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The development of high-throughput technologies has sharply increased the opportunities to research the human body at the molecular, 
cellular, and organismal levels in the last decade. Rapid progress in biotechnology has caused a paradigm shift in population-based studies. 
Advances in modern biomedical sciences, including genomic, genome-wide, post-genomic research and bioinformatics, have contributed 
to the emergence of molecular epidemiology focused on the study of the personalized molecular mechanism of disease development and 
its extrapolation to the population level. The work of research teams at the intersection of information technology and medicine has become 
the basis for highlighting digital epidemiology, the important tools of which are machine learning, the ability to work with real world data, and 
accumulated big data.

The developed approaches accelerate the process of collecting and processing biomedical data, testing new scientific hypotheses. 
However, new methods are still in their infancy, they require testing of application under various conditions, as well as standardization. This 
review highlights the role of omics and digital technologies in population-based studies.
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Introduction

The global medical and demographic problems, those 
of population ageing, an increase in the prevalence of 
chronic non-communicable diseases, the pandemic 
of a new coronavirus infection, set new large-scale 
challenges for healthcare, where precision medicine 
becomes one of the tools for solving them. Initially 
demanded mainly in the diagnosis and treatment of 
oncological diseases, it is being introduced into all areas 
of medicine now.

Major research projects and campaigns are being 
initiated worldwide to develop and implement precision 
medicine strategies. Experts estimate the global 

precision medicine market to reach $87.7 billion by 2023. 
The leading scientific institutions are located in the USA, 
United Kingdom, France, and China. Since 2018, the 
number of publications in the field of precision medicine 
has amounted to about 16 thousand worldwide.

Molecular and digital epidemiology is one of the main 
tools of precision medicine.

Molecular epidemiology

Genomic research

Biological research has traditionally been carried 
out using reductionist approaches, partly due to 
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limitations in both the experimental power of the devices 
and the complexity of the analytical data evaluation 
processes. In the last decade, the development of 
high-throughput technologies has led to a sharp 
increase in the opportunities of studying the human body 
at the molecular, cellular, and organismal levels [1]. The 
rapid progress of biotechnology has led to a paradigm 
shift in genomic epidemiology, from linkage analysis 
to genome-wide association studies (GWAS) and the 
widespread use of next-generation sequencing (NGS). 
Technological developments have improved research 
design, enhanced our understanding of disease etiology, 
and led to numerous scientific discoveries [2].

In genomics, first-generation sequencing methods 
could sequence the human genome for $300,000; two 
decades later, next-generation methods can sequence 
the human genome in a few hours at a cost of $1000. 
Measurements of characteristics such as epigenome, 
transcriptome, proteome, etc. have undergone similar 
changes, which has allowed researchers to start studying 
pathologies using their characteristics at the molecular 
level rather than tissue one [3]. Therefore, both the study 
of individual organisms and the study of populations 
require calculative and statistical approaches to the data 
of various “omics”, which consider metabolism in cells, 
tissues and organs as a whole, as an integrated system, 
rather than isolated separate processes.

The reductions in the cost of genome sequencing, 
combined with an increase in the computational power, 
have caused a strong revival of interest in the application 
of whole genome sequencing in public health [4]. 
Today, genomic epidemiology makes it possible to study 
the genomes of pathogens so as to have a better insight 
into the spread of infectious diseases among populations 
and quickly respond to the outbreaks of the diseases 
[5]. Together with philodynamics (a combination of 
epidemiology, evolution, and immunodynamics), 
genomic epidemiology is a 
rapidly developing field of 
science that addresses key 
issues related to epidemic 
preparedness and management 
in real time [6].

In the beginning, genomic 
data were used to study a 
variety of viruses, particularly, 
the influenza A virus and human 
immunodeficiency virus (HIV). 
The Ebola virus epidemic in 
West Africa (2013–2016) was 
the first major and large-scale 
challenge to study the virus 
genomes; that resulted in the 
discovery of their origin and 
causes for such a rapid spread 
of the epidemic and also allowed 
to detect subsequent sources of 
local outbreaks [7].

Genomic epidemiology has become a valuable 
source of information for scientists about the nature 
of the threats to public health such as Zika, Middle 
East Respiratory Syndrome (MERS), Ebola, and 
SARS-CoV-2 outbreaks [8]. These threats have required 
a variety of approaches including intensive genome 
sequencing to understand transmission dynamics 
during the acute phase of epidemics (Ebola virus in 
the Democratic Republic of the Congo) and broader 
genomic “surveillance” to detect a hidden increase in the 
prevalence (poliomyelitis) [9]. During the SARS-CoV-2 
pandemic, many countries that had not previously used 
genomic data began to actively conduct such studies 
and rely on their results. Genomic technologies have 
made more than 2.5 million SARS-CoV-2 sequences 
known from over 185 countries [10], and due to the 
subsequent public interest in genomic epidemiology, 
new methodologies have been rapidly developed to fully 
utilize this dataset to fight against the pandemic.

The transmission of all infections occurs at different 
spatial scales, which depend on the pathogen, the 
nature of the host’s movement, immunity, and other 
factors [11].

The impact of obtaining genomic data on the 
formation of public health is shown in Figure 1.

Genomic data can be used to characterize clinical 
cases of infection depending on location and time and 
track outbreaks at all spatial scales: from nosocomial 
infections to pandemics [12]. The analysis of the 
pathogen genomes in the context of other sequences 
obtained from the same outbreak, as well as their 
comparison with previously characterized variants, 
allow researchers to develop intervention strategies 
at the individual and population levels to minimize the 
burden of infectious diseases on the individual and 
society [13]. This comprehensive approach involving 
pathogen sequencing, analysis, and response is called 
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Figure 1. Pathogen sequencing during infectious disease outbreaks
Schematically presented relationship between obtaining genomic data and creating 
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molecular epidemiology. In contrast to the development 
of individual-level treatment strategies that focus on the 
functional roles of host and/or pathogen mutations, 
the outbreak-scale genomic analysis uses pathogen 
mutations as markers of transmission events [14].

Genomic epidemiology studies the dynamics of 
outbreaks and the rapid evolution of pathogens that 
often accumulate mutations on the same scale as the 
spread of these pathogens.

NGS makes it possible to detect various types of 
genomic and epigenetic variations with high accuracy. 
Such sequencing allows researchers to directly study 
all these variations in person, increasing the chance of 
detecting mutations [15]. Although the use of NGS is 
still limited due to its high cost, the success of several 
recent projects demonstrates the great potential of this 
method in genomic epidemiology, especially in view of 
the sequencing cost decline.

With a sufficient sample size, appropriate metadata 
(such as location and date), and an appropriate 
statistical framework, pathogen genomes may assist in 
the identification of patterns in the spread of an epidemic 
with a small number of patients studied, allowing the 
development of precise targeted interventions compared 
to traditional methods and the use of demographic 
data [16]. In the nearest future, we will also be able to 
estimate the prevalence of chronic noncommunicable 
diseases using patient’s pedigree data.

In 2011, the National Human Genome Research 
Institute (USA) published a review on genetic medicine, 
noting that the most effective way to improve human 
health is to understand normal biology (in this case, 
biology of the human genome) as a basis for studying 
the biology of diseases, which then becomes the basis 
for health promotion. To date, it is still difficult to fully 
determine the future prospects of genetic epidemiology 
for improving the public health [17].

When evaluating the contribution of genetic 
epidemiology to public health, it is equally important to 
understand that the etiology of diseases is complex and 
the genetic risk for developing pathology does not equate 
to genetic determinism [18]. The complex relationship 
between genetics and disease poses an ethical dilemma 
for practitioners regarding the correct interpretation of 
genetic test results. When performing genetic tests, 
it is possible to indirectly reveal the disorders that will 
not cause the development of the clinical disease 
manifestation [19]. An ethical question arises, should 
patients be aware of these incidental findings that may 
have a medical value?

Biomarkers

In the epidemiological study of diseases, metabolite 
concentrations are increasingly used as biomarkers 
that serve as indirect indicators of the rate of metabolic 
reactions. Though, the assessment of the rate of 
individual reactions can provide more accurate 

information about the ongoing changes directly in the 
organ [20].

Direct measurement of the rate of metabolic reactions 
in situ is currently impractical in large population 
studies since they are costly, technically complex, 
and require high-throughput equipment. This method 
is more successful when applied on a smaller scale, 
primarily through the use of non-invasive nuclear 
magnetic resonance spectroscopy (NMR spectroscopy) 
[21]. Metabolic pathway imaging techniques using 
hyperpolarized metabolites have shown promising 
results in the diagnosis and localization of tumors in 
patients with prostate cancer [22].

In a prospective clinical study involving 58 patients 
with chronic heart failure, the rate of adenosine 
triphosphate (ATP) synthesis was measured by studying 
the activity of cardiac creatine kinase in situ using the 
31P NMR spectroscopy method [23].

ATP and creatine phosphate concentrations, as well 
as general clinical parameters, were used as predictors 
of chronic heart failure over an 8-year follow-up 
period. Excessive creatine kinase activity exceeded 
the significance of such parameters like patient’s age, 
gender, and concentrations of other metabolites in 
predicting heart failure events and death, including 
hospitalization for heart failure and ventricular assist 
device insertion [24].

These results relate to a relatively small group 
of patients, but they add weight to the case for the 
development of biomarkers based on the rate of 
metabolic pathways and reactions in the study of disease.

Metabolism works as a continuously operating 
system of movement and transformation of molecules 
through reactions. Since the flow of metabolites is 
regularly redirected, metabolites are accumulated at 
various points or become depleted which results in a 
change in their concentration. The concentrations of 
metabolites reflect the effects of combined changes in 
the reaction rate, but do not give a direct idea of the 
dysfunctions of the processes themselves, for example, 
in pathology affecting enzymes, genes, and other 
molecular products derived from the human genome 
[24]. In this regard, a systematic assessment of the 
reaction rate on the scale required for epidemiology 
will be done by integrating metabolomic data with 
genomic, transcriptomic and/or proteomic information 
to determine enzymatic function.

Due to the ability to characterize diverse variants of 
endogenous and exogenous metabolites in biological 
specimens, metabolomic approaches have quickly 
been recognized as an important tool in public health 
studies [25]. The results show that the use of small 
volumes of blood, urine, feces, saliva, exhaled air 
condensate, cerebrospinal fluid, and biopsy for 
measuring the metabolome can provide information on 
possible mechanisms underlying the disease [26–30]. 
However, most of the existing evidence has come from 
case–control or crossover studies, which do not allow 
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for a clear temporal relationship between exposure, 
biomarkers, and disease.

Recently, the metabolic characterization of amniotic 
fluid, cord blood, and maternal/child urine or serum 
samples has been used to assess complex effects 
on the fetus and mother, and it may potentially be 
associated with developmental problems. Dried 
newborn blood spot used to identify metabolic 
biomarkers of future risk for cancer and other diseases 
have been proposed as a promising sample for 
metabolomic profiling [31–34].

The application of metabolomics for the study of 
disease risks, screening, and treatment efficacy has 
yielded promising initial results, although the field is 
still under development. These studies include ones 
on neurodegenerative diseases [35], type 2 diabetes 
[36], cancer [37], HIV, tuberculosis [38], malaria [39], 
and cardiovascular diseases [40]. The next important 
step in the application of metabolomics to study the 
etiology of diseases and early detection of pathologies 
will be longitudinal studies, which have already shown 
their effectiveness in creating biological models of the 
environmental impact on humans [41, 42].

Digital epidemiology
To conduct large multicenter epidemiological studies, 

digital technologies are actively used to facilitate the 
processes of work planning, data remote collection and 
entry control, as well as subsequent result presentation 
and reuse [43–46].

Though the epidemiology of chronic non commu-
nicable diseases in Russia is still lagging behind 
infectious diseases [47], there is a need to create and 
implement digital services for epidemiology of chronic 
noncommunicable diseases [48]. The need is owing 
to the increase of omics technologies’ availability, 
the accumulation of the many years results of 
research, the need to compare the findings of similar 
studies, and the increased requirements for practical 
application and implementation of the results [47, 49].

Digital systems for clinical research

The basis for conducting research in the field of 
precision medicine is the formation of databases 
of clinical information annotated with the data on the 
collected biomaterials for each clinical case [50, 51]. 
This significantly expands resource opportunities for 
research at the intersection of clinical areas when new 
members of the research team are involved or in the 
case of a long-term work [52].

Coppola et al. [50] emphasized the importance of 
combining primary data with paraclinical information, 
including data from imaging studies, in a digital system. 
According to the authors, a service for visual data 
processing should have the options not only to display, 
but also to analyze data, which requires pre-processing 

and data markup. The selection of areas with suspected 
lung infiltration according to computed tomography (CT) 
data or with pathological signal foci in the magnetic 
resonance imaging (MRI) pictures can be an example. 
Integration of genomic analysis into the data system 
contributes to the development of genomics and 
radiomics (radiomics is aimed at creating mathematical 
models and computer algorithms that, through the 
analysis of medical images, such as MRI or CT images, 
provide a finding about the pathophysiological features 
of tissues) [50, 53]. According to the research teams 
accumulating biomedical data, the imaging biobank data 
are to be used in accordance with the already-known 
standards until specific standards have been developed 
[50, 54]. Harmonization of processing will make it 
possible to combine data from multi-omics studies and 
visual materials for the integration of phenotypic 
and genotypic data [50, 55].

Over the past 10 years, many medical institutions 
have collected integrated databases (integrated 
data repositories, IDRs) [56], which are collected 
from electronic medical records [57]. Based on the 
accumulated data, not only scientific hypotheses are 
tested, but also a clinical decision support system is built 
[56]. Gagalova et al. [56] identified four models for the 
architecture of medical data collection and storage, in 
which data sources, the purpose of use, the availability 
of storage, etc. The purpose of this work was to initiate 
the development of guidelines on IDR creation in 
hospitals.

Online databases

Interactive monitoring systems have gained wide 
popularity [58]. Over the past 20 years, many services 
for monitoring infectious diseases have emerged [59, 
60]. To monitor the situation with antibiotic resistance, 
many services have been created that are limited 
geographically as well as by described microorganisms 
and assessed metrics:

EARS-Net (https://atlas.ecdc.europa.eu/public/index.
aspx);

CDDEP Resistance Map (https://resistancemap.
cddep.org/index.php);

SGSS (https://sgss.phe.org.uk/Security/Register);
ATLAS (https://atlas-surveillance.com/#/login);
SMART (https://globalsmartsite.com/#/auth/login).
The free-access web application AMRmap (https://

amrmap.ru/) [61] is a Russian development which 
displays data on antibiotic resistance obtained in 
multicenter clinical trials. The system has a section of 
genetic markers. Information in the database has been 
stored since 1997, access provided free of charge.

Since 2018, the University of Bristol’s project 
EpiGraphDB [62] has been developing, which is 
a data-based analytical platform designed for the 
intellectual analysis of epidemiological indicators. 
The project is developing approaches to the 
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interpretation of causal relationships in the systematic 
automated analysis of many phenotypes using 
data from the array of bioinformatic resources. The 
university is also developing a software for statistical 
processing of omics studies, MR-Base being an 
example of it [63].

A large system of producing sequences of biological 
reactions in the body is presented in the WikiPathways 
system [64]. Currently, this system is being actively 
filled out with omics research data. The STRING 
database contains known and predicted protein–protein 
interactions [65].

Toom et al. [66] compared the results of an 
epidemiological study of headache in Estonia using an 
online questionnaire with the results of data research 
obtained during face-to-face visits of patients. The use of 
online questionnaires can significantly speed up the data 
collection process, increase population coverage, and 
reduce manual data entry errors. However, the authors 
noted that in the online survey, the majority of people did 
not have a headache, which greatly differed the sample 
of people who completed the online questionnaires 
from the sample of patients who came for face-to-face 
visits. This reduced the incidence of headache in the 
population. Also, more women, young people, married 
people, urban residents and people with a high level 
of education participated in the online survey. These 
characteristics of the sample are typical and should be 
considered as limiting in the case of studies using online 
questionnaires [67–69].

The integrated (online access, telephone, and paper 
mail) National Australian StepUp System for Dementia 
Research [70] is an interesting solution. In this system, 
patients with dementia and researchers of the diseases 
accompanied by cognitive deficits are registered in one 
of three convenient ways [70]. This allows accelerating 
the process of collecting data for research hypotheses 
and developing new approaches to combat dementia 
[71, 72]. The authors note that the continuous operation 
of the system went on after the start of the pandemic of 
a new coronavirus infection [70]. Over the two years 
of the platform operation, more than 1000 patients, 120 
researchers have been registered, and more than 40 
studies have been initiated [70].

For clinical trials, there are a number of free services 
which provide creating electronic individual registration 
cards, such as REDCap [73] or Ark [74]. The use of 
specialized services may be limited since access is 
provided to the organization after the conclusion of an 
agreement with the copyright holders and not directly 
to the researcher. However, the service ensures secure 
personal data storing without third-party access, unlike 
many open resources, including Google Forms [75]. In 
the future, research services will be used to create large 
databases on certain nosologies, diagnostic methods, or 
treatment. Services are constantly evolving, additional 
specialized analysis modules are created, for example, 
building a pedigree [74].

The pandemic of a new coronavirus infection 
caused an accelerated and forced introduction of digital 
technologies in all spheres of life, including all stages of 
research [76, 77]. Since the beginning of the pandemic in 
2019, many national and international online monitoring 
systems have been developed [78]. The challenges for 
the fast-growing services are their weak integration with 
each other and the lack of centralized management, a 
difficulty in interpretation and practical application of data 
[79]. On the other hand, a limiting factor is the reluctance 
of patients to use digital questionnaires or remote 
methods of communication due to uncertainty about 
confidentiality in their use or unwillingness to become 
addicted to gadgets [80], which is especially common 
among older patients.

Open data

The annual increase in the accumulated data requires 
the introduction of new guidelines for the management 
of captured data. One of the most common standards 
for such work with data is FAIR (findability, accessibility, 
interoperability, and reusability) [81], which has become 
a fundamental requirement for open science [82, 83]. In 
their paper, Suhre et al. [84] emphasize the importance 
of data exchange for omics research, giving an example of 
a combination of GWAS and proteomic analysis. The 
authors consider the prospects for the creation of a 
database that will accumulate information about the 
genetic colocalization of genomic information and 
characteristics of the molecular phenotype of a disease 
(for example, gene expression and metabolomic 
characteristics) with clinical trial endpoints.

Real world data 

Real world data in biomedical research refers 
to data captured from electronic medical records, 
medical registries, medical insurance companies, 
non-interventional clinical trials, and other sources in 
which information was obtained not under experimental 
conditions [85].

The HealthMap online system (https://www.healthmap. 
org/ru/) has been operating since 2006, accumulating 
data on disease outbreaks from open web resources 
[86]. In 2008, the web-based influenza surveillance 
system Influenzanet was launched [87, 88]. Limitations 
in the use of these data are their redundancy 
(repetitions), heterogeneity (different input formats), 
inconsistency (violation of the chronology of events). 
Chatzidimitriou et al. [89] created a database (n=20,463) 
on clinical cases of chronic lymphocytic leukemia (The 
ERIC CLL Database) filled with data from more than 
90 centers and 31 countries. The authors consider the 
provision of standardization, integration of retrospective 
data, and assessment of the quality of input data to 
be necessary for the successful functioning of the 
distributed database [89].
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Digital epidemiology as a separate field  
of knowledge

According to Salathé [90], digital epidemiology 
has become a separate area of scientific knowledge. 
Its purpose is to understand the patterns of disease 
development and the dynamics of the health 
status of the population, as well as to determine the 
causes of these patterns in order to find ways to 
prevent the development of diseases and promote 
health. The broadest definition of digital epidemiology 
is epidemiology that uses digital data. Though, the 
author then specifies that digital epidemiology operates 
the data that has not been collected with the main 
purpose of conducting epidemiological studies. Such 
data can include electronic medical records, information 
from insurance funds, city, regional, and federal health 
departments, as well as data from search engines, social 
networks, and mobile phones [90].

Google Flu Trends (GFT) has become one of the 
first known digital epidemiology services that uses 
search queries on acute respiratory symptoms for 
epidemiological analysis [91, 92]. A serious problem 
was that the collected data were owned by a private 
company, and the analysis algorithms used were 
unavailable even to national healthcare systems [90], 
and independent testing of the capabilities of this service 
for epidemiological studies showed a low efficiency in 
assessing the incidence of infectious diseases [93]. 
Unofficial Internet sources can be a valuable resource for 
epidemiological research, but the current trend towards 
protecting personal data and maintaining privacy is an 
important limiting factor. Salathé identifies two ways to 
the solution of this problem [90]:

creation of the monitoring systems by groups of 
scientists or professional communities, which will be 
more understandable and transparent for national 
healthcare, and that will increase the potential for their 
practical application;

greater involvement of the population in 
epidemiological studies. The rights to the data generated 
by individuals belong to the developers of the resource. 
A representative part of the population should be 
persuaded to share their personal health data with public 

health authorities for scientific research, the results of 
which can benefit society.

Roth et al. [94] have shown the formation of digital 
epidemiology (Figure 2).

According to the authors, machine learning methods 
based on the data from healthcare systems or social 
networks (Twitter), which help determine the prognosis 
for survival and complications, had already been 
developed by 2018.

It is important to note that the transformation of 
epidemiology leads to a change in its teaching principles 
[95]. Werler et al. [96] note that new curricula in 
epidemiology require the formation of causal thinking 
and the subsequent formation of a scientific hypothesis. 
Common mistakes made by young epidemiologists 
include estimation of one risk factor for one outcome, 
inaccurate formulation of research questions, and giving 
greater importance in research to epidemiological and 
statistical approaches compared to public importance.

Ethical issues
The development of high-precision medicine 

technologies entails the need to form new ethical 
standards [97]. Classical basic ethical principles 
are respect for patient’s autonomy and privacy [98]. 
In this case, ethical requirements must ensure that 
individuals cannot be identified in open data portals for 
the exchange of scientific data. The ethics of precision 
public healthcare regulates the interaction between 
patients who have given voluntary informed consent 
to their attending doctor for the use of their clinical 
specimens in precision medicine research and the 
public decision-making process that drives public health 
activities. The development of a new hybrid ethical 
paradigm is possible only with the well-coordinated work 
of these process participants. Conducting omics studies 
allows obtaining detailed information about any subject. 
However, in order to plan disease control measures in a 
particular area or in a particular population, the following 
data indicating the demographic characteristics of an 
individual are important: geographical location, migration 
history, stay in prison, lifestyle and profession, etc. All 
these data are personal, they must not be subjected to 
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wide dissemination and increase the risks of discovering 
the identity of the subject.

In this regard, particular attention is paid to the 
way of presenting the obtained information. The ethics 
of precision medicine includes a public health ethic 
commitment to social justice and an emphasis on 
professional transparency and the trust built through it. 
The collected data should be transparent and aimed at 
improving the existing system and people’s lives, and 
not stigmatizing social groups with high risk factors or 
relatively high incidence [97].

The development of electronic systems for capturing 
and storing data requires careful study of the risks to 
maintaining the security of the collected data [99]. New 
requirements for data management and professional 
confidentiality are emerging [98]. The speed, accuracy, 
and efficiency of big data processing offer great 
opportunities for public health, but entail a responsibility 
to adapt in a society that is committed to privacy, respect 
for human rights in matters of health, and social justice.

Sharma et al. [100] advocate for the development 
of legislation to maintain the confidentiality of personal 
data collected during scientific and clinical research, for 
auditing and implementation of independent oversight to 
assess the management of the risks related to the reuse 
of the data on research subjects. Solving this problem 
requires new approaches to working with patient data, 
taking into account an increased activity of scientific 
communication, creation of open repositories, exchange 
of primary research data, which is an integral part of 
large epidemiological studies. However, people are 
motivated to participate in study by pursuing their own 
interests, like the reputation of the organization with 
which they interact. Reuse of data by other organizations 
carries certain risks, which patients should be informed 
about before submitting voluntary informed consent to 
participate in a study.

FAIR-Health is a new paradigm of open science 
that has been developed in view of the peculiarities of 
biomedical research [101]. This paradigm is aimed at 
considering the information and biomaterials collected 
in research to be a single resource. It is this principle 
that, according to Holub et al. [101], will help ensure the 
reproducibility of studies and the subsequent integration 
of results.

Conclusion
Modern methods of population-based studies, 

including both omics technology data and the results of 
monitoring the conditions and behavior of patients over 
a long period of time, provide detailed data on subjects. 
At the moment, a search for methods of standardizing 
the collected data, their analysis and synthesis for 
further use is in progress. One of the major challenges 
to science is the integration of research results not only 
for rational storage, but also for the creation of dynamic 
digital models of subjects and processes.

The development of precision medicine technologies 
underlies the improvement of the quality of life and life 
expectancy of the population.
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