and aligned largely to WHO's joint statement. Policies were examined rather than performance. Future work should include ongoing monitoring of changes to funders' policies and adherence to these policies by trialists, as recommended by WHO.

Nicholas J. DeVito, MPH
 Lisa French, MBiolSci
 Ben Goldacre, MBBS

Author Affiliations: EBM Datalab, University of Oxford, Oxford, United Kingdom.
Accepted for Publication: February 26, 2018.
Corresponding Author: Ben Goldacre, MBBS, EBM Datalab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom (ben.goldacre@phc.ox.ac.uk).
Author Contributions: Dr Goldacre had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: DeVito, Goldacre.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: DeVito, Goldacre.
Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: All authors.
Obtained funding: Goldacre.
Administrative, technical, or material support: All authors. Supervision: Goldacre.
Conflict of Interest Disclosures: All authors have completed the ICMJE Form for Disclosure of Potential Conflicts of Interest. Dr Goldacre has received research funding from the Laura and John Arnold Foundation, Wellcome Trust, the National Health Services National Institute for Health Research School of Primary Care Research, Oxford Biomedical Research Centre, the Health Foundation, and the World Health Organization; he also receives personal income from speaking and writing for lay audiences on the misuse of science. Mr DeVito and Ms French report receiving grant funding from the National Institute for Health Research and Wellcome Trust to their institution and being employed on Dr Goldacre's grants from the Laura and John Arnold Foundation and the Health Foundation.
Funding/Support: This work was funded by a grant from the Laura and John Arnold Foundation.
Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Additional Contributions: We thank Kerstin Frie, MSc (University of Oxford), Maria Vazquez Montes, PhD (University of Oxford), Philippe Ravaud, MD, PhD (Inserm U1153), Rossella Salandra, MEng (Imperial College London), Yaling Yang, PhD (University of Oxford), and Naohiro Yonemoto, MPH (Yoshidakonoe, Kyoto University), for their voluntary assistance in conducting non-English language policy searches. No compensation was provided for their assistance.
Additional Information: All underlying data, including data on all individual funders, are available at https://figshare.com/s/276f9dcOb37d8ecdOab0.

1. Meerpohl JJ, Schell LK, Bassler D, et al. Evidence-informed recommendations to reduce dissemination bias in clinical research. BMJ Open. 2015;5(5):e006666.
2. Moher D, Glasziou P, Chalmers I, et al. Increasing value and reducing waste in biomedical research. Lancet. 2016;387(10027):1573-1586.
3. Goldacre B, Lane S, Mahtani KR, et al. Pharmaceutical companies' policies on access to trial data, results, and methods. BMJ. 2017;358:j3334.
4. World Health Organization. Joint statement on public disclosure of results from clinical trials. http://www.who.int/ictrp/results/ICTRP_JointStatement _2017.pdf. Accessed January 18, 2018.
5. Viergever RF, Hendriks TCC. The 10 largest public and philanthropic funders of health research in the world. Health Res Policy Syst. 2016;14:12.
6. Nasser M, Clarke M, Chalmers I, et al. What are funders doing to minimise waste in research? Lancet. 2017;389(10073):1006-1007.

Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016

Obesity prevalence has been increasing since the 1980s among adults, but among youth, prevalence plateaued between 20052006 and 2013-2014. ${ }^{1,2}$ We analyzed trends in obesity prevalence among US youth and adults between 2007-2008 and 2015-2016 in order to determine recent changes.

Methods | The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional survey with a complex, multistage probability design that represents the civilian, noninstitutionalized population with a response rate of 75.4% in 2007-2008 and 58.7\% in 2015-2016. ${ }^{3}$ Participants 18 years or older provided written consent, youth aged 7 to 17 years provided written assent, and parental permission was obtained in writing for youth younger than 18 years. NHANES was approved by the National Center for Health Statistics research ethics review board. Standardized measurements of weight and height were obtained. ${ }^{3}$

Among adults aged 20 years and older, obesity was defined as a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or more and severe obesity was defined as a BMI of 40 or more. ${ }^{4}$ Among youth aged 2 to 19 years, obesity was defined as a BMI at or above the 95th percentile of sex-specific BMI-for-age and severe obesity was defined as a BMI at or above 120% of the 95th percentile. ${ }^{1}$ Pregnant females were excluded.

Prevalence and 95% CIs of obesity and severe obesity were estimated overall ${ }^{5}$ and stratified by sex and age (2-5, 6-11, $12-19,20-39,40-59$, and ≥ 60 years). Linear and quadratic trends overall and stratified by sex and age were examined in regression models with 2 -year survey cycles modeled as an orthogonal polynomial and in adjusted models (including survey cycle, sex, age, race/Hispanic origin [non-Hispanic white, nonHispanic black, Hispanic, or other], education [high school graduate or less, some college, and college graduate; education of household head for youth], and, among adults, smoking status [never, former, or current smoker]) to determine if trends could be explained by these factors. Interactions between survey cycle with sex and age were tested among youth and adults separately to supplement stratified analyses and were not significant. A 2 -sided P value of .05 was used to assess statistical significance.

Statistical analyses accounted for the complex survey design, including examination sample weights, which adjusted for nonresponse and took into account loss between the screener and interview and between the interview and the examination. Analyses were conducted using R (R statistics), version 3.4.1 ${ }^{6}$; SAS (SAS Institute), version 9.4; and SUDAAN (RTI International), version 11.0.

Results | Data from 16875 youth (Table 1) and 27449 adults (Table 2) were analyzed. Among youth, obesity prevalence was 16.8% (95% CI, $14.2 \%-19.8 \%$) in 2007-2008 and 18.5% (95% CI, $15.8 \%-21.3 \%$) in 2015-2016. Based on the unadjusted model, there were no significant linear trends in the prevalence of obesity or severe obesity overall, by sex or age

Table 1. Trends in Prevalence of Obesity and Severe Obesity Among US Youth Aged 2 to 19 Years, by Sex and Age Group, 2007-2008 to 2015-2016 ${ }^{\text {a,b }}$

	2007-2008		2009-2010		2011-2012		2013-2014		2015-2016		P Value for Trend ${ }^{\text {c }}$	
	No. of Participants	\% (95\% CI)	Linear	Quadratic								
Obesity ${ }^{\text {d }}$												
Overall	3249	$\begin{aligned} & 16.8 \\ & (14.2-19.8) \end{aligned}$	3408	$\begin{aligned} & 16.9 \\ & (15.4-18.4) \end{aligned}$	3355	$\begin{aligned} & 16.9 \\ & (14.8-19.2) \end{aligned}$	3523	$\begin{aligned} & 17.2 \\ & (14.9-19.6) \end{aligned}$	3340	$\begin{aligned} & 18.5 \\ & (15.8-21.3) \end{aligned}$. 35	. 53
Boys	1701	$\begin{aligned} & 17.7 \\ & (14.8-20.9) \end{aligned}$	1777	$\begin{aligned} & 18.6 \\ & (16.4-21.1) \end{aligned}$	1713	$\begin{aligned} & 16.7 \\ & (13.8-19.8) \end{aligned}$	1794	$\begin{aligned} & 17.2 \\ & (14.6-20.1) \end{aligned}$	1696	$\begin{aligned} & 19.1 \\ & (15.6-23.0) \end{aligned}$. 78	. 43
Girls	1548	$\begin{aligned} & 15.9 \\ & (12.8-19.4) \end{aligned}$	1631	$\begin{aligned} & 15.0 \\ & (13.3-16.9) \end{aligned}$	1642	$\begin{aligned} & 17.2 \\ & (14.7-19.9) \end{aligned}$	1729	$\begin{aligned} & 17.1 \\ & (13.8-20.8) \end{aligned}$	1644	$\begin{aligned} & 17.8 \\ & (15.3-20.6) \end{aligned}$. 17	. 86
2-5 y	853	$\begin{aligned} & 10.1 \\ & (7.7-12.9) \end{aligned}$	903	$\begin{aligned} & 12.1 \\ & (9.8-14.8) \end{aligned}$	871	$\begin{aligned} & 8.4 \\ & (5.8-11.7) \end{aligned}$	843	$\begin{aligned} & 9.4 \\ & (6.8-12.6) \end{aligned}$	814	$\begin{aligned} & 13.9 \\ & (11.6-16.5) \end{aligned}$. 20	. 04
6-11 y	1197	$\begin{aligned} & 19.6 \\ & (17.1-22.4) \end{aligned}$	1213	$\begin{aligned} & 18.0 \\ & (15.9-20.3) \end{aligned}$	1268	$\begin{aligned} & 17.7 \\ & (14.4-21.5) \end{aligned}$	1294	$\begin{aligned} & 17.4 \\ & (13.8-21.4) \end{aligned}$	1268	$\begin{aligned} & 18.4 \\ & (14.9-22.3) \end{aligned}$. 52	. 35
$12-19$ y	1199	$\begin{aligned} & 18.1 \\ & (14.6-22.0) \end{aligned}$	1292	$\begin{aligned} & 18.4 \\ & (15.7-21.3) \end{aligned}$	1216	$\begin{aligned} & 20.5 \\ & (16.9-24.4) \end{aligned}$	1386	$\begin{aligned} & 20.6 \\ & (16.2-25.6) \end{aligned}$	1258	$\begin{aligned} & 20.6 \\ & (16.4-25.2) \end{aligned}$. 22	. 69
Severe Obesity ${ }^{\text {e }}$												
Overall	3249	4.9 (3.7-6.5)	3408	5.6 (4.3-7.1)	3355	5.6 (4.2-7.3)	3523	6.0 (4.8-7.3)	3340	5.6 (4.0-7.6)	. 43	. 55
Boys	1701	5.5 (3.9-7.5)	1777	6.4 (4.5-8.8)	1713	5.7 (4.0-7.9)	1794	5.6 (4.5-7.0)	1696	6.3 (4.3-8.9)	. 77	. 96
Girls	1548	4.3 (2.9-6.2)	1631	4.7 (3.5-6.2)	1642	5.5 (3.9-7.5)	1729	6.3 (4.4-8.6)	1644	4.9 (3.2-7.2)	. 29	. 27
2-5 y	853	1.8 (0.6-3.9)	903	2.7 (1.6-4.1)	871	1.6 (0.7-3.2)	843	1.7 (0.8-3.3)	814	1.8 (0.8-3.4)	. 63	. 77
6-11 y	1197	5.7 (4.3-7.5)	1213	5.1 (3.7-6.8)	1268	6.9 (5.2-8.9)	1294	4.3 (3.0-6.1)	1268	5.2 (3.7-7.2)	. 46	. 67
$12-19$ y	1199	5.9 (3.9-8.6)	1292	7.4 (4.8-10.8)	1216	6.6 (4.4-9.5)	1386	9.1 (7.0-11.5)	1258	7.7 (5.0-11.2)	. 18	. 60

${ }^{\text {a }}$ Data source: National Health and Nutrition Examination Survey (NHANES). Prevalence estimates are weighted to represent the civilian, noninstitutionalized US population aged 2 to 19 y; weighting accounts for differential probabilities of selection and survey nonresponse.
${ }^{\mathrm{b}}$ Age at the time of examination.
${ }^{c} P$ values for trends were calculated using regression models, with the 2-y survey cycles modeled as an orthogonal polynomial.
${ }^{\mathrm{d}}$ Obesity was defined as a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) at or above the sex-specific 95th percentile on the US Centers for Disease Control and Prevention (CDC) BMI-for-age growth charts.
${ }^{\text {e }}$ Severe obesity was defined as a BMI at or above 120% of the sex-specific 95th percentile on the CDC BMI-for-age growth charts.

Table 2. Trends in Prevalence of Obesity and Severe Obesity Among US Adults 20 Years or Older by Sex and Age Group, 2007-2008 to 2015-2016a,b

	2007-2008		2009-2010		2011-2012		2013-2014		2015-2016		P Value for Trend ${ }^{\text {c }}$	
	No. of Participants	\% (95\% CI)	Linear	Quadratic								
Obesity (BMI ≥ 30)												
Overall	5550	$\begin{aligned} & 33.7 \\ & (31.5-36.1) \end{aligned}$	5926	$\begin{aligned} & 35.7 \\ & (33.8-37.7) \end{aligned}$	5181	$\begin{aligned} & 34.9 \\ & (32.0-37.9) \end{aligned}$	5455	$\begin{aligned} & 37.7 \\ & (35.8-39.7) \end{aligned}$	5337	$\begin{aligned} & 39.6 \\ & (36.1-43.1) \end{aligned}$. 001	. 50
Men	2746	$\begin{aligned} & 32.2 \\ & (29.3-35.2) \end{aligned}$	2889	$\begin{aligned} & 35.5 \\ & (31.9-39.2) \end{aligned}$	2585	$\begin{aligned} & 33.5 \\ & (30.7-36.5) \end{aligned}$	2638	$\begin{aligned} & 35.0 \\ & (32.8-37.3) \end{aligned}$	2583	$\begin{aligned} & 37.9 \\ & (33.1-42.8) \end{aligned}$. 05	. 70
Women	2804	$\begin{aligned} & 35.4 \\ & (33.1-37.8) \end{aligned}$	3037	$\begin{aligned} & 35.8 \\ & (34.0-37.7) \end{aligned}$	2596	$\begin{aligned} & 36.1 \\ & (32.6-39.9) \end{aligned}$	2817	$\begin{aligned} & 40.4 \\ & (37.6-43.3) \end{aligned}$	2754	$\begin{aligned} & 41.1 \\ & (37.8-44.5) \end{aligned}$	<. 001	. 45
20-39 y	1773	$\begin{aligned} & 30.7 \\ & (26.4-35.1) \end{aligned}$	1957	$\begin{aligned} & 32.6 \\ & (28.9-36.4) \end{aligned}$	1808	$\begin{aligned} & 30.3 \\ & (26.5-34.5) \end{aligned}$	1810	$\begin{aligned} & 34.3 \\ & (31.1-37.6) \end{aligned}$	1780	$\begin{aligned} & 35.7 \\ & (31.7-39.8) \end{aligned}$. 05	. 47
$40-59$ y	1791	$\begin{aligned} & 36.2 \\ & (32.7-39.9) \end{aligned}$	2005	$\begin{aligned} & 36.6 \\ & (34.5-38.7) \end{aligned}$	1727	$\begin{aligned} & 39.5 \\ & (36.0-43.0) \end{aligned}$	1896	$\begin{aligned} & 41.0 \\ & (36.5-45.5) \end{aligned}$	1785	$\begin{aligned} & 42.8 \\ & (37.3-48.5) \end{aligned}$. 009	. 83
≥ 60 y	1986	$\begin{aligned} & 35.1 \\ & (32.9-37.3) \\ & \hline \end{aligned}$	1964	$\begin{aligned} & 39.7 \\ & (36.6-43.0) \\ & \hline \end{aligned}$	1646	$\begin{aligned} & 35.4 \\ & (31.2-39.7) \\ & \hline \end{aligned}$	1749	$\begin{aligned} & 38.5 \\ & (35.0-42.1) \\ & \hline \end{aligned}$	1772	$\begin{aligned} & 41.0 \\ & (36.9-45.3) \\ & \hline \end{aligned}$. 03	. 56
Severe Obesity ($\mathrm{BMI} \geq 40$)												
Overall	5550	5.7 (4.9-6.7)	5926	6.3 (5.7-7.0)	5181	6.4 (5.2-7.7)	5455	7.7 (6.3-9.4)	5337	7.7 (6.6-8.9)	. 001	>. 99
Men	2746	4.2 (3.3-5.3)	2889	4.4 (3.6-5.2)	2585	4.4 (2.6-6.8)	2638	5.5 (4.2-7.0)	2583	5.6 (4.3-7.2)	. 04	. 74
Women	2804	7.3 (6.2-8.5)	3037	8.1 (7.1-9.2)	2596	8.3 (6.9-9.8)	2817	9.9 (8.1-12.1)	2754	9.7 (8.4-11.2)	. 002	. 73
20-39 y	1773	5.9 (4.4-7.7)	1957	5.9 (4.7-7.2)	1808	5.6 (4.4-7.1)	1810	8.0 (6.3-10.0)	1780	7.8 (6.0-9.9)	. 02	. 44
40-59 y	1791	6.4 (5.2-7.7)	2005	6.8 (5.7-8.1)	1727	7.7 (6.1-9.4)	1896	8.6 (6.2-11.6)	1785	8.5 (6.6-10.7)	. 02	. 75
≥ 60 y	1986	4.5 (3.3-5.9)	1964	6.3 (4.7-8.3)	1646	5.6 (3.7-8.0)	1749	5.8 (4.2-7.7)	1772	6.3 (4.6-8.4)	. 19	. 62

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided $\quad \geq 60$. In 2015-2016, the crude prevalence among adults overall was 39.8% (95% by height in meters squared).
${ }^{\text {a }}$ Data source: National Health and Nutrition Examination Survey (NHANES). Prevalence estimates are weighted to represent the civilian noninstitutionalized US population aged ≥ 20 y; weighting accounts for differential probabilities of selection and survey nonresponse. Prevalence estimates overall and by sex were age standardized using the direct method to the 2000 projected US census population using age groups 20-39, 40-59, and
≥ 60. In 2015-2016, the crude prevalence among adults overall was 39.8% (95%

${ }^{\mathrm{b}}$ Age at the time of interview.
${ }^{\text {c }} P$ values for trends were calculated using regression models, with the 2-y survey cycles modeled as an orthogonal polynomial. Models for overall trends and those for men and women additionally included age group (20-39, $40-59$, and $\geq 60 \mathrm{y}$).
group (P range $=.17$ to .78) (Table 1). Obesity prevalence among children aged 2 to 5 years showed a quadratic trend ($P=.04$), decreasing from 10.1% in 2007-2008 to 8.4% in 2011-2012 and then increasing to 13.9% in 2015-2016. Adjusted overall linear and quadratic trends for obesity and severe obesity among youth aged 2 to 19 years remained nonsignificant.

Age-standardized prevalence of obesity among adults increased from 33.7\% (95\% CI, 31.5\%-36.1\%) in 2007-2008 to $39.6 \% ~(95 \%$ CI, $36.1 \%-43.1 \%$) in 2015-2016 ($P=.001$)(Table 2). Prevalence increased among women, and in adults aged 40 to 59 years and 60 years or older. The observed increases in men and adults aged 20 to 39 years did not reach statistical significance. There were no significant quadratic trends. The adjusted model also showed a significant overall linear trend for obesity among adults (P < .001; data not shown).

Age-standardized prevalence of severe obesity in adults increased from 5.7\% (95\% CI, 4.9\%-6.7\%) in 2007-2008 to 7.7\% (95\% CI, 6.6\%-8.9\%) in 2015-2016 ($P=.001$). Prevalence increased in men, women, and adults aged 20 to 39 years and 40 to 59 years. There was no significant linear trend among adults 60 years and older. There were no significant quadratic trends. The adjusted model also showed a significant overall linear trend for severe obesity ($P<.001$; data not shown).

Discussion | Over the most recent decade between 2007-2008 and 2015-2016, increases in obesity and severe obesity prevalence persisted among adults, whereas there were no overall significant trends among youth. Changes in demographics did not explain the observed trends. Limitations include small sample sizes in the youngest age group. Residual bias due to incomplete nonresponse adjustment is possible and may vary with changing response rates. Additional NHANES data will allow continued monitoring of trends in obesity and severe obesity prevalence among US youth and adults.

Craig M. Hales, MD
Cheryl D. Fryar, MSPH
Margaret D. Carroll, MSPH
David S. Freedman, PhD
Cynthia L. Ogden, PhD

Author Affiliations: National Center for Health Statistics, US Centers for Disease Control and Prevention, Hyattsville, Maryland (Hales, Fryar, Carroll, Ogden); National Center for Chronic Disease Prevention and Health Promotion, US Centers for Disease Control and Prevention, Atlanta, Georgia (Freedman).
Accepted for Publication: March 1, 2018.
Corresponding Author: Craig M. Hales, MD, National Center for Health Statistics, US Centers for Disease Control and Prevention, 3311 Toledo Rd, Hyattsville, MD 20782 (chales@cdc.gov).
Published Online: March 23, 2018. doi:10.1001/jama.2018.3060
Author Contributions: Dr Hales had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Concept and design: Hales, Ogden.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: Hales.
Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Hales, Fryar, Carroll, Freedman.
Administrative, technical, or material support: Hales.
Supervision: Ogden.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.
Disclaimer: The findings and conclusions in this report are those of the authors and not necessarily the official position of the US Centers for Disease Control and Prevention (CDC).
Additional Information: The National Center for Health Statistics and the CDC had a role in the design and conduct of the National Health and Nutrition Examination Survey, in the collection and management of the data, and in the review and approval of the manuscript; however, the National Center for Health Statistics and the CDC had no role in the analysis and interpretation of the data, in the preparation of the manuscript, or in the decision to submit the manuscript for publication.

1. Ogden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315(21):2292-2299.
2. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21): 2284-2291.
3. National Center for Health Statistics. National Health and Nutrition Examination Survey: questionnaires, datasets, and related documentation. https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. Accessed March 8, 2018.
4. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. Circulation. 2014;129(25) (suppl 2):S102-S138.
5. National Center for Health Statistics. National Center for Health Statistics data presentation standards for proportions. https://www.cdc.gov/nchs/data /series/sr_02/sr02_175.pdf. Accessed March 8, 2018.
6. Lumley T. Survey: analysis of complex survey samples. 2017.
https://cran.r-project.org/web/packages/survey/index.html. Accessed March 8, 2018.

COMMENT \& RESPONSE

Machine Learning Compared With Pathologist Assessment

To the Editor The rise of machine learning is changing diagnostic medicine. Dr Ehteshami Bejnordi and colleagues reported the researcher challenge competition (CAMELYON16) ${ }^{1}$ comparing diagnostic performance between deep learning algorithms and expert pathologists' diagnosis of lymph node metastases in women with breast cancer. We would like to highlight 3 important criteria for fair algorithm-physician comparisons.

First, physician diagnoses should follow a protocol (when available) and be made in settings that closely correspond to diagnosis in clinical practice. In principal, the physicians should work under realistic time constraints and have access to all regular diagnostic information, including relevant additional diagnostic testing, unless there are compelling reasons not to do so. Second, the output generated by algorithms and physicians should be evaluated on the same scale. Third, performance over-optimism should be avoided. The CAMELYON16 competition seems to have deviated from these criteria.

The participating pathologists were not given access to immunohistochemistry testing, although the authors ${ }^{1}$ claimed that immunohistochemistry testing is common to resolve diagnostic uncertainty in clinical practice.

The algorithms produced a continuous score on a probability scale, whereas the pathologist was allowed only a

