreme events, and 9% (mainly in the north) showed an 

increase. The percentage of observatories with trends of each sign was maintained 

throughout the different seasons, with few differences in their spatial distribution. 

The index of accumulated rainfall during the five days with heaviest rainfall (R5GD) 

is related to the most intense rainfall events. It remained unchanged at the majority of 

observatories (50%), particularly in the east of the study area. A large number of 

observatories (44%), mainly in central parts, showed a decrease for this index, and only 

6% of observatories showed an upward trend. On a seasonal basis, percentages of 

observatories with different trends did not show noticeable changes relative to the 

annual results. In winter and spring most of the observatories with stationary or upward 

trends were located in the Mediterranean coastal areas, and the contrary occurred in 

summer and autumn. The length of both wet and dry periods (WS, DS) did not change 

at most (60%) observatories. Negative trends in WS occurred at 30% of the 

observatories, and 10% had positive trends. Positive trends in DS occurred at 38% of 

the observatories, and only 5% had negative trends. Some notable differences were 

found in the seasonal analysis. Thus, the annual pattern of WS was very similar in 

winter and spring, but in summer the number of observatories with significant negative 

trends (50%) slightly exceeded the number of observatories that remained unchanged; 

in autumn, 8% of observatories showed negative trends and 19% had positive trends. 

The greatest number of observatories with significant positive trends in DS occurred in 

winter and summer (23 and 31% respectively), and these were located primarily on the 

Mediterranean coast and some parts of the inner Ebro Depression. In autumn, DS did 

not change at 71% of the observatories, decreased at 20%, and increased at 9%. 

 

4.3. Spatial association of trends in daily precipitation indices 

Table 4 shows the results of the cross-tabulation analysis conducted amongst the nine 

daily precipitation indices. The occurrence of significant associations and high 

coefficients of contingency suggests that the trends were closely related. Thus, the 

general decrease in precipitation in the study area appeared to be related to the decrease 

in the average intensity of precipitation (PI) and the general decrease in the frequency 

and magnitude of heavy rainfall events (C90, R90N, R90T and R5GD), and also with 

the increase in the length of dry spells. Despite the general negative trend for the 
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number of wet days (WD) and the duration of wet spells (WS), the spatial distribution 

of trend signs exhibited significant variation, suggesting that trends in precipitation 

amount (P) were unrelated to WD and WS. Thus, coefficients of contingency were quite 

low, and the chi-squared test did not show any statistical significance. Figure 5 

reinforces the results of the cross-tabulation analysis, as it shows a significant linear 

correlation between the spatial pattern of trends (Spearman´s rho coefficients) in P and 

two highly spatially-associated variables (PI and R5GD; Figs 5a and 5b, respectively). 

In addition, there was no evidence of a statistical relationship between P and WD (Fig. 

5c), despite a dominance of negative trends for both indices. 

The spatial patterns of indices reflecting heavy rainfall events (C90, R90, R90T and 

R5GD) were significantly related to PI with high coefficients of contingency. For 

example, there was a very high correlation (r = 0.88) between the spatial patterns of C90 

and PI, and also between C90 and R5GD (Fig. 6). The positive trend in DS appeared to 

be statistically related to a decrease in P and WD. 

Appendix 5 shows the coefficients of contingency from the cross-tabulation analysis, 

calculated on a seasonal basis. The results show that, with minor differences, the spatial 

associations for the annual indices also occurred for the seasonal analysis. 

 

5. Discussion and conclussions 

In this study we analyzed trends in a set of daily precipitation indices for the 

northeastern Iberian Peninsula for the period 1955−2006. The study was based on a 

quality-controlled and homogenized database consisting of 217 observatories. Changes 

in the daily amount and distribution of precipitation have important implications 

because agriculture and water supply are often limited by water availability in the study 

area, and because heavy rainfall events constitute a major natural hazard in the region. 

The main findings were: (i) annual precipitation (P) decreased at the majority (67%) of 

observatories, did not change at 32%, and showed a positive trend at only 1%.  The 

decrease in P was particularly marked in winter and spring, whilst in summer and 

autumn stationary trends dominated; (ii) the number of rainy days (WD) and the 

average precipitation intensity (PI) generally decreased. Most of the negative trends in 

WD occurred in winter and summer, whereas the decrease in PI was particularly intense 

in autumn; (iii) indices related to the frequency, magnitude and contribution of 

moderately heavy precipitation events to total P (C90, R90N, R90T) had negative trends 
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at many observatories, although the majority remained unchanged. Only at a small 

number of observatories did the importance of heavy rainfall events increase with the 

time; (iv) the duration of wet and dry spells remained unchanged at most observatories 

(61% and 57%, respectively), but 30% had negative trends in WS, and 38% had positive 

trends in DS; (v) the spatial and seasonal distribution of trends in the indices varied 

considerably; (vi) statistically significant spatial associations were found between the 

trends for annual precipitation (P) and average daily precipitation intensity (PI). 

However, while many observatories had negative trends in the number of rainy days 

(WD), there was no spatial or significant relationship with trends in P. The cross-

tabulation analysis suggested a strong relationship between the spatial patterns of the 

trends in P and those of C90, R90N and R90T. 

The availability of a dense network of observatories in the region enabled robust 

signals related to the temporal evolution of precipitation indices across the study area to 

be distinguished. Identified patterns were based on locations sharing a common trend 

sign. However, for the majority of indices there were observatories that differed from 

the general trend, and even exhibited an opposite evolution. This may explain why 

studies of the evolution of daily precipitation do not always coincide for southern 

Europe, and even within the study area. A common finding in previous research has 

been a marked decrease in total precipitation in the region. A negative trend in P has 

previously been found for several areas of southern Europe and the Mediterranean basin 

including the maritime Alps (Auer et al., 2007), Italy (Piccareta et al., 2004; Brunetti et 

al., 2006) and Greece (Norrant and Douguedroit, 2006). In the Iberian Peninsula, most 

previous research has pointed to a decrease in precipitation (e.g. Goodess and Jones, 

2002; Rodrigo and Trigo, 2007; González-Hidalgo et al., 2008), and most studies have 

also reported that the largest decreases occur in winter as a consequence of regional 

circulation patterns, particularly in relation to the recent evolution of the NAO, AO and 

WEMO indices (Vicente-Serrano and López-Moreno, 2006; Rodrigo and Trigo, 2007; 

López-Bustins et al., 2008). The strength of the negative trend of winter precipitation in 

the Iberian Peninsula, has been often associated to a marked drying of March 

(González-Hidalgo et al., 2008, Sánchez-Lorenzo et al. 2007). A similar finding was 

obtained for the study area from the analysis of monthly regional series (López-Moreno 

et al., 2008). 

In contrast to the consistency of our findings with those of previous studies with 

respect to the evolution of P, we found different trends in PI and in the magnitude and 
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contribution of heavy precipitation events to total P. Several studies conducted for a 

similar period than our study in the Mediterranean basin reported an increase of PI and 

extreme events (Brunetti et al., 2001; Norrant and Douguedroit, 2006). Goodess and 

Jones (2002) reported that areas of the Iberian Peninsula exposed to Mediterranean 

influences had a tendency towards a lower number of rainy days with higher 

precipitation amounts, in line with the findings of Ramos and Martinez-Casanovas 

(2006), who detected an increase in precipitation intensity at several observatories in 

Catalonia (northeast Spain). In contrast, Rodrigo and Trigo (2007) found that in general 

there was a greater decrease in precipitation intensity than in the number of rainy days. 

Martinez et al. (2007) reported an increase in the contribution of light and moderate 

events to total precipitation, and De Luis et al. (2000) and González-Hidalgo et al. 

(2003) suggested that torrential precipitation events may have diminished in magnitude 

on the Mediterranean coast south of the present study area. Our study showed that 

precipitation intensity at most of the observatories has remained unchanged or has 

decreased with time, and only at a very small percentage of observatories was there a 

significant increase. Similar results were found for C90, R90N, R90T and R5GD, 

indicating a negative trend in the heaviest precipitation events. It is known that 

parameters relating to intense rainfall usually have high spatial and temporal variability, 

especially in the Mediterranean region (García-Ruiz et al., 2000). Thus different and 

even opposing trends were found at adjacent observatories. Reliable results for the 

region can only be obtained with a spatially dense observatory network, as in our study. 

The spatial and seasonal differences found in the evolution of precipitation indices 

have important implications for water management and risk assessment in the region. 

Thus, decreased precipitation was general in the region, but particularly affected the 

Pyrenean headwaters, the main area for generation of runoff in the Ebro Valley in 

winter and spring. These periods are the most humid in that region, and determine the 

water supply for many reservoirs during the dry months (López-Moreno et al., 2004 and 

2008). 

Heavy rainfall events and their contribution to P exhibited a stationary or decreasing 

evolution in the Atlantic areas in winter, and across the Mediterranean coastal area in 

autumn. This indicates that major risks associated with heavy rainfall should not have 

increased during recent decades, as most damaging events occur in winter and autumn 

in the Atlantic and Mediterranean regions, respectively (García-Ruiz et al., 2001). The 

stationary or decreasing trends in the evolution of indices related to heavy rainfall in 
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autumn for the Mediterranean coast contrasts with the evolution of extreme 

precipitation events projected by climate models for the Mediterranean basin (Gao et 

al., 2006), including the study area (López-Moreno and Beniston, 2008). Another 

contrast between model projections and the trends observed in this study was in the 

mean dry spell length, which is predicted to increase in coming decades (Rowell and 

Jones, 2006; López-Moreno et al., 2008). Analysis of the instrumental series did not 

provide any indication that changes in this direction have begun. Such contradictions do 

not place in question the overall validity of climate change projections, since the 

response of precipitation to increasing greenhouse gas emissions is highly non-linear, 

and is also linked to derived shifts in atmospheric circulation patterns (Vicente-Serrano 

and López-Moreno, 2008b). However, further research into the coherences and 

divergences between recent climate trends and model projections may improve the 

assessment of uncertainty associated with future climate conditions and their impact. 
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FIGURE LEGENDS 
 
 
Figure 1. Location of the study area and observatories. 
  

Figure 2. Spatial distribution of average annual values of indices of daily precipitation 
in the study area over the period 1955−2006.  
 

Figure 3. Annual evolution (original and smoothed series) and temporal trends for total 

precipitation P at three selected observatories. 

Figure 4. Signs of trends and percentage change per decade for the nine annual 
precipitation indices in the study area for the period 1955−2006. 
 

Figure 5. Scatter plot of P trends trends vs PI, R5GD and WD trends. 

 

Figure 6. Scatter plot of C90 vs PI and R5GD trends. 

Appendix 1 to 4. As for Fig. 4, but for the winter (from December to February), Spring 

(from March to May), Summer (from June to August) and Autumn (from September to 

November) seasons. 
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Acronym Definitions Unit

P Total precipitation mm 

WD Number of wet days (precipitation >1 mm) days

PI Simple daily intensity (P/WD) mm 

C90 Annual 90th percentile mm 

R90N 
Nº of events with precipitation greater than  long-term 90th 
percentile (P90) 

days

R90T Percentage of total precipitation from events above P90 % 

R5GD Greatest 5-day total precipitation mm 

WS Max Nº of consecutive wet days (precipitation >1 mm) days

DS Max Nº of consecutive dry days (precipitation <1 mm) days
 

Table 1. Acronyms and definition of the nine selected precipitation indices. 
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  WD R90N 

  - О + Total - О + Total 

- 81 56 9 146 98 47 1 146 

О 36 27 6 69 9 53 7 69 

+ 0 1 1 2 0 0 2 2 

P
 

Total 117 84 16 217 107 100 10 217 

   
 Table 2. Contingency between the trend signs of P with those of WD and R90N. 
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Indices Annual DJF MAM JJA SON 

 - o + - o + - o + - o + - o + 

P 68 32 0 58 41 0 42 57 0 46 53 0 20 73 7 
WD 54 39 7 59 38 3 41 52 7 55 43 2 2 72 26 
PI 44 42 14 35 49 16 34 55 11 30 55 15 52 44 3 
C90 41 48 11 26 61 13 28 60 12 28 56 16 39 57 35 
R90N 49 46 5 34 60 6 27 69 4 32 63 5 32 61 7 
R90T 29 62 9 17 74 9 12 76 12 21 65 14 31 62 7 
R5GD 44 50 6 37 60 3 32 66 2 38 59 3 24 69 7 
WS 30 61 9 34 62 4 25 63 12 50 47 3 8 72 19 
DS 5 57 38 4 73 23 0.1 85 14 9 60 31 20 71 9 
 

Table 3. Percentage of observatories with positive (+, α < 0.05), unchanged (o, α < 0.05) and 
negative (−, α < 0.05) trends in precipitation indices. 
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Significance of Chi-squared test Coefficient of Contingency 

 WD PI C90 R90N R90T R5GD WS DS WD PI C90 R90N R90T R5GD WS DS

P o ** ** ** ** ** o * 0.17 0.44 0.43 0.56 0.42 0.51 0.13 0.1
WD  ** ** o * o ** **  0.44 0.33 0.14 0.23 0.08 0.35 0.4
PI   ** ** ** ** * o   0.67 0.56 0.59 0.50 0.19 0.1
C90    ** ** ** o o    0.65 0.64 0.41 0.18 0.1
R90N     ** ** o o     0.65 0.45 0.12 0.1
R90T      ** o o      0.55 0.11 0.1
R5GD       o o       0.11 0.0
WS        o        0.1

** Significance at 95% level; * Significance at 90% level; o lower than 90% (considered as non significant) 
 
Table 4. Significance of Chi-squared test and coefficients of contingency from the cross-
tabulation analysis for the nine daily precipitation indices.  
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Appendix 5. Coefficients of contingency from the cross-tabulation analysis for the 
nine daily indices on a seasonal basis. Bold numbers indicate those spatial 
associations significant at the 95% level, according to the Chi-squared test. 

 
 

 WINTER (DEF) SPRING (MMA) 

 WD PI C90 R90N R90T R5GD WS DS WD PI C90 R90N R90T R5GD WS DS 

P 0.22 0.43 0.46 0.51 0.31 0.62 0.44 0.09 0.5 0.52 0.59 0.49 0.39 0.68 0.18 0.13 

WD  0.21 0.14 0.27 0.12 0.3 0.49 0.47  0.3 0.14 0.19 0.21 0.12 0.47 0.23 

PI   0.68 0.45 0.45 0.49 0.1 0.16   0.67 0.5 0.36 0.54 0.13 0.2 

C90    0.57 0.57 0.47 0.08 0.19    0.56 0.43 0.6 0.15 0.16 

R90N     0.57 0.49 0.22 0.1     0.56 0.59 0.06 0.07 

R90T      0.43 0.21 0.21      0.47 0.13 0.05 

R5GD       0.22 0.11       0.12 0.13 

WS        0.13        0.13 

 SUMMER (JJA) AUTUMN (SON) 

 WD PI C90 R90N R90T R5GD WS DS WD PI C90 R90N R90T R5GD WS DS 

P 0.18 0.39 0.32 0.43 0.22 0.6 0.15 0.2 0.19 0.45 0.44 0.59 0.43 0.67 0.16 0.17 

WD  0.20 0.16 0.08 0.16 0.21 0.35 0.48  0.22 0.1 0.13 0.12 0.15 0.21 0.14 

PI   0.66 0.49 0.52 0.57 0.22 0.2   0.66 0.47 0.55 0.53 0.11 0.2 

C90    0.52 0.59 0.49 0.29 0.19    0.55 0.52 0.61 0.07 0.18 

R90N     0.6 0.54 0.23 0.1     0.64 0.63 0.09 0.17 

R90T      0.45 0.3 0.09      0.6 0.14 0.13 

R5GD       0.12 0.15       0.07 0.12 

WS        0.27        0.15 
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