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ABSTRACT Aging is associated with widespread changes in genome-wide patterns of DNA methylation. Thousands of CpG sites

whose tissue-specific methylation levels are strongly correlated with chronological age have been previously identified. However, the

majority of these studies have focused primarily on cosmopolitan populations living in the developed world; it is not known if age-

related patterns of DNA methylation at these loci are similar across a broad range of human genetic and ecological diversity. We

investigated genome-wide methylation patterns using saliva- and whole blood-derived DNA from two traditionally hunting and

gathering African populations: the Baka of the western Central African rain forest and the 6¼Khomani San of the South African Kalahari

Desert. We identified hundreds of CpG sites whose methylation levels are significantly associated with age, thousands that are

significant in a meta-analysis, and replicate trends previously reported in populations of non-African descent. We confirmed that an

age-associated site in the promoter of the gene ELOVL2 shows a remarkably congruent relationship with aging in humans, despite

extensive genetic and environmental variation across populations. We also demonstrate that genotype state at methylation quanti-

tative trait loci (meQTLs) can affect methylation trends at some age-associated CpG sites. Our study explores the relationship between

CpG methylation and chronological age in populations of African hunter-gatherers, who rely on different diets across diverse ecol-

ogies. While many age-related CpG sites replicate across populations, we show that considering common genetic variation at meQTLs

further improves our ability to detect previously identified age associations.

KEYWORDS DNA methylation; aging; epigenetics; diverse human populations

AGING is a degenerative process that is associated with

changes in many molecular, cellular, and physiological

functions. Research identifying biomarkers associated with

these changes has the potential to generate accurate predic-

tions of both chronological and biological age in humans for

health care and forensic applications. Recent epigenomic

studies have shown that patterns of DNAmethylation change

substantially with chronological age: genome-wide methyl-

ation levels decrease with increasing age, while certain ge-

nomic regions, such as CpG islands, becomemoremethylated

with increasing age (Heyn et al. 2012; Hannum et al. 2013;

Johansson et al. 2013; Teschendorff et al. 2013; Jones et al.

2015). An epigenome-wide study examining .475,000 CpG
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sites found significant age-associated changes in DNA meth-

ylation at almost one-third of sites (Johansson et al. 2013),

demonstrating the extensive and stereotypic effect of aging

on the human epigenome. Many previously proposed molec-

ular biomarkers for aging, including leukocyte telomere

length (Blasco 2007), aspartic acid racemization (Helfman

and Bada 1975), and expression levels of certain genes

(Simm et al. 2008; Li et al. 2011; Holly et al. 2013), can be

challenging for age estimation due to a lack of precision, in-

stability over time, or difficulty in measuring the quantity of

interest (Meissner and Ritz-Timme 2010). In contrast, DNA

methylation values measured from relatively few (from three

to up to a few hundred) age-associated CpG sites (a-CpGs)

have been shown to yield highly precise and accurate esti-

mates of chronological age (Bocklandt et al. 2011; Horvath

2013; Weidner et al. 2014). Continual technological im-

provements, in particular the introduction of the Illumina

InfiniumHumanMethylation450 BeadChip array, have greatly

expanded the scope of epigenetics research. This platform in-

creases the density of assayed CpG sites across the human ge-

nome compared to the older Infinium HumanMethylation27

array, leading to the discovery of several novel potential aging

biomarkers (Garagnani et al. 2012).

Changes in DNA methylation at putative a-CpGs may be

affected both by genetic and environmental factors, in addi-

tion to aging itself. Extrinsic environmental factors such as

smoking, sun exposure, and obesity, for example, are associ-

ated with specific changes in DNA methylation patterns

(Grönniger et al. 2010; Breitling et al. 2011; Almén et al.

2014; Vandiver et al. 2015). Intrinsic factors, such as genetic

background, can also influence patterns of epigenetic aging,

including “baseline” DNA methylation levels at a-CpGs

and the rate of change with age (Bell et al. 2011; Gentilini

et al. 2013; Hannum et al. 2013). Importantly, specific

genetic variants occurring at different frequencies or involving

population-specific gene-environment interactions, can lead to

patterns of DNA methylation that differ between human eth-

nic groups (Fraser et al. 2012; Heyn et al. 2013; Fagny et al.

2015; Galanter et al. 2017) and drive divergent patterns of

epigenetic aging. Few studies have explored epigenetic aging

while also explicitly considering ancestry (but see Zaghlool

et al. 2015 and Horvath et al. 2016), and most previous work

has focused on cosmopolitan populations of European origin

(Hannum et al. 2013; Johansson et al. 2013; Florath et al.

2014). However, it cannot be assumed that age-related DNA

methylation trends identified in one human population will

be the same in other populations. Further validation of po-

tential DNA methylation-based aging biomarkers in cohorts

of diverse ethnic backgrounds is therefore essential before

they can be widely applied in the fields of health care, an-

thropology, and forensics (Meissner and Ritz-Timme 2010).

It is also important to note that different human cell types

exhibit significantly different genome-wide methylation pat-

terns (Illingworth et al. 2008; Rakyan et al. 2008; Byun et al.

2009; Christensen et al. 2009), a factor that affects a-CpGs as

well (Farré et al. 2015).

To explore the impact of genetic ancestry and cell speci-

ficity on epigenetic aging, we measured DNA methylation

at .480,000 CpG sites in saliva and peripheral whole blood

samples from 189 African hunter-gatherer individuals from

two populations: the 6¼Khomani San of the South African

Kalahari Desert and the Baka rain forest hunter-gatherers

(also known as “pygmies”; Verdu and Destro-Bisol 2012) of

the western Central African rain forest. These two popula-

tions diverged early on from the ancestors of all othermodern

humans, and exhibit much greater genomic variation than

other populations whose global DNA methylation patterns

have been assayed so far (Verdu et al. 2009; Veeramah et al.

2012). The 6¼Khomani San, in particular, are among the most

genetically diverse populations in the world (Verdu et al.

2009; Henn et al. 2011; Veeramah et al. 2012). Furthermore,

the 6¼Khomani San and the Baka differ in terms of their nutri-

tional subsistence, ecological environs (semidesert and equa-

torial rain forest, respectively), and physical activity levels

from the widely studied cohorts of cosmopolitan populations.

By usingDNAmethylation data from these populations,we are

able to explore patterns of epigenetic aging across a greater

range of human genetic diversity and test previously published

epigenetic age-prediction models to determine their accuracy

across ancestries and cell types.

Materials and Methods

DNA and ethnographic collection

Saliva was collected from 56 6¼Khomani San individuals

(aged 27–91, median age 62) and 36 Baka individuals (aged

5–59, median age 30) using Oragene DNA self-collection kits

(Supplemental Material, Figure S1). Blood was collected

from 97 additional Baka individuals (aged 16–90 years, me-

dian age 44 years) for a previous study (Fagny et al. 2015)

(Figure S1). DNA samples from the 6¼Khomani San were

collected with written informed consent and approval of

the Human Research Ethics Committee of Stellenbosch Uni-

versity (N11/07/210), South Africa, and Stanford University

(protocol 13829). 6¼Khomani San participant ages were ver-

ified ethnographically on a case-by-case basis. Various docu-

ments, such as birth certificates, wedding certificates, school

records, and other forms of identification (e.g., apartheid

government identification documents), were cross-referenced

to identify any inconsistencies. Local major events, such as the

creation of the Kalahari National Park in 1931, were also used

to verify participants’ life-history stage. DNA samples from the

Baka were collected with informed consent from all partici-

pants and from both parents of any participants under the age

of 18. Ethical approval for this study was obtained from the

institutional review boards of Institut Pasteur, Paris, France

(RBM 2008-06 and 2011-54/IRB/3). Baka participant ages

were determined ethnographically by Alain Froment by com-

paring individuals from a single cohort to one another, and

with reference to major historical events. Baka individual ages

are estimated to be accurate to within 5 years. The Baka saliva
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sample was known to contain nine trios and nine unrelated

individuals.

DNA methylation data generation and data processing

The 97 Bakawhole blood sampleswere previously processed

and published in Fagny et al. (2015), while the 92 saliva

samples were newly generated for this study. DNA extracted

from all samples was bisulfite converted, whole-genome

amplified, fragmented, and hybridized to the Illumina Infin-

ium HumanMethylation450 BeadChip. This array assays

methylation levels at .485,000 CpG sites throughout the

genome through allele-specific, single-base extension of the

target probe with a fluorescent label. The saliva samples

from both populations were assayed together in two

batches, and the blood samples in six batches. Methylation

data from Illumina methylation arrays often exhibit sub-

stantial batch effects; that is, samples from one runmay vary

systematically from the same samples on a different run due

to technical artifacts. To partially account for this, we in-

cluded one 6¼Khomani San individual from the saliva data

set on both runs, and observed that the overall correlation

between b values from the first and second runs was.0.99.

Technical replicates were also included in the whole blood

assay, and the overall correlations of b values between re-

peat individuals were all.0.98. However, these high corre-

lation values do not preclude the presence of significant

batch effects that affect only a subset of the genome, or off-

set b values by a constant factor across the entire genome.

We further corrected for these using principal components

analyses (PCA), described below.

The intensity of fluorescence was used to calculate DNA

methylation levels. We removed probes with a detection

P-value .0.01 in at least one sample, probes that were

found to map to multiple genomic regions or to the sex

chromosomes, or to contain known SNPs; leaving 334,079

sites in the saliva data set and 364,753 sites in the blood

data set for subsequent analysis. Probe SNPs were identi-

fied using the 450K array annotation file published by

Price et al. (2013) and by cross-referencing the genomic

coordinates of our samples’ genotype data and the DNA

methylation microarray probes using bedtools (Quinlan

and Hall 2010). These values were background and color

corrected, and technical differences between type I and

type II probes were corrected by performing quantile and

subset-quantile within-array normalization (SWAN) using

the lumi andminfi R packages (Du et al. 2008; Maksimovic

et al. 2012; Aryee et al. 2014). For a discussion of the

various technical issues inherent in the 450K array design,

see Dedeurwaerder et al. (2013) and Makismovic et al.

(2012). One Baka individual was flagged for having abnor-

mally low bisulfite controls. We conducted PCA separately

on the saliva and blood methylation data sets using the

prcomp function in R (Figure S2). All analyseswere performed

using continuous b values for each CpG site, which range from

0 (indicating that the site is completely unmethylated) to

1 (completely methylated).

SNP genotype data

The DNA samples were genotyped on either the Illumina

OmniExpress, OmniExpressExome,OmniOne,orHumanHap550

SNP array (Henn et al. 2011; Patin et al. 2014; Fagny et al.

2015; Uren et al. 2016). All Baka individuals and 48 of the

56 6¼Khomani San individuals were successfully genotyped.

OmniExpress data from the Baka blood samples was imputed

using the results of the OmniOne genotyping. The data sets

were filtered using a genotyping threshold of 0.95 and aminor

allele frequency threshold of 0.01.

Ancestry inference

We intersected the genotype data generated for the Baka

and 6¼Khomani San with genotype data from African and Eu-

ropean populations (specifically the Biaka pygmies,Mbuti pyg-

mies, Namibian San, southern Bantu speakers, Kenyan Bantu,

Yoruba, French, and Italian) generated by theHumanGenome

Diversity Project on the Illumina HumanHap array (Li et al.

2008). We performed an unsupervised clustering analysis us-

ing ADMIXTURE (Alexander et al. 2009) on the resulting data

set of 254,080 SNPs from 319 individuals to determine their

global ancestry proportions.

Saliva epigenome-wide association study

We used the R package CpGassoc to conduct an epigenome-

wide association study (EWAS) test for the Baka saliva data

(Barfield et al. 2012). Related individuals were assigned a

shared family identity variable, while the nine unrelated in-

dividuals in the cohort were each assigned a unique family

identity. Family identity as a random effect, the second and

fourth DNA methylation principal components (PCs), and

percentage of Bantu ancestry were used as covariates in test-

ing for association with age:

age � bBetaMXBetaM þ bPC2XPC2 þ bPC4XPC4

þ bBantuAncestryXBantuAncestry þ ð1jFamilyIdentityÞ

þ e:

Weused the programEMMAXwith the dosage option to conduct

the EWAS on the 6¼Khomani Sanmethylation data. After remov-

ing the outlier individuals, there were 44 genotyped 6¼Khomani

San individuals in our data set. We generated a Balding–Nichols

kinshipmatrix using genotypedata from these individuals,which

was included in the model to correct for relatedness within the

population. For the 6¼Khomani San analysis, proportions of Eu-

ropean and Bantu ancestry, methyltyping batch, and the first

DNA methylation PC were used as covariates:

age � bBetaMXBetaM þ bBatchXBatch þ bPC1XPC1

þ bEuroAncestryXEuroAncestry

þ bBantuAncestryXBantuAncestry þ ð1jKinshipMatrixÞ þ e:

The combination of PC and historically appropriate ancestry

covariates used in the EWAS was selected to minimize the
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genomic inflation factor (Figure S3). We note that these low

genomic inflation factors were sometimes obtained by includ-

ing PCs that were moderately correlated with age as covari-

ates (Figure S4), which may decrease our power to detect

a-CpGs. By minimizing the genomic inflation factor in this

way, our EWAS analyses are likely to be overly conservative,

especially given that a substantial fraction of the 450K array

sites actually do become differentially methylated with age

(Hannum et al. 2013; Johansson et al. 2013; Steegenga

et al. 2014). CpGassoc was used on the Baka saliva data

set because it allowed family identity to be included as a

random covariate, which produced the lowest overall l.

The genotype kinship matrix did not account as effectively

for the presence of many first-degree relatives in this data

set. We applied a Benjamini–Hochberg correction to the

P-values of both EWAS to identify CpG sites whose meth-

ylation levels vary significantly with age at a false discov-

ery rate (FDR) of 5%.

Blood EWAS

We performed a correction for cell-type composition using the

method described by Houseman et al. (2012), implemented in

the minfi package. This compares the observed DNA methyl-

ation data from the Baka with reference profiles of each cell

type. Proportions of these cell types can vary significantly with

age, and, because each cell type has a distinct methylation pro-

file, it is important to correct for this heterogeneity to avoid

spurious correlations between DNA methylation and age in

whole blood (Jaffe and Irizarry 2014). We used EMMAX

with the dosage option to conduct the analysis on the Baka

whole blood DNA methylation data (Kang et al. 2010). Ge-

notype data were used to generate a Nichols–Balding kin-

ship matrix of all the individuals, which was included in the

model to correct for unknown relatedness within the pop-

ulation. The proportion of Bantu ancestry, methyltyping

batch, first three PCs, as well as the estimated proportions

of five blood-cell types (CD8+ T lymphocytes, CD4+ T lym-

phocytes, B lymphocytes, natural killer lymphocytes, and

monocytes) were used as covariates:

age � bBetaMXBetaM þ bBatchXBatch þ bPC1XPC1 þ bPC2XPC2

þ bPC3XPC3 þ bBantuAncestryXBantuAncestry

þ bCD8þTXCD8þT þ bCD4þTXCD4þT  þ  bBXB  

þ  bNKXNK þ bMonoXMono þ ð1jKinshipMatrixÞ þ e:

The combination of PC and historically appropriate ancestry

covariates used in the EWAS was selected to minimize the

genomic inflation factor (Figure S3). We applied a Benjamini–

Hochberg correction to the Baka blood EWAS P-values to iden-

tify CpG sites whose methylation levels vary significantly with

age at a FDR of 5%.

Meta-analysis

We conducted a meta-analysis by combining P-values from

both 6¼Khomani San and Baka saliva EWAS using Fisher’s

method (Evangelou and Ioannidis 2013). We applied a

Benjamini–Hochberg correction to the Fisher’s P-values

to identify CpG sites whose methylation levels vary signif-

icantly with age at a FDR of 5%.

Hyper- and hypo-methylation with age

Significant a-CpGs that were identified in the saliva meta-

analysis, and which exhibited a concordant direction of

effect in the two cohorts, were divided into hyper- and

hypo-methylated sites. We used the Illumina 450K annota-

tion file to determine the position of each significant a-CpG

site relative to a CpG island or a gene region. To characterize

the background distribution of island and gene region loca-

tions of the 334,079 CpG sites that were used in the saliva

analyses, we drew a set of 10,000 CpG sites and calculated

the percentage of them that fell into each category. We

repeated this sampling 1000 times.

For each of these sites, we fit a linear model of DNA

methylation level with age across the two saliva cohorts

together using the R function lm. We then calculated the

residual SE, multiple r2, and Akaike information criterion

(AIC) value (using the R function AIC) of the linear model.

We then fit a new model after first log transforming chro-

nological age, and recalculated the residual SE, multiple r2,

and AIC value. For every site, we then calculated the differ-

ence in the residual SE, multiple r2, and AIC value between

the linear model and the log-linear model. For all three of

these measures, we performed a t-test to compare sites that

become hyper-methylated with age to those that become

hypo-methylated with age. Note that models are only con-

sidered a significantly better fit if the difference in AIC val-

ues is greater than two (Akaike 1974). However, as our goal

was to examine general trends in the characteristics of

hyper-methylated and hypo-methylated sites, we included

the entire distribution of AIC value differences.

Replication of previous studies

We compiled a comprehensive list of 163,170 significant

a-CpGs published from 17 studies of DNA methylation and

aging conducted in any tissue type (Rakyan et al. 2010;

Teschendorff et al. 2010; Bocklandt et al. 2011; Alisch et al.

2012; Bell et al. 2012; Garagnani et al. 2012; Heyn et al.

2012; Cruickshank et al. 2013; Hannum et al. 2013;

Johansson et al. 2013; Florath et al. 2014; Weidner et al.

2014; Xu and Taylor 2014; Fernández et al. 2015; Marttila

et al. 2015; Zaghlool et al. 2015; Kananen et al. 2016). We

compared the significant a-CpGs from our three EWAS and

the meta-analysis to identify a set of a-CpGs that were unique

to our study.

Age prediction

Weapplied a previously publishedmulti-tissue epigenetic age

calculator to estimate the chronological ages of our sampled

individuals (Horvath 2013). The Horvath calculator accepts

DNA methylation array data as input and outputs a DNA

methylation-based age estimate. We used data sets that were
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not filtered for any probes because the normalization step

of the algorithm would not run with a large quantity of

missing data. We also tested 450K methylation data from

a total of 60 European individuals that were freely avail-

able from the Gene Expression Omnibus (GEO) data re-

pository [GSE30870 (Heyn et al. 2012) and GSE49065

(Steegenga et al. 2014)].

Methylation quantitative trait loci scan

We identified cis-methylation QTLs (cis-meQTLs) in the

Baka blood samples by conducting linear regressions in R

of the methylation value at each of the 346,753 CpG sites

against the genotype of all SNPs that lay within 200 kb

of that site, and had a minor allele frequency of at least

10% in the sample. Significant cis-meQTL associations

were identified by applying a Benjamini–Hochberg correc-

tion to the P-values at a FDR of 1%, as determined by

100 permutations.

Conditional analysis

We performed a conditional association analysis for each

a-CpG with a significant meQTL by including the genotype

state of the associated SNP as an additional covariate in the

model. Because EMMAX cannot handle missing values, and

because some genotype information was missing, we re-

peated the baseline EWAS for the Baka whole blood data

and performed the conditional analysis using CpGassoc,

correcting for all the same covariates, but excluding the

Balding–Nichols kinship matrix. We also performed a per-

mutation analysis by pairing each CpG site with a randomly

chosen meQTL SNP and repeating the conditional EWAS,

where the genotype state of the “false meQTL” was included

as a covariate instead of the “true” one. We permuted CpG-

SNP associations a total of 100 times to build a distribution

of effects of a random meQTL on general age-association

trends.

Data availability

The data used in this article have been submitted to the

European Genome-Phenome Archive (EGA) (www.ebi.ac.uk/

ega/home) and GEO (https://www.ncbi.nlm.nih.gov/geo).

The SNP andmethylation array data for the Baka can be found

under the EGA accession numbers EGAS00001001066 and

EGAS00001002226. The SNP and methylation array data

for the 6¼Khomani San can be found under the GEO super

series GSE99091.

Results

PCA and ADMIXTURE

We performed PCA to determine if there were factors other

than age driving systematic differences in DNAmethylation

profiles. PCA were conducted on the saliva and blood data

sets separately, since these tissues are expected to differ

substantially in their DNA methylation profiles (Byun et al.

2009). Individuals clustered together by batch identity in

biplots of the first and second PCs, demonstrating that

batch effects were the strongest drivers of DNAmethylation

profile differences, as expected (Wilhelm-Benartzi et al.

2013); but neither population identity (for the saliva data

set) nor sex appeared to drive clustering in the first two PCs

(Figure S2). Six 6¼Khomani San and one Baka individual

were excluded from subsequent analyses because their

DNA methylation profiles were extreme outliers. The latter

was previously flagged as unreliable because it had abnor-

mally low methyltyping bisulfite controls. We found a sig-

nificant correlation between some PCs and age: in particular

saliva PC 1 with 6¼Khomani San age, and blood PCs 1 and

2 with Baka age (Figure S4).

Both the Baka and 6¼Khomani San have experienced re-

cent gene flow, to differing extents, from Bantu-speaking

agriculturalists and additionally, for the 6¼Khomani San,

from Europeans (Quintana-Murci et al. 2008; Jarvis et al.

2012; Pickrell et al. 2012; Patin et al. 2014). Since DNA

methylation patterns vary substantially across human pop-

ulations, it is possible that ancestral makeup could also af-

fect patterns of epigenetic aging in admixed individuals

(Fraser et al. 2012; Heyn et al. 2013; Fagny et al. 2015;

Galanter et al. 2017). To account for this, we inferred global

ancestry proportions using ADMIXTURE for all the individ-

uals in our data sets for whom SNP genotype array data

were available (Alexander et al. 2009). Prior work has dem-

onstrated an average ancestry of 6.5% from neighboring

Bantu speakers in the Baka population (Patin et al. 2014), and

an average of 11% for each of Bantu and European ancestry in

the 6¼Khomani San (Henn et al. 2011). We therefore expected

distinct ancestral components corresponding to Pygmy, San,

European, and Bantu-speaking populations in our data set,

and assumed k = 4 ancestries when running the ADMIXTURE

algorithm (Figure S5).

Both the 6¼Khomani San and the Baka populations remain

relatively endogamous, and, coupled with field-sampling

bias, members of extended families are often collected to-

gether. Therefore, we also used the genotype data to generate

Balding–Nichols (Balding and Nichols 1995) kinship matri-

ces for the association analyses of the 6¼Khomani San saliva

and the Baka blood data sets to control for the degree of

relatedness between individuals in subsequent analyses. Ge-

netic relationship matrices have been shown to appropriately

control for stratification in association studies (Kang et al.

2008).

EWAS

We conducted an EWAS of DNA methylation level and chro-

nological age in eachof the three data sets: the 6¼Khomani San

saliva, the Baka saliva, and the Baka blood. We identified

2714 CpG sites in the Baka saliva, 276 sites in the 6¼Khomani

San saliva, and 306 sites in the Baka blood that were signif-

icantly associated with age at an FDR of 5% (Figure 1, Table

S2, Table S3, and Table S4). A total of 188 of these sites

replicated independently in both saliva EWAS and 43 in all

three EWAS (Figure 2).
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Meta-analysis of saliva EWAS

To improve our power to detect significant age associations

in hunter-gatherer saliva, we performed a meta-analysis by

calculating Fisher’s P-values from the P-values of both saliva

EWAS. We identified 3842 CpG sites that were significantly

associated with age at an FDR of 5% in the meta-analysis of

our saliva studies. Of these, 2872 (74.7%) show a hyper-

methylation trend (increasing b value) with age, 894 (23.3%)

show a hypo-methylation trend (decreasingb value)with age,

and 76 (2.0%) showopposite effects in each of the two cohorts

(Table S5). Excluding the 76 discordant a-CpGs, we deter-

mined the location of each of the remaining sites relative to

specific genes, genic features, and CpG islands using the 450K

annotation file available from Illumina. Among these a-CpGs,

2306 (61.2%) fall in CpG islands, 141 in island shelves (3.7%;

86 “North” and 55 “South”), 768 in island shores (20.4%;

444 North and 324 South), and 551 (14.6%) in “open sea.”

When considering all CpG sites assayed in the saliva EWAS,

33.2% of them fall in CpG islands, 9.0% in shelves, 23.6% in

shores, and 34.2% in open sea. Most island a-CpGs showed a

hyper-methylation trendwith age (97.5%),whilemost open-sea

sites showed a hypo-methylation trendwith age (69.5%),which

is broadly in linewith previously reported trends (Figure 3A and

Table 1) (Christensen et al. 2009; Heyn et al. 2012; Johansson

et al. 2013). A total of 2767 a-CpGs were annotated to specific

genes. Among these, we counted the number of sites in each of

the following six genic regions: first exon, 39 untranslated re-

gion (UTR), 59 UTR, gene body, within 1500 bp of the tran-

scriptional start site (TSS), and within 200 bp of the TSS

(Figure 3B and Table 1). To determine if there was a signifi-

cant enrichment of a-CpGs in any annotation category, we

randomly sampled the background set of CpG sites 1000 times

and compared it to our observation. In Table 1, the percentage

point enrichment relative to the background is given in brack-

ets, and one-sided empirical P-values are also shown.

We observed that several a-CpGs exhibited a log-linear

change inmethylation levelwithage,andparticularly inchildren,

as previously reported by Alisch et al. (2012). Interestingly,

we observed this pattern visually more frequently in a-CpGs that

Figure 1 Manhattan plot of EWAS for age-associated CpGs. The 2log10 P-values from the EWAS are plotted against the assayed autosomal genomic

CpGs for (A) the Baka saliva data set, (B) the 6¼Khomani San saliva data set, and (C) the Baka blood data set. All samples were assayed on the Illumina

Infinium HumanMethylation450 BeadChips. The horizontal dashed line in each panel represents the Benjamini–Hochberg-corrected threshold for

significance (FDR of 5%) for each EWAS.
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become hypo-methylated with age. Again excluding the 76 CpG

sites with discordant effects in the Baka and 6¼Khomani San,

we systematically tested this observation by fitting a linear

model to the b values at each of the remaining 3766 sites for

both direct chronological age and a log transformation thereof.

We found that these two classes of sites showed significantly

different distributions of residual SE (P= 1.583 10265) and

multiple r2 (P=2.063102146).Wealsocalculated thedifference

in AIC values between the linear and log-linear models of methyl-

ation level and age (Akaike 1974). We then performed a t-test on

the difference in AIC values for linear and log-linear models and

found, again, that sites that become hyper-methylated with

age are significantly different from sites that become hypo-

methylated (P= 3.583 102129). All three methods yielded

the same general trend: hypo-methylated sites tended to be

better fit by log-linear model (as demonstrated by their gen-

erally higher r2 values, lower residual SEs, and lower AIC

values when fit by a log-linear rather than a strictly linear

model), while hyper-methylated sites tended to be better fit

by linear models (Figure 4).

Replication of previous studies

We sought to determine the independent replication rate of

significant a-CpGs thatwe identifiedby searching the literature

for studies that quantitatively investigate the relationship be-

tween CpG methylation and chronological age. We included

17studiesconductedoneither27or450Karray technologies in

any human tissue (Rakyan et al. 2010; Teschendorff et al.

2010; Bocklandt et al. 2011; Alisch et al. 2012; Bell et al.

2012; Garagnani et al. 2012; Heyn et al. 2012; Cruickshank

et al. 2013; Hannum et al. 2013; Johansson et al. 2013; Florath

et al. 2014; Weidner et al. 2014; Xu and Taylor 2014;

Fernández et al. 2015; Marttila et al. 2015; Zaghlool et al.

2015; Kananen et al. 2016). We found that .93% of the

a-CpGs sites we identified in our analyses were reported in

one of these previous studies. However, we also found

277 a-CpG sites that were uniquely identified in our study

of African hunter-gatherer groups. For each of these 277 sites,

we calculated the Pearson correlation coefficient between b

value and chronological age and also fit a linear model to de-

termine the slope and trend of the association (Table S1). To

further narrow down this list to the most potentially useful

aging markers, we focused on sites that either exhibited a

high Pearson correlation value (absolute value .0.7) and

a steep slope (absolute value .0.002 b value per year);

16 of these 277 a-CpGs met at least both of these criteria

(Figure S6).

The site cg16867657, annotated to the promoter of

ELOVL2, is significantly associated with chronological age

in all three data sets, across populations and tissues. This

site was first identified as a potential biomarker for age by

Garagnani et al. (2012) and replicated in subsequent epige-

netic aging studies of additional cohorts of European, His-

panic, and Arab descent (Hannum et al. 2013; Johansson

et al. 2013; Florath et al. 2014; Zaghlool et al. 2015). By

observing a signal of age association independently in three

African cohorts following different lifestyles, and using

DNA sourced from two different tissue types, we further

validate the use of cg16867657 methylation as a true bi-

ological marker for age across the full spectrum of human

diversity. We observe that the pattern of age-related meth-

ylation change is also remarkably congruent across blood

and saliva (Garagnani et al. 2012; Zbieć-Piekarska et al.

2015).

Figure 2 Scatterplots of b value vs. age for a-CpGs.

Methylation levels as b values, which are continu-

ous from 0 (indicating that the site is completely

unmethylated) to 1 (indicating that the site is com-

pletely methylated), are plotted against age for

three of the a-CpGs that were identified as signifi-

cant in (A) all three EWAS, (B) only the two saliva

EWAS, and (C) only the Baka blood EWAS. b values

plotted here are not adjusted for the covariates in-

cluded in each EWAS.
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In the saliva data sets, we observed a significant age-

associated hypo-methylation signal in the TSS of the gene

D-aspartate oxidase (DDO) at cg02872426 in both African

populations (Figure 2B). This site was previously identified

in a study of whole blood of Arab individuals (Zaghlool et al.

2015) and other CpG sites annotated to DDO have also been

previously associated with age (Ali et al. 2015; Fernández

et al. 2015; Zaghlool et al. 2015). We identified additional

sites (cg00804078, cg06413398, and cg07164639) in the

TSS of the gene DDO, which exhibit hypo-methylation with

age at a relaxed significance threshold of P , 0.001 in all

three data sets (Figure S7).

Testing an epigenetic aging predictor

DNAmethylation can be affected by genetic variation, as well

as environmental and lifestyle variation during development.

We therefore asked how accurately existing age-prediction

models, developed primarily on DNA methylation data de-

rived from individuals of European ancestry, would perform

on our African data sets. We applied a multi-tissue age pre-

dictor developed by Horvath (2013) to all three data sets,

hereafter referred to as the “Horvath model” (Figure 5A).

This model uses a linear combination of methylation infor-

mation from 353 sites, termed “clock-CpGs,” to produce an

estimate of age. The DNA methylation-age estimates for the

Baka saliva were very accurate, with a median absolute dif-

ference of 3.90 years between the true and estimated ages

(r = 0.94), and the estimates for the 6¼Khomani San saliva

data set had an overall greater median absolute difference of

6.01 years (r = 0.90) (Figure 5B), typically underestimating

the age in the older individuals. To investigate whether the

reduction in accuracy was specific to the 6¼Khomani San, we

applied the age predictor to European DNA methylation data

sets from blood [GEO data sets GSE30870 (Heyn et al. 2012)

and GSE49064 (Steegenga et al. 2014)]. We observed a sim-

ilar underestimation of age in older Europeans, suggesting

that this observation in adults.50 years is not indicative of a

6¼Khomani San-specific slowdown in the epigenetic aging

rate (Figure 5C).

Finally, we observed a systematic overestimation of age

from the DNA methylation profiles of Baka blood (median

absolute difference of 13.06 years, r=0.81) (Figure 5D). It is

important to note that the correlation between chronological

and estimated age remains high, and the discrepancy be-

tween the two may be indicative of technical artifacts or

batch effects in the application of the arrays. However, it is

not possible to rule out a biological driver that causes Baka

blood to exhibit increased epigenetic age under the Horvath

model (see Discussion).

meQTLs in age-related CpG sites

Given the observed differences in accuracy of age estima-

tion in different human populations, we sought to further

understand why age-related epigenetic patterns might

not replicate across study cohorts. Even at lower signifi-

cance thresholds, success in reconciling reported epige-

netic signals of aging in different studies has been mixed

(Hannum et al. 2013). Indeed, several age-related CpG

sites that have been reported previously did not replicate

in our populations. There are many potential reasons for

this, including our smaller sample sizes, and the compar-

ison of different tissue types which may exhibit tissue-

specific patterns of methylation with age. However, it is

also possible that intrinsic genetic factors may drive these

differences.

To explore this, we tested whether meQTLs could drive

variation in epigenetic aging patterns. meQTLs are genetic

variants that are statistically associated with methylation

levels at certain CpG sites (Smith et al. 2014). We scanned

all CpG sites in the Baka blood data set for cis-meQTL asso-

ciations, by fitting a linear model of methylation level by ge-

notype state using chronological age, sex, and blood cell-type

proportions as covariates. We identified 11,559 meQTLs at

an FDR of 1% in the Baka blood data set. We also compiled a

list of 18,229 a-CpGs identified in previous studies of blood

methylation (Rakyan et al. 2010; Teschendorff et al. 2010;

Alisch et al. 2012; Bell et al. 2012; Garagnani et al. 2012;

Heyn et al. 2012; Cruickshank et al. 2013; Hannum et al.

2013; Florath et al. 2014; Weidner et al. 2014; Xu and Taylor

2014; Marttila et al. 2015; Zaghlool et al. 2015; Kananen

et al. 2016). Interestingly, there is an overlap of 901 CpG sites

that were identified as being associated with age in Euro-

peans and are also associated with a specific cis genetic var-

iant in the Baka. This is more overlap than would be expected

Figure 3 Locations of a-CpGs according to genic

features and hyper- and hypo-methylation trends.

Stacked bar plots indicate counts of a-CpGs and

their physical positions relative to (A) CpG islands

and (B) genes. In cases where a single CpG site was

annotated to multiple gene regions, each region

was counted independently. Annotations were

based on the probe information file provided from

Illumina. A total of 76% of a-CpGs become hyper-

methylated (increase in b value) with age, and 78%

of these lie in CpG islands. By contrast, only 6.5%

of a-CpGs that become hypo-methylated (decrease

in b value) with age lie in CpG islands
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by chance, as determined by randomly sampling and inter-

secting 18,229 CpG sites with the 11,559 significantmeQTLs;

after 10,000 simulations, the maximum overlap obtained un-

der this null scenario was 662 (P , 0.001). Only 8 of these

901 sites were among the 306 significant a-CpGs identified in

our EWAS of Baka blood methylation.

We performed a conditional analysis to determine if

incorporating SNP genotype information recovers signifi-

cant age association in the Baka at these CpG sites. For each

of these 901 CpG sites, we included the genotype state at

the associated meQTL as an additional covariate and re-

peated the association analysis. We also permuted all the

CpG-SNP associations by assigning each of the 901 CpG

sites a SNP selected at random from among the 11,559

identifiedmeQTLs, and repeating this 100 times. In the true

conditional analysis,we observed anoverall upward shift in

the distribution of 2log10 P-values when meQTL-specific

genotype data were included (Figure 6A), indicating that

incorporation of the meQTL genotype generally improves

the age-methylation association for these CpG sites (mean

increase in 2log10 P-value after conditional analysis of

0.15); this increase was not observed in our permutation

analysis when a random SNP covariate was included

(mean difference in 2log10 P-value of 20.008) (Figure

6B). More specifically, 39 of the 901 CpGs (4.3%) that

were not significantly associated with age at an FDR of

5% in the original EWAS recovered significance when true

meQTL genotype was included, while this occurred only

0.17% of the time in the permutation analysis. We observe

that a small number (15 out of 901, 1.7%) of CpGs de-

crease in significance by over one order of magnitude,

which may be due to meQTL genotypes that are spuriously

correlated with age in the discovery EWAS. We also ob-

serve that 6.1% of CpGs increase in significance by over

one order of magnitude under the conditional analysis,

while only 0.023% of CpGs increase by as much in the

permutation analysis, and nine CpG sites (1%) become

more significantly associated with age by over two orders

of magnitude under the conditional analysis (Figure 7).

These results suggest that, for some CpG sites, the genotype

state of the true meQTL provides additional information for

characterizing the relationship between methylation level

and chronological age.

Discussion

In this study, we investigated patterns of aging in the epige-

nome across an extended range of human genetic diversity by

characterizing the DNA methylation profiles of saliva and

whole blood tissues from two contemporary African hunter-

gatherer populations using a large, comprehensive, genome-

wide methylation array. We replicate several of the strongest

signals of age-related DNA methylation change reported in

previous studies of other populations, including cg16867657

in the gene ELOVL2, which supports the utility of this gene

as a predictive marker of chronological aging in all humans

as was previously suggested by Garagnani et al. (2012).

We further demonstrate that this a-CpG replicates strongly

in saliva, identifying it independently in both our hunter-

gatherer data sets. ELOVL2 is part of a family of enzymes

that are responsible for elongating polyunsaturated fatty

acids, whose levels have been shown to decline with chro-

nological age in human skin (Kim et al. 2010). It is possible

that the continuous life-long increase in methylation of

cg16867657 and the ELOVL2 promoter in general contrib-

utes to this trend. It is important to note that this aging

biomarker has not been identified in skin tissue itself, but

rather in whole blood and white blood cells (Johansson

et al. 2013; Steegenga et al. 2014; Vandiver et al. 2015;

Zaghlool et al. 2015).

Table 1 Enrichment of CpG probe annotation categories relative to background

All sites Hypo-methylated sites Hyper-methylated sites

Percentagea P-valueb Percentagea P-valueb Percentagea P-valueb

Relative to CpG islands

Open sea 14.6 (219.6) ,0.001 42.9 (+8.7) ,0.001 5.8 (228.4) ,0.001

North shelf 2.3 (230.9) ,0.001 6.6 (226.5) ,0.001 1.1 (232.1) ,0.001

South shelf 1.5 (23.3) ,0.001 4 (20.8) ,0.001 0.8 (24) ,0.001

North shore 11.8 (21.5) ,0.001 22 (+8.7) ,0.001 8.6 (24.7) ,0.001

South shore 8.6 (+4.4) ,0.001 17.9 (+13.7) ,0.001 5.4 (+1.2) ,0.001

Island 61.2 (+50.8) ,0.001 6.6 (23.8) ,0.001 78.3 (+67.9) ,0.001

Relative to gene regions

First exon 12.2 (+4.8) ,0.001 3.6 (23.8) ,0.001 14.6 (+7.2) ,0.001

39 UTR 2.5 (21) ,0.001 3.9 (+0.4) ,0.001 2.1 (21.4) ,0.001

59 UTR 11.3 (20.8) 0.002 9.8 (22.3) ,0.001 11.7 (20.4) 0.087

Body 25.1 (26.2) ,0.001 29.9 (21.3) ,0.001 24.3 (27) ,0.001

TSS 1500 14.7 (20.5) 5.0 23.7 (+8.5) ,0.001 12.2 (23) ,0.001

TSS 200 11.3 (20.3) 0.134 6.8 (24.8) ,0.001 12.6 (+1) 0.001

No gene 22.9 (+4) ,0.001 22.3 (+3.4) ,0.001 22.6 (+3.7) ,0.001

a The percentage of CpG sites that were annotated to a specific category is shown, and in brackets the percentage point difference compared to the background distribution,

determined by 1000 simulations, is shown.
b One-tailed empirical P-values from 1000 simulations.
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We identified a strong hypo-methylation trendwith age in

the gene DDO, particularly in saliva tissue. The most signif-

icant DDO-annotated CpG site from our study, cg02872426,

was found to be significantly age-related in a previous study

of an Arab population (Zaghlool et al. 2015). The enzyme

encoded by DDO deaminates D-aspartic acid, the enantio-

mer of L-aspartic acid, which is the optical form naturally

synthesized by biological organisms (D’Aniello et al. 1993;

Ritz-Timme and Collins 2002). Nonenzymatic accumulation

of D-aspartic acid is age dependant in living tissues, and is so

pronounced in tissues with low turnover that it has been

proposed as a biomarker for aging (Helfman and Bada

1975). The role ofDDO is to eliminate this abnormal version

of aspartic acid in proteins and counteract the racemization

process and, interestingly, its levels increase in the liver and

kidneys with age (D’Aniello et al. 1993). The hypo-methylation

trend we observe in the DDO promoter is compatible with

these observations and previous age-related DNA methyl-

ation studies, and suggests a potential mechanism by which

DDO expression levels are regulated throughout an organism’s

lifetime. Our observations further suggest that the hypo-

methylation of DDO, which may be related to its continued

upregulation throughout life, is protective against the ef-

fects of age-accumulated protein damage and facilitates

“healthy” aging.

Aparallel can bedrawnbetweenDNAmethylation atDDO

and telomerase reverse transcriptase (TERT), their tran-

scriptional regulation, and their function as biomarkers of

aging. Shortened telomere length in lymphocytes, a com-

monly used indicator of biological age, is associated with

decreased telomerase levels (Blasco 2007). Almén et al.

(2014) observe hyper-methylation of TERT with age, and

speculate that this epigenetic trend is what ultimately un-

derlies the observed trend of telomere shortening with age.

Age-related changes in DDO methylation may influence

gene transcription, but unlike the relationship with TERT

methylation and telomere shortening, increased levels of

DDO in older individuals would counteract pathogenic ac-

cumulation of abnormal protein.

We also identify 277 significant a-CpGs across three

EWAS and a meta-analysis that have not, to our knowledge,

been reported in any previous study of DNAmethylation and

aging. Of these, 16 have high correlation coefficients or

strong regression between methylation level and age. All

but 12 of these are absent from the 27K array and therefore

could not be identified in studies using only that technology.

However, there exist other difficulties in replicating our

results between populations and tissue types, even within

our own study. For example, the site cg26559209 exhibits a

clear hypo-methylation trend in saliva, but a slight hyper-

methylation trend in whole blood (Figure S6). This may

indicate a tissue-specific pattern of epigenetic aging that

is further complicated by the cell-type heterogeneity of

whole blood, which, despite bioinformatic correction algo-

rithms, could introduce noise to the aging signal at cer-

tain a-CpGs. We also note that many of our novel a-CpGs

change only slightly in methylation level over time. The

aging signal at these sites may be too weak to be consis-

tently detectable in other studies, or they may be false

positives in our study.

We replicate general trends in the genomic features of

a-CpGs, such as the differences in the CpG-island context of

hyper-methylated and hypo-methylated classes of sites. Pre-

vious work on methylation and aging in pediatric cohorts

found that dramatic changes in methylation patterns occur

during childhood, and that most a-CpGs, both hyper- and

hypo-methylated, are better modeled by a log-linear relation-

ship between b value and age (Alisch et al. 2012). In our

study, the analysis of Baka children allowed us to observe a

similar pattern. However, we also found that hypo-methylated

a-CpGs were significantly better fit by log-linear models than

were hyper-methylated a-CpGs. Taken together, this suggests

Figure 4 Evaluating the fit of log-linear vs. linear models of methyl-

ation level and age to hyper- and hypo-methylated a-CpGs. Each of

the 3766 a-CpGs that were identified in the saliva meta-analysis was

fit with both a linear and log-linear model of age with methylation

level. The distribution of the differences in (A) residual SE, (B) corre-

lation coefficient, and (C) AIC values between the linear model and

the log-linear model are shown. The means of the distributions are

indicated by dashed vertical lines of the same color. The linear model is

a better fit for the relationship between methylation and age when

differences in residual SE are large and positive, and when differences

in correlation coefficient and AIC value are large and negative. By all

three measures, a-CpGs that hyper-methylate with age (orange) are

better fit by a linear model, and a-CpGs that hypo-methylate (green)

by a log-linear model.
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that hyper- and hypo-methylated a-CpGs in general are af-

fected differently by aging, and that different biological mech-

anisms may underlie these epigenetic modifications. It has

been generally accepted that the substantial changes in

DNA methylation that occur over an organism’s lifetime are

mainly a signal of dysregulation of the epigenetic machinery,

which ultimately underlies an individual’s age-elevated risk

for cellular damage and cancer (Jaenisch and Bird 2003;

Teschendorff et al. 2013). In particular, the pervasive

hypo-methylation with age of CpG sites that lie outside

of CpG islands has been highlighted as an indication of this

biological breakdown. Lifestyle and environmental factors

can also affect the trajectory of changes in genomic methyl-

ation and can potentially compound or mitigate this risk (Li

et al. 2011; Almén et al. 2014; Vandiver et al. 2015; Zannas

et al. 2015). However, there are also certain regions of

the genome where epigenetic changes appear to be tightly

regulated throughout life, despite environmental and

stochastic variation, and we speculate that these may be

protective against the detrimental effects of aging or other-

wise adaptive. We hypothesize that DDO is an example of

a gene that is regulated in such a manner throughout an

individual’s life. This is in agreement with the recently

proposed conceptual distinction made by Jones et al.

(2015) between random “epigenetic drift” that may occur

due to loss of regulatory control with age, and the “epige-

netic clock” that is much more precisely correlated with

age in humans.

Figure 5 Scatterplots of true age against estimated age as predicted by the Horvath model. Chronological age reported by individuals is plotted

against estimated ages generated from epigenetic data using Horvath’s age-prediction model (Horvath 2013). All four panels show the age

estimates for the Baka, 6¼Khomani San, and European blood and saliva data sets, colored to emphasize different features of the data. Blood

and saliva tissue sources are indicated by: and •, respectively. (A) All data points, colored based on population identity. (B) Only estimates for

African saliva data are colored, all others are grayed out. (C) Only estimates for individuals whose true age is 50 or more, except for the Baka

blood data, are colored. (D) Only estimates for Baka blood are colored. The dashed line represents perfectly accurate prediction of chrono-

logical age.
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We tested the Horvath model of epigenetic-age prediction

built on 353 clock-CpGs, which were selected only from sites

present on both the 27 and 450K arrays, and was trained

primarily on European tissue methylation data sets (Horvath

2013). This model was also tested on chimpanzees in an effort

to demonstrate its wide applicability to all humans, and was

found to produce accurate estimates in this closely related

species, particularly from whole blood where the correlation

between chronological and predicted age was 0.9 and the

median error was 1.4 years (Horvath 2013). However, this

type of validation does not account for the possibility of vari-

ation in DNA methylation profiles among diverse human pop-

ulations, potentially resulting from divergent selection on

meQTLs or unique environmental or nutritional factors.

We found that the Horvath model does not predict age

accurately in our Baka whole bloodmethylation data set, and

it yields an inflated estimate of epigenetic age. It has been

previously observed that specific populations and cohorts

often exhibit an offset between chronological and epigenetic

age when using this algorithm (Marioni et al. 2015; Horvath

et al. 2016). It is unclear what causes this discrepancy, but

epigenetic age can be used as a proxy for biological age to

predict longevity and health outcomes (Marioni et al. 2015;

Horvath et al. 2016). Pygmies, such as the Baka, who reside

in tropical jungles are known to have lower than average life

expectancies. This has caused some to hypothesize that their

small body size, earlier cessation of growth, and hastened

fertility schedules are driven by developmental adaptations

that maximize fitness under the high mortality rates that

these populations experience (Migliano et al. 2007). There-

fore, it is possible that the DNA methylation profiles of Baka

whole blood are reflecting true increases in biological age

compared to European whole blood.

We also considered alternative explanations for the

inflated age estimates of this cohort. We rely on self-reported

age in this study, and although it can often be challenging to

determine true chronological age in the field, this does not

appear to be a driving cause of the inflation observed in Baka

blood, as saliva-derived DNA methylation profiles from the

samepopulationyieldhighlyaccurateestimatesofage.As these

DNA methylation arrays were run in several batches and

separately from our saliva data sets, we considered that this

result might be due to a technical artifact. We explored addi-

tional preprocessing pipelines and ComBat batch correction,

but could not eliminate the overestimation effect. Ultimately,

the overestimationof age of the Bakawhole blood cohort could

not be attributed to any particular factor. We also could not

speculate on the reason that this pattern is not observed in

saliva. These observations warrant further investigation to

better understand their biological bases and consequences

for longevity and health in this population.

We found that methylation levels at 901 previously report-

ed a-CpGs are also significantly associated with the genotype

state at a cis genetic variant. Only eight of these are also

significant a-CpGs in our study, and we demonstrate that

variation at the associated meQTL is a significant explanatory

factor for this lack of replication. By performing a conditional

analysis, which accounts for the genotype state of the meQTL,

we were able to recover significant age association in.4% of

these CpG sites. For nine CpG sites, including the genotype

Figure 6 Conditional analysis of meQTL-associated a-CpGs. (A) The 2log10 P-values from an EWAS on Baka blood are plotted against the 2log10
P-values from a conditional analysis in which an meQTL genotype state was included as an additional covariate for 2842 a-CpGs. (B) The distribution of

effects of the conditional analysis are depicted as the difference in 2log10 P-values before and after conditional analysis. The orange points and bars

represent the results of the conditional analysis. The gray points and bars represent the results of 100 permutations of the conditional analysis where the

CpG-meQTL associations were randomized.
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state at the meQTL increases the statistical age association

by over two orders of magnitude (Figure 7). These sites may

prove to be excellent candidates for aging biomarkers or

components of an epigenetic age predictor when used in

tandemwith SNP data, as many of them exhibit large changes

in b value and strong correlations with age. The results from

our conditional analysis also offer an explanation for the

difficulty in replicating a-CpGs from one study to another,

namely that differences in the degree of genetic variation at

meQTLs confounds the consistent identification of a-CpGs

across cohorts, both between and within human popula-

tions. Identifying genetic variants that affect a-CpGs is a

challenge because the noise introduced by this genetic var-

iability makes it difficult to identify signals of age-related

changes in methylation using standard statistical methods.

The approach we use here, which identifies meQTLs at all

assayed CpG sites in one cohort and finds overlap with

a-CpGs identified in a separate cohort, makes it possible to

identify these interactions.

In this study of African hunter-gatherer DNA methylation

patterns, we demonstrate that CpGmethylation changeswith

age are strongly conserved at specific a-CpGs across geneti-

callydiversehumanpopulationsandacross tissues, andcanbe

confirmed as reliable and universal biomarkers for human

aging. We identify 277 novel a-CpGs, some of which could be

useful aging biomarkers in these populations.Wealso observe

that genetic variation in a population, particularly atmeQTLs,

can result in variation in patterns of age-related differential

DNA methylation. This variation, if uncharacterized or un-

accounted for in epigenetic age-prediction algorithms, can

lead to poor estimates of age in different cohorts and pop-

ulations. On the other hand, this variation can also be lever-

aged to improve the precision of age prediction. We conclude

that DNA methylation patterns at a-CpGs constitute a prom-

ising suite of molecular biomarkers for age across diverse

human groups, and that further characterizing these patterns

in genetically and ecologically diverse cohorts will facilitate

continued improvements in epigenetic age prediction.

Figure 7 Scatterplots of a-CpGs with associated meQTL genotype states. Scatterplots of b value and age are shown for the nine CpG sites for which

age association improves (i.e., P-value decreases) by over two orders of magnitude when SNP genotype information from a known meQTL is accounted

for in the EWAS. Individuals are colored by their genotype (homozygous reference, alternative, or heterozygous) state, demonstrating genotype-specific

trends between methylation and age exist at these CpG sites. b values plotted here are not adjusted for the covariates included in each EWAS.
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