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Abstract The last decade has witnessed a number of important and exciting developments that had been
achieved for improving recurrence plot-based data analysis and to widen its application potential. We will
give a brief overview about important and innovative developments, such as computational improvements,
alternative recurrence definitions (event-like, multiscale, heterogeneous, and spatio-temporal recurrences)
and ideas for parameter selection, theoretical considerations of recurrence quantification measures, new
recurrence quantifiers (e.g. for transition detection and causality detection), and correction schemes. New
perspectives have recently been opened by combining recurrence plots with machine learning. We finally
show open questions and perspectives for futures directions of methodical research.

1 Introduction

Recurrence in dynamical systems is a fundamental fea-
ture, indicating different types of dynamics, such as
periodic, chaotic, or random variations, or predictable
and unpredictable variability. The study of recurrences
in dynamical systems by recurrence plot (RP)-based
methods

1
, such as recurrence quantification analysis

(RQA) and recurrence networks (RNs), is receiving a
growing interest in many different scientific disciplines
[3–30], well represented by the increasing number of
publications (Fig. 1) and the diverse scientific disci-
plines these studies cover (Fig. 2A). The increase in
the number of studies citing the seminal works intro-
ducing RPs, RQA, and RNs [2, 31–35] is even stronger
(Fig. 1), which can be interpreted as a growing general
popularity of these methods not limited to the (still
small although growing) community of researchers.
Nowadays, studies which are actually not using RP-
based methods refer to them, e.g. as alternative useful
approaches or some kind of standard methods. Obvi-
ously, RP-based methods are meanwhile well-accepted
in data science.

1A RP is a matrix Ri,j = Θ

(
ε − ‖xi − xj‖

)
, represent-

ing all the times j when a state at time i is recurring. Fur-
ther information on RPs and RQA can be found, e.g. in this
special issue in [1] or in the review [2].

a e-mail: marwan@pik-potsdam.de (corresponding
author)

A growing number of available software is support-
ing this positive development (Fig. 2B). Progress in
theoretical understanding of RP analysis, GPU-based
computing, and software development in general have
allowed very efficient and fast packages for Python and
Julia (cp. Sect. 2.1). Such packages are beneficial for
working with the challenges of big data and integrating
them to machine learning approaches. A list of software
is available at [37].

Big and ever growing data sets, multi-scale and spa-
tial data, very long or very short data, data with
gaps, irregular sampling and uncertainties are chal-
lenges in many scientific disciplines. Novel ideas and
concepts are required to answer the research ques-
tions of today. The ongoing technical developments of
RP-based approaches in both theoretical and practi-
cal domains provide tailored tools for the specific chal-
lenges. Here, we have selected a multitude of directions,
ranging from computational developments, over new
theoretical insight and new recurrence definitions, to
novel extensions and applications of RP-based research.
It allows the interested reader to catch up on hot topics
and recent developments in RP-based analysis.

2 Trends and novel directions

2.1 Efficient RQA computation

The recurrence matrix Ri,j = Θ(ε − ‖xi − xj‖) is
the basis for RP, RQA, and RN, but the calculation
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Fig. 1 Number of publications and studies using recur-
rence plot-based methods (based on the database available
at [36], May 2022) and citations referring to seminal studies
as retrieved from a Web of Science search (May 2022, details
in Appendix A.1)

of this recurrence matrix is an N × N pairwise test
(with N the length of the phase space trajectory xi,
i = 1, . . . , N), thus, comes with large computational
costs in the order of O(N2). Some of the subsequent
quantification (RQA measures, network measures) add
a further amount of computational complexity, usually
an additional O(N2). Therefore, long time series and
big data applications require a fast and efficient calcula-
tion of the recurrence matrix and the RP-based quanti-
fiers. Several approaches would be possible: an efficient
implementation, a parallelisation of the computation,
and approximation of the calculations.

Fast calculations can be performed, e.g. using
Python, a widely used software framework in the scien-
tific community. The pyunicorn package [39] uses a very
efficient implementation based on Cython and provides
recurrence network measures.

Recently, the Julia language was introduced with the
aim to provide a fast and very efficient tool for scien-
tific computations. In this line, the Julia package Recur-
renceAnalysis.jl (meanwhile integrated into Dynamical-
Systems.jl) was developed which also provides calcula-
tions for RPs and the main RQA measures [40]. The
calculation of RPs and RQA measures using Julia is
much faster than comparable implementations in R,
MATLAB, and Python, in particular for longer time
series N > 10, 000 (Fig. 3A).

Much shorter calculation times can be achieved
by parallelising the computations. For example, the
Python package PyRQA uses a divide & recombine
approach to distribute the computations on multi-core
processors or on an array of graphics processing units
(GPUs). The improvements can be of several magni-
tudes of reduced calculation time (Fig. 3A).

A completely different approach is using an approx-
imation of the RQA measures [38, 41]. Instead of pair-
wise testing the distance between all points of phase
space trajectory, the recurrences are estimated using a
coarse graining of the phase space, leading, e.g. to the
recurrence rate

(1)

RR(m) =
1

N2

N−m+1∑

i,j=1

Θ
(
ε − ‖xm

i − xm
j ‖)

≈
∑

x∈X

(hX(x))2,
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Fig. 2 (A) Subjects covered by publications using RP-based methods (based on Scopus subject classification database
in [36], May 2022, see also the notes in Appendix A.2); (B) software for RP-based analysis is available as standalone
applications and as packages for the most frequently used high-level programming languages (based on information at [37],
May 2022)
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Fig. 3 (A) Computation speed for recurrence plots and recurrence quantification measures for the Rössler system (details
in Appendix A.3). (B) The approximative RQA allows calculation times of a few seconds for time series of length larger
than 1 million data points, where standard single-thread calculations need hours (details can be found in [38])

with m the current (embedding) dimension and hX

the histogram of the phase space points. The line-
based RQA measures can be estimated by approxima-
tive RQA, e.g. for determinism

DET (m) ≈ m · RR(m) − (m − 1) · RR(m+1)

RR(1)
, (2)

(similar approximations for the other RQA measures
are available, see [38, 41]). The computational complex-
ity including the RQA measures is, thus, reduced to
O(N log N), resulting in an extreme reduction in the
calculation time (Fig. 3B). However, this acceleration
of RQA calculations comes with the cost of some inac-
curacies in the results.

2.2 Alternative recurrence definitions for recurrence
plots

The original definition of a recurrence in phase space
for creating a RP was to consider a certain number
of nearest neighbours [31]. This was soon changed to
define a recurrence in terms of a thresholded distance
between points in phase space2 [43, 44]. For most appli-
cations, both definitions work very well. Later, exten-
sions were suggested to add further criteria. Recur-
ring points should lie on a perpendicular plane [45], or
phase space trajectories should be parallel [46], aiming
to reduce the effect of sojourn points. Order patterns
are also a very powerful extension [47, 48], reducing the

2A comparison of the different concepts (from the recur-
rence networks point of view) to define recurrence by the
ε-neighbourhood or by the nearest neighbours approach can
be found in [42].

effects of non-stationarity, or to characterise the dynam-
ics (cf. Sect. 2.3). In the last years, some additional
ideas were suggested for specific research questions.

Specific applications require tailored recurrence defi-
nitions. For the identification of laminar regimes or to
have a variance-independent distance measure, it can
be helpful to apply the exponential function to the
actual distance Di,j = ‖xi −xj‖ between states xi and
xj [49, 50]

Ri,j = Θ

(
exp

[
−D2

i,j

2λ2

]
− ε

)
. (3)

This transformation of the distances Di,j provides val-
ues between 0 and 1, where 1 represents the closest and
0 the longest distances. Therefore, the thresholding is
now opposite. Such modification is, e.g. used to identify
laminar regimes (cf. Sect. 2.5).

If only phase differences are of interest, e.g. in mate-
rial testing using ultrasonic signal processing, or in
acoustic signal analysis, the actual amplitude should
be neglected. Here, the angular distance is a better
recurrence criterion than the spatial distance in phase
space [51]

Ri,j = Θ(ε − α) = Θ

(
ε − arccos

xi · xj

‖xi‖·‖xj‖
)

, (4)

where α is the phase difference between both points xi

and xj . Although the spatial difference between xi and
xj can be large, they can be considered to be recur-
rent because of a very small phase difference α (Fig. 4).
Such a recurrence criterion is particularly useful in the
analysis of ultrasonic waves for material testing or in
diagnosing atrial fibrillations [52, 53].

Another specific type of data, where the construction
of a phase space and measuring of distances between
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Fig. 4 Instead of using the spatial distance, the angular
distance, represented as the angle α between two states in
phase space, can be used to define recurrences. Although the
spatial difference between two points at the phase space tra-
jectory is large, both points can be considered to be recur-
rent because of the similar phase, indicated by very small
α

states at different time points might be difficult or
even impossible, are event like data. For such data, [54]
have introduced the edit distance metric, which is
based on transforming one sequence Si of events into
another one Sj (thus, the time series of events xi is
segmented into short sequences of length w of events
Si = {xi, xi+1, . . . , xi+w−1}). The cost for the mini-
mum operations required for such a transformation is
an appropriate distance measure. The edit distance has
been further extended to better understand the param-
eters within this measure [55],

Di,j = min
C

{
| I | + | J | −2 | C |

+
∑

(α,β)∈C

1
1 + e−k(‖ti(α)−tj(β)‖−τ)

}
, (5)

with I and J the set of indices of events in sequences
Si and Sj , C is the set of pairs of event indices in I
and J , ti(α) and tj(β) are the time points of the events
in Si and Sj . The parameter τ can be used to set the
maximal delay between events when considering them
as recurrent. This edit distance can be further inter-
preted as a difference filter, allowing us to construct an
equidistantly sampled time series from an irregularly
sampled time series, as typical in different geoscience
and astrophysics applications [12, 56]. Consequently, a
further application would even allow us to construct

RPs directly from irregularly sampled time series using
such edit distance measure [57, 58].

Such data from geosciences and astrophysics (and
not only from there) has often a certain fraction of
uncertainties, e.g. from age uncertainties in palaeo-
climate archives. Instead of a series of scalar values,
a time series would then be a series of probabilities
p(x , t). A recent development has combined a Bayesian
approach with RPs to derive a RP which explicitly rep-
resents also the uncertainties [59]. Instead of a binary
recurrence matrix, we get a matrix with probabilities
of recurrences Qi,j(ε) = p(‖xi − xj‖< ε). Although
such representation is very helpful for data with uncer-
tainties, the quantification is not as straight forward
as for binary recurrence matrices. It is still an open
question how line-based measures could be defined in
most reliable way (there are already some suggestions
[60]). Nevertheless, complex network-based analysis is,
of course, possible, as it was used to identify palaeocli-
mate regime changes, changes in the sea surface tem-
perature distribution of the equatorial central Pacific,
or in financial markets [59].

An alternative for data with uncertainties is fuzzy
recurrences. Here, a fuzzy objective function is min-
imized and the fuzzy cluster membership is used to
define a recurrence [61] and is beneficial when work-
ing with physiological data. This approach can also be
used for creating recurrence networks [62] and for cross-
recurrence analysis [63].

Finally, for analysing spatio-temporal recurrences, we
need a recurrence criterion that considers the spatial
variability in a temporal sequence of images X (t). A
promising distance measure is based on the mapogram
mb,i,j of an image X which can be compared to another
image X ′ using the Bhattacharyya distance [64]

DX,X′ =
B∑

b=1

√
nbn′

b

(
∑

b nb)(
∑

b n′
b)

Ni∑

i=1

Nj∑

j=1

√
mb,i,jm′

b,i,j

(6)

with X = X(t1) an image at time t1, X ′ = X(t2) an
image at time t2, i and j the indices of a pixel in an
image, Ni and Nj the size of the image, nb the his-
togram of grey values in the image (with B histogram
bins), and mb,i,j the mapogram (indicating the class of
a pixel with respect to the histogram). See Sect. 2.7 for
further details on spatio-temporal recurrence analysis.

2.3 Theoretical and parametric RQA and testing

The first years of RP-based method development were
founded by empirical findings and mainly lacking some
theoretical background, although some connections
between dynamical properties, line lengths, and recur-
rence times were already framed 1983 by Grassberger
and Procaccia [65, 66]. Meanwhile, several theoretical
findings directly related to RPs have been achieved.
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A fundamental finding was elaborated by [67], who
mathematically developed the connection between cor-
relation sum C(m) and the RQA measures recurrence
rate RR(m), determinism DET (m), and average diag-
onal line length L(m). Even more important are their
formulation of the asymptotic behaviour of these mea-
sures, i.e. to which values these measures will converge
when the length of the considered data goes to infin-
ity. They also show analytically that DET and L for
Gaussian white noise do not depend on the embed-
ding dimension. These considerations have been fur-
ther elaborated by [68, 69], which have further derived
the analytical expressions for several RQA measures
for certain stochastic processes, fractional Gaussian
noise, and correlated noise (first analytical solutions
were already given in [70]). Analytical and asymptot-
ical expressions for RQA measures of specific random
processes are important for defining baselines for bench-
marking and testing. Moreover, the fundamental rela-
tionship between RR(m) and other RQA measures can
be used to define approximative RQA measures, such
as Eq. (2).

Further research has considered to derive empirical
distributions for testing serial dependencies [71, 72] and
estimate KS entropy from recurrence times [73].

Another remarkable development is the use of RP-
based analysis to characterise stochastic dynamics,
although the original intention of RPs was to inves-
tigate the evolution of a phase space trajectory of a
deterministic dynamical system. Based on very specific
distribution of recurrence points in geometric pattern in
the RP, the type of the stochastic process can be deter-
mined [74]. It was shown that this approach can be used
to distinguish stochastic from deterministic dynamics
and works even for short data. Order patterns πi are
also useful for this purpose, because some order pat-
terns are very unlikely to occur for certain dynamics,
called “forbidden order patterns” [48, 75, 76]. For exam-
ple, an order pattern RP can be coloured by the spe-
cific recurring order pattern [75], providing the informa-
tion about the distribution of occurring order patterns
(Fig. 5).

From a more mathematical perspective, an indepen-
dence test for stochastic data was proposed, based on
recurrence rate and the Cramér-von Mises functional
applied to a U -process defined from these recurrence
rates [77]. The test works very well in comparison with
alternative tests, like Pearson, Spearman, or Kendall
correlations, or even more advanced tests (e.g. covari-
ance distance).

The idea of identifying slow driving forces from time
series using RPs has also been regularly considered
[78–80]. [79] combined the approach by [81] with spa-
tial RPs (cp. Sect. 2.7) to identify an external forcing on
marine ecological data. A novel concept to infer driving
forces from data feeds the RP as an image-like data rep-
resentation of the original time series into a deep learn-
ing framework [80]. The presented preliminary results
are rather promising (see also Sect. 2.9 for further com-
binations with machine learning approaches).

Few studies have investigated the small-scale struc-
tures of RPs and found links to characteristic dynam-
ics. We mention here two examples: First, the shape of
the block patterns in RPs is related to specific types of
intermittency [82]. Second, because of the very different
time scales in slow-fast dynamics, such dynamics causes
thickening of lines or even short lines in the RP almost
perpendicular to the main diagonal line direction [83]
(Fig. 6).

2.4 Causal and directed relationships

Different RP-based approaches have been proposed and
successfully implemented to detect causal and directed
relationships in data. Among them are network-based
approaches [85] and joint RPs [86–88]. The network
approach uses the inter-system recurrence network, a
combination of individual RPs for both systems X and
Y and their cross-RPs

IR =
(

RX CRXY

CRY X RY

)
(7)

with CRY X =
(
CRXY

)T

being the cross RPs between
systems X and Y . Applying geometrical considerations,
the cross-transitivity coefficient (and similar cross-
network measures) quantifies how information flows
between the systems, providing an indicator on the cou-
pling direction [85].

Approaches using joint RPs are closely related to
mutual information [2]. The recurrence measure of
dependence (RMD) is a recurrence-based probability
measure similar to transfer entropy [89]. Its extension
is a conditional version, the recurrence measure of con-
ditional dependence [87]

(8)

RMCD(X,Y |Z) =
1
N

∑

i

⎡

⎣ 1
N

∑

j

JRXY Z
i,j

× log

( ∑
j JRXY Z

i,j

∑
j RZ

i,j∑
j JRXZ

i,j

∑
j JRY Z

i,j

)⎤

⎦

(with JRXY Z the joint RP between systems X , Y , Z ),
which can be used to study indirect couplings or even
causal dependencies (when considering lagged values of
one variable, e.g. Z(t) = Y (t + τ)). A similar approach
is conditioning already the joint RP [88]

CJR = JRXY |Z ◦
(
1 − JRY Z

)
. (9)

This conditional joint RP can be easily extended to
more variables. RMCD and CJR have been shown to
indicate the correct causality relationship for different
kinds of challenging data [87, 88].
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Fig. 5 Order pattern RPs coloured with the corresponding order pattern for (A) Gaussian white noise, (B) autoregressive
process of 1st order, and (C) x -component of the Rössler system. Length of order pattern m = 3 and delay τ = 1, resulting in
six different order patterns πi, i.e. six different colours. The fraction of the specific recurring order pattern on all recurrences
is provided in brackets

Fig. 6 (A) Slow-fast
dynamics derived from the
Izhikevich model with
a = 0.15, b = 0.2, c = −65,
d = 8, I = 5, and sampling
time Δt = 0.1 [84]. (B) The
very different time scales in
the data of the Izhikevich
model cause small
appendages at the diagonal
lines that look like
sword-like structures
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2.5 New RQA measures and phase space
segmentation-based recurrences

Although the quantification of RPs has its roots in the
early 1990s, there are still some aspects that require
innovative ideas for quantifying the apparently differ-
ent visual impression of RPs. Inspired by the research
on fractal geometries, the lacunarity measure was
adopted to RPs [90]. It characterises the homogene-
ity of the RP and allows to detect characteristic time
scales, such as periodicities or extended laminar regimes
(Fig. 7).

Laminar regimes or transient trapping of states are
represented in the RP by extended blocks of recur-
rence points. Usually, a sliding windowing procedure
is applied to identify the changes between different
dynamics. A new measure has been suggested that can
identify the temporal variation of transient trapping
without windowing. It is based on a block invariant
measure [50]

v(i) =
t|(i)

t‖(i) + t⊥(i) − 1
, (10)

where t|(i), t‖(i), t⊥(i) are the geometric extensions of
the blocks in the RP. This promising new measure was
successfully applied to detect transient trapping events

in intracellular and plasma membrane compartmental-
isation.
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Fig. 7 Lacunarity for different prototypical systems repre-
senting more homogeneous (white noise) and quite hetero-
geneous RPs (AR(2) and multifractal Gaussian noise), as
well as a RP with characteristic temporal scales (Rössler
system). Technical details can be found in [90]
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In data analysis, it can be important to identify
the times of a specific dynamical behaviour. This cor-
responds to a segmentation of the phase space. [91]
have suggested several approaches to segment the phase
space into recurrence domains, e.g. using the chain of
transitions from one recurrence to another one, calling
it recurrence grammars. Such recurrence grammars
are related to Markov chain description of the data and
can be used to symbolise the RP or to specify a new
RP-based entropy measure (cf. Sect. 2.8 for an applica-
tion of this specific entropy).

The suggested method by [92] goes in a similar direc-
tion, which also segments the phase space but using
a Q-tree segmentation. The result is a classification of
recurrences to delineate heterogeneous recurrences,
an interesting concept to reveal the fractal nature of
state transitions.

2.6 Border effects, tangential motion & alternative
RP definitions

In RQA, border effects and tangential motion (sojourn
points) can heavily bias diagonal line-based character-
istics. In a finite size RP, these lines can be cut by the
borders of the RP, thus, bias the length distribution of
diagonal lines and, consequently, the line-based RQA
measures. Moreover, temporal correlations in the data,
especially when highly sampled flow data are used,
noise and an insufficient embedding of the time series
combined with the effect of discretization and an inade-
quate choice of parameters needed to construct the RP
can cause a thickening of diagonal lines (“tangential
motion”) (Fig. 8).

Both effects can have a substantial impact on certain
RQA quantifiers, e.g. the diagonal line length entropy
ENTR (cf. Sect. 3.4), especially for regular dynamics.
The border effects can be tackled in two ways. Either
by a special treatment in the according histogram of
any diagonal line which “touches” the RP-border [93]
or by rotating the RP by 45◦ (“window masking”) [93,
94], in order to distribute the induced bias equally on
all lines. For the histogram correction, we investigated
in a previous study [93] the window masking together
with the ideas to either discard all border lines (dibo
correction), to only keep the longest of all border lines
(kelo correction), or to replace all border lines by the
length of the line of identity, which had already been
proposed by [95] (cp. Fig. 9 for a simple sinusoidal sig-
nal). In general, for noise free or slightly noise corrupted
map data all these correction schemes solve the prob-
lem of the biased diagonal line length entropy due to
lines cut by the borders of the RP.

However, for flow data the effect of tangential motion
has a much bigger influence on the entropy bias than the
border effects. Alternative criteria of defining the RP
were proposed to solve this problem (cp. Subsect 2.2).
The already mentioned perpendicular RP [45] contains
only those points of the d -dimensional phase space
trajectory that fall into the neighbourhood of a refer-
ence point and lie in the (d − 1)-dimensional subspace

(Poincaré section) that is perpendicular to the phase
space trajectory at the reference point (Fig. 10B) . In
practice, an additional parameter is needed to account
for a certain deviations of a reference point being exact
on that surface of section. The iso-directional RP [46]
also promises to cope with the tangential motion, but
needs two additional parameters (Fig. 10C) . In this
approach, two points in phase space are denoted recur-
rent, if their mutual distance falls within the recur-
rence threshold ε and the distance of their trajecto-
ries throughout T consecutive time steps falls within
another recurrence threshold ε2. A further idea is the
true RP [96] counts only those points to be recurrent,
which first enter the ε-neighbourhood of a reference
point (Fig. 10D) . Finally, a definition of recurrences by
means of local minima was suggested (LM2P approach)
[97, 98]. In the latter approach, only local minima of the
distance matrix make up the RP (Fig. 10E). In practice,
a local minima detection method needs to be defined
including an additional parameter τm, which regulates
the tolerated spacing in between consecutive minima.

In addition to these recurrence criteria, a more
geometric-based approach was proposed using a skele-
tonisation schema [93]. Since a “thickened” line consists
of many adjacent diagonal lines, this parameter-free
algorithm shrinks all “thickened” diagonal lines in a RP
down to the longest line contained in such a “thickened”
line. The result is a RP, which only consists of diagonal
lines with unity width (Fig. 10F). Even though the true
RP and the LM2P RP (Fig. 10D, E) do not look to dif-
fer much from the skeletonised RP, in practice the com-
putation of the skeletonised RP yields the most robust
results. Together with the border effect corrections of
the line length histograms, this approach yields mean-
ingful estimates for the diagonal line length entropy
ENTR. Furthermore, when computing the so corrected
ENTR for increasing minimum considered line lengths
	min > 2, the noise level can be estimated and the skele-
tonised RP can then be used as a noise filter. The effect
of these corrections on other RQA-quantifiers, including
those based on white vertical lines (recurrence times),
needs to be studied as further described in Sect. 3.4.

2.7 Spatio-temporal recurrence analysis

The fast development of the computational power of
computers makes the application of RPs and RQA for
spatial and spatio-temporal data analysis possible. A
simple idea considered only static images and trans-
formed the two-dimensional images to one-dimensional
series of grey values [99, 100]. Unfortunately, the RQA
based on this approach is influenced by the orientation
of the spatial structures. The more advanced approach
is to compare each spatial direction of the image,
finally resulting in a RP of four or even six dimensions
(for two-dimensional or three-dimensional data, respec-
tively) [101]. This latter concept is challenging because
the quantification of the recurrence structures in such
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Fig. 8 Parallel and close
parts of a phase space
trajectory (A) correspond
to diagonal lines of length �
in a RP (B). Diagonal lines
can be cut by the border of
the RP (green circles). High
sampling can cause
tangential motion, a
thickening of diagonal lines
(orange circles). Modified
after [93]
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Fig. 9 Diagonal line length histograms of (A) the conventional line length computation and (B–E) of the correction
schemes proposed in [93] for a monochromatic time-delay embedded sinusoidal with an oscillation period T = 100 time
units (m = 2, τ = T/4). (F) Enlargement of the histograms from panels (A–D), focusing on the shorter line lengths.
A corresponding enlargement of (E) does qualitatively look the same, but with reduced frequencies, due to the smaller
effective window size. For a better visibility, we enlarged single bars in (B) to (E) and limited the view to a frequency range
[0 3] in (A) to (E) (in (F) the full range is used). Modified after [93]
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Fig. 10 Different approaches for avoiding the effect of tangential motion in a recurrence plot (RP), exemplary shown for
the Rössler system (with parameters a = 0.15, b = 0.2, c = 10, sampling time Δt = 0.2). (A) Standard RP with fixed
recurrence threshold ensuring 4% global recurrence rate as a basis to all other RPs shown in this figure. (B) Perpendicular
RP with angle threshold ϕ = 15◦, (C) isodirectional RP with T = 5 [sampling units] and ε2 = ε/2, (D) true recurrence
point RP (TRP) with Tmin = 5 [sampling units], which coincides with the first minimum of the mutual information, (E)
thresholded local minima approach with two parameters (LM2P) and τm = 5, and (F) “skeletonized” diagonal RP. Modified
after [93]

dimensions is not trivial. Moreover, although all differ-
ent spatial directions are compared, objects with rota-
tional symmetries still have an impact on the results.
Consequently, an extension was introduced by incorpo-
rating rotations and allowing the identification of irreg-
ular circular patterns [102]. Recently, another extension
was suggested to weight the grey value distances by the
distances between the pixel values [103]

wi,j =
(

1 − ‖xi − xj‖
range(x)

)
· D(i, j) (11)

with D(i, j) a Gaussian weighted distance function of
the spatial distance between pixels i and j . The authors
have used this recurrence criterion to construct and
analyse recurrence networks of spatial data.

Spatio-temporal data such as surveillance videos or
satellite data are another interesting application field of
RP-based analysis. The most simple approach would be
to compare the images pixel-wise (each pixel forms the
component of phase space vector), but this would be

a very sensitive approach resulting in very low detec-
tion rates of recurrences. An alternative would be to
compare the grey value histograms. However, here the
spatial information in an image is completely lost. A
powerful approach combining both concepts was sug-
gested by [64]. They suggest to apply mapograms to
compare images (cp. Sect. 2.2). Mapograms come with
a scaling factor which even allows the specific focus
on different spatial scales that can be used in a multi-
scale analysis [104]. As already mentioned, RPs based
on mapograms can be used to infer the driving force
from spatio-temporal data [102].

The identification of spatio-temporal recurrences
becomes challenging when only a small part of an image
represents a dynamical pattern. [105] proposed to apply
a singular value decomposition (SVD) to identify the
regions of interest (i.e. the regions with some variabil-
ity) and use only the data within these regions in a
regular RP. All the pixels in such a region are consid-
ered to be the components of a phase space vector (like
the simple approach mentioned before).

123



14 Eur. Phys. J. Spec. Top. (2023) 232:5–27

2.8 Selection of the recurrence threshold

Discussions on selecting the recurrence threshold ε have
been included already several times in many publica-
tions [2, 49, 106–109]. This shows the importance of this
topic, as the selection of ε is a trade-off from having as
small threshold as possible but at the same time a suffi-
cient number of recurrences which strongly depends on
the research question.

An easy approach which helps in most cases is to use
a quantile of the distance distribution Di,j = ‖xi −xj‖
(Fig. 11A). Selecting the threshold by using the 5%-
quantile, ε = D0.05, would result in a recurrence rate of
5%. This approach provides a robust recurrence char-
acteristics for different embedding dimensions [108].

Another criterion for selecting ε is based on topo-
logical similarity, where such a value for ε is selected
where small changes ε±δε have minimal impact on the
structures in the RP. We can think about several crite-
ria that measure the topological similarity of RPs. One
idea for testing this is based on measuring the Ham-
ming distance ΔH between the RPs thresholded with
ε, ε − δε, and ε + δε, i.e.

ΔH(ε,±δε) =
1

N2

∑

i,j

|Ri,j(ε) − Ri,j(ε ± δε)|.

(12)

[110] have suggested to chose such an ε where the dif-
ference

DH(ε) =
∣∣∣ΔH(ε,+δε) − ΔH(ε,−δε)

∣∣∣ (13)

is minimal (Fig. 11B). A similar idea is to consider
the RP as a RN and find network modules, again for
threshold ε and small deviations in the threshold ε−δε
and ε + δε [107]. The first criterion is to have exactly
the same number C of modules, i.e. C(R(ε − Δε)) =
C(R(ε)) = C(R(ε + Δε)) > 1. The second criterion
tries to minimize the difference in the size (number of
nodes) of a given module k in R(ε) and R(ε + Δε),

arg min ε

∣∣∣|Mk(R(ε + Δε))| − |Mk(R(ε))|
∣∣∣ (14)

with Mk the kth module in the network and |Mk| the
size of the module (the number or nodes or phase space
states in this module). This procedure identifies such
thresholds where structures in a RP do not change
much for small deviation in ε.

The next criterion which was suggested by several
authors tries to maximize the homogeneity of RPs. We
had already seen the symbolisation based on the recur-
rence grammars in Sect. 2.5. [91] suggest to select ε
in a way to have the distribution of the symbols as
uniform as possible. This corresponds to a maximisa-
tion of the entropy of the symbol distribution. A very
similar approach was suggested by [111], which is using
local recurrence patterns of specific size (e.g. n = 2, cor-
responding to {Ri,j , Ri,j+1, Ri+1,j , Ri+1,j+1}), so-called

micro-states. The criterion is to maximise the diversity
of structures/patterns in the RP, i.e. the micro-states
should be equally distributed, leading to the criterion
that the entropy of the micro-states distribution should
be maximal

arg max ε S(P (μ)). (15)

As an alternative to recurrence grammars, the transi-
tion probabilities between recurrence domains can be
used [112]. Again, we find an optimal ε where the
entropy of these transition probabilities is maximal,
ensuring equally frequent transitions between different
recurrence domains.

Whereas the preceding suggestions for selecting ε are
mainly based on empirical arguments and without spec-
ifying for which research question it might work or not,
[109] elaborated a procedure with a deliberate theory.
The goal is to estimate dynamical invariants, like corre-
lation dimension C2 or K2 entropy. Usually, such mea-
sures should be estimated in the limit ε → 0. How-
ever, [109] could show that there will be a lower limit
required, i.e. ε ∈ [βεopt, εopt], with 0 < β < 1. More-
over, they found that ε should be selected in such a
range which minimises the estimation errors of C2(ε)
(the estimation errors when estimating K2 can also be
used).

As the final approach for selecting ε, we mention
a method derived from complex networks. In net-
works, the eigenvalues of the Laplace matrix Li,j =
δi,j

∑
j Ai,j − Ai,j (with Ai,j = Ri,j − δi,j the RN)

provide information about the connectivity of the net-
work [113]. As soon as the second smallest eigenvalue
λ2 becomes larger than 0, the corresponding ε ensures
that the RN will not have isolated parts, but is a con-
nected network (Fig. 11C). This approach is related to
former ideas of a percolation threshold suggested for
network-based recurrence analysis [33, 114].

2.9 Recurrence and machine learning

Machine learning is currently a very fast-growing field.
Not surprisingly that recurrence analysis and machine
learning approaches are combined and tailored to spe-
cific research questions. Generally speaking, comput-
ing a RP of a time series is one way of transform-
ing a sequence of data into an image, called “time
series imaging”. This transformation is even more com-
plicated, when the time series gets embedded into a
higher dimensional space beforehand (c.f., Sect. 3.1).
The image, i.e. the RP, can be the starting point of a
consecutive machine learning workflow (Fig. 12A). This
seems the natural way to go, since many machine learn-
ing tools, such as convolutional neural networks (CNN),
were developed for image classification. Of course, other
image encoding techniques such as Gramian angular
fields or Markov transition fields instead of RPs are
possible and have also been used [115].

Starting from the RP many different ways of set-
ting up a ML workflow are possible and researchers
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combined several established ML-methods for classi-
fication and prediction tasks. First attempts started
more than 15 years ago using RQA measures as fea-
tures in support vector machines (SVM) for regres-
sion and classification purposes [116, 117] (Fig. 12B).
Features based on RQA measures are meanwhile fre-
quently used for classification purposes using SVMs,
CNNs, k -nearest neighbour or random forest classifica-
tions [118–124] and the ML-toolbox offers a variety of
other methods for clustering and feature classification
(Fig. 12B). Also, other RP-based quantifiers, such as
based on JRPs for synchronisation, can serve as power-
ful features for ML classification methods [125]. Instead
of using the physically motivated RQA measures, which
use certain RP-structures, such as diagonal lines, auto-
mated image feature extraction techniques, e.g. spatial
bag-of-features (SBoF) or internal layer representation
of a pre-trained CNN, are possible and have been used
for forecasting in combination with another neural net,
e.g. a long short-term memory (LSTM) [126]. All suit-
able time series features can be used for forecast model
averaging [127], [e.g.], and RP-based features appear to
be a valuable complement to established features such
as mean and autocorrelation. [128]. The basic idea is
to use the features in a regression model for estimat-
ing weights of a number of given forecast models, such
that the weighted model forecast minimizes the predic-
tion error (Fig. 12B). Technically, a given set of fore-
cast models (e.g. ARIMA3, ETS4, NAIVE, etc.) are
fitted to the training period of each time series of the
training data and produce forecasts for the correspond-
ing test periods. At the same time, features are com-
puted/extracted for the training period of each time
series of the training data. Finally, the features and the
prediction errors for each of the given forecast model
are used to compute optimal weights of the models via
a regression model (e.g. XGBoost [127, 128]). Assum-
ing that the time series from the training data and the
actual data to be predicted are generated by the same

3Autoregressive integrated moving average.
4Exponential smoothing state space model.

process, these weights are finally used to produce the
final, improved prediction.

Of course, the RP can be used directly as an input for
a CNN (Fig. 12C). Either the CNN is trained to classify
different RPs [129–132], or to predict time series values
[115]. Such combinations of RPs and RQA measures
with machine learning were successfully applied for
transition detection, monitoring, and anomaly detec-
tion [80, 133–136].

Reservoir computing (e.g. liquid state machines, echo
state networks) is a specific approach of recurrent neu-
ral networks to predict the future states of a dynamical
system based on time series without a model [137, 138].
RQA was used to evaluate the results of such model-free
prediction [139]. But more interesting are, of course,
combinations of the learning algorithm with recurrence
features. A promising approach is to use the RQA for
fine-tuning of parameters in the learning [140].

So far, we have seen examples where RPs and RQA
can help to improve the ML applications. There are only
a few studies that use ML approaches to improve the
recurrence analysis. One idea is to use a learning algo-
rithm to classify the RP with respect to the underlying
dynamics [141].

3 Perspectives for future research

The trends in the methodological developments of RP-
based methods and their applications show the perspec-
tives for future research.

3.1 The embedding problem

The RP considers recurrences of the trajectory {xi}N
i=1

(with xi = x(ti)) of the considered dynamical sys-
tem’s phase space. However, in most applications, x
cannot be measured directly or completely, and only
a subset of observables is available. In such cases, x
must be reconstructed from the measured observables.
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k-means, 
DBSCAN, etc.

Fig. 12 Simplified exemplary and schematic machine learning workflows for classification and prediction using (A) the
RP as an image of the time series. (B) Features of the RP can be extracted via RQA yielding established features like
the recurrence rate (RR), determinism (DET), laminarity (LAM), etc., or via an autonomous image feature extraction
algorithm, e.g. spatial bag-of-features (SBoF), or pretrained convolutional neural network layers (CNN). These features
can be used for classification or—in combination with another regression algorithm—for averaging/weighting of prediction
models (e.g. ARIMA, ETS, NAIVE, etc.) in order to obtain an optimally weighted prediction model. (C) The RP can also
be used directly as input to a CNN in order to classify or predict the underlying time series

All of the numerous published methods for reconstruc-
tion of the phase space (e.g. [142–146]) introduce a cer-
tain number of parameters on which, consequently, the
calculated RP and the RQA depend. This is a cur-
rent field of research with the aim in automatising this
process and making it robust with respect to a sub-
sequent recurrence analysis (e.g. recently introduced

PECUZAL embedding algorithm [142]). However, it
has been shown that the optimization of embedding
parameters does depend on the actual research question
[147], like computing dynamical invariants or prediction
[148–152].

The PECUZAL algorithm can occasionally suggest
contradictory embedding parameters. For example, the
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logistic map is clearly a deterministic system and, there-
fore, the used test statistic (L-statistic, [145], related to
the false nearest neighbour statistic [153–157]) should
recommend an embedding with dimension m > 1. How-
ever, in chaotic regime, PECUZAL suggests no embed-
ding and treats the input as a stochastic signal. For
other maps, e.g. the Ikeda or Hénon map, this is not the
case. This does not seem to be a problem of the specific
test statistic or the PECUZAL algorithm. When run-
ning the “stochastic indicator” proposed by [155], it also
values the chaotic logistic map as a stochastic source
and does not suggest any embedding. A similar prob-
lem arises when analysing map-like data in a geosci-
entific context. These time series are often interpolated
and despite their inherent non-stationarity we should be
able to embed small pieces with approximately constant
parameters. In many cases, ranging from drill core data
under a certain age model to climate index data such
as the Southern Oscillation Index (SOI) and to Earth
system models of intermediate complexity (EMICs),
PECUZAL does not suggest any embedding and also
other stochastic indicators would treat the signals as
stochastic.

Therefore, the following research questions should be
addressed in the future: (1) How does interpolation
affect the estimation of the embedding parameters? (2)
How does the sampling resolution affect the estima-
tion of the embedding parameters (flow-like vs. map-
like data)? (3) Countless real-world processes can be
described by a Langevin equation. Yet, to our best
knowledge there is no study which systematically inves-
tigates the embedding of systems described by such
a stochastic differential equation. (4) The impact of
the embedding on phase space-based causality measures
such as convergent cross-mapping [158] (and its exten-
sions), joint recurrences [87, 159], or recurrence net-
works [85] have only been investigated briefly [147, 160].
Since causality analysis is of great interest in many sci-
entific (and commercial) fields, more thorough research
on this topic is of high importance.

3.2 Recurrence definitions

In order to visualise recurrences of a phase space tra-
jectory, we have to define what recurrence or actually
similarity of states actually means in the context of the
current research question. For this purpose, dynamical
similarity is mostly measured in terms of some metric
distance Di,j = ‖xi − xj‖ defined in the underlying
system’s d -dimensional phase space. However, specific
data or research questions can require modifications of
this similarity measure (Sect. 2.2). Depending on the
further growing field of recurrence analysis and ever
new applications as such as in machine learning, novel
similarity measures or metrics will be required, such as
for comparing field data and spatial patterns, or time
series with uncertainties and gaps [161], [e.g.].

3.3 Recurrence threshold

Even though many studies (Sect. 2.8) have considered
the question of how to objectively find an optimal recur-
rence threshold, this is still not yet answered satisfacto-
rily. In most applications where comparisons or relative
results are of interest, fixing the recurrence rate at a
certain value and adjusting the threshold accordingly
[108] will be appropriate. For other research questions
(such as characterising the specific dynamical proper-
ties), a reasonable, very specific threshold should be
selected. Although several ideas for an objective selec-
tion were suggested [107, 109–111, 113, 162], they are
mainly based on heuristic ideas and the used criteria
miss an objective physical foundation (e.g. why should
be a topological invariance desirable, why should be the
diversity of structures in RP maximised, why should be
the recurrence network connected?). An objective crite-
rion should either minimise the estimation error for the
dynamical invariants [109] or be a trade-off of maximis-
ing the number and length of diagonal line structures
and minimising the threshold value itself. Besides the
specific selection criterion, a systematic overview gen-
eralising typical applications of RP-based analysis and
best suited threshold selections would be helpful in par-
ticular for new users of the method.

3.4 Analytical RQA

The analytical explanation of various RQA measures
has made great progress in recent years (Sect. 2.3).
However, the relation between the line structures in the
RP and dynamical invariants has not yet been satisfac-
torily answered. For example, as shown in [93], the ana-
lytically derived relation between ENTR and K2 [163]
does not yield meaningful results for real-world time
series—neither for the border effect corrected [93], nor
for the uncorrected ENTR.

For an analytical expression of ENTR, we use the
limit of infinitely large RPs, thus, infinitely long diago-
nal lines 	max = ∞ [163]:

ENTRtheo = −
�max∑

�=�min

p(	) ln p(	), (16)

with p(	) being the theoretical probabilities of observ-
ing a line of length 	. By using the scaling property of
the correlation sum with the correlation entropy K2

[65], p(	) can be expressed in terms of K2, p(	) =(
1 − e−K2

)
e−K2(�−1); thus, we find a theoretical expres-

sion for the diagonal line length entropy [163]

ENTRtheo = K2

(
1
γ

− 1
)

− ln γ, (17)

with γ = (1 − e−K2). For increasing K2, ENTR will
decrease (Fig. 13). Eq. (17) holds only in the limit of
N → ∞, but in real-world applications, we have finite
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Fig. 13 Theoretical values of the diagonal line length
entropy, Eq. (16), for different upper limits of the maxi-
mum encountered diagonal line �max. The case �max = ∞
corresponds to the analytical expression in Eq. (17)

Fig. 14 Relationship between ENTR and K2 for the logis-
tic map, calculated from time series of length N = 2, 000
embedded in two dimensions with unity lag, a fixed recur-
rence threshold ε = 0.05, a minimum line length �min = 2,
and the kelo correction applied. For lower choices of the
recurrence thresholds, the graphs looked similar and only
for higher thresholds the agreements with the expected val-
ues got worse

time series lengths, i.e. N � ∞; thus, the upper limit in
the sum of Eq. (16) is 	max � ∞. This results in signif-
icant deviations of ENTR from the theoretical value in
the weak chaotic regime, 0 ≤ K2 ≤ 0.01 (Fig. 13) and
is especially important for real-world applications with
data set lengths < 5, 000. In principle, it should be pos-
sible to get the “right” approximation by considering
the length of the available data.

However, when calculating ENTR from RPs and
comparing it with the approximated values derived
from Eq. (16), we find strong discrepancies in partic-
ular for K2 < 0.3 (Fig. 14). These differences remain
also for many different parameter settings (e.g. very

small ε) and different systems (the correction for bor-
der effects, as briefly discussed in Sect. 2.6, also do not
improve this negative result). Of course, the main prob-
lem when using real-world data or even model flow data
are that it is not trivial to estimate K2 properly, which
could be the potential reason for such strong deviation.
But even for a very simplistic system like the logis-
tic map, where we can analytically compute K2 by the
positive Lyapunov exponent λ(r) = 〈log(|r−2rx|)〉, the
theoretical relationship as visible in Fig. 13 cannot be
approximated.

Addressing the following questions would be helpful
in order to make advances in transition and bifurca-
tion detection as well as classifying regimes: (1) Fur-
ther elaborate the relationships between structures in
RPs (diagonal and vertical lines, recurrence times) and
dynamical invariants; compare the different estimations
based, e.g. on line length distributions [164, 165], recur-
rence rate [65], recurrence entropy [163], or recurrence
times [73]. (2) Investigate the sampling effect on these
relations [166] and clarify why some of these relations
(such as the ENTR − K2-relation, Eq. (17) and simi-
lar the DET −K2-relation) do not match observational
data. (3) A thorough study on the impact of the cor-
rection schemes [93] (see Sect. 2.6) on the estimation of
dynamical invariants is needed.

3.5 Significance tests for RQA

In cases where the experimental design allows the acqui-
sition of distributions of RQA characteristics, it is pos-
sible to make statements about the significance of the
results. In most passive experiment setups, as it is
often the case in medical applications, astrophysics,
or geoscience, this is not possible. Hypotheses testing
on observations of a system should then be performed
using known test models (which correspond to the null).
Recent theoretical work which derived the theoretical
values for RQA measures of specific systems (mainly
stochastic systems) will help in evaluating and bench-
marking results [68, 69]. However, this approach works
only for specific null-hypotheses (e.g. testing against
noise). For more general hypothesis testing, we will rely
on surrogate data, an appropriate Monte Carlo sample
of the underlying data for a given null hypothesis. Sur-
rogates are generated by keeping characteristics of the
observed system related to the null, but induce ran-
domness at the same time (constrained randomisation)
[167]. In the context of recurrence analysis, this trans-
lates into the question of how to construct surrogate
phase space trajectories, distance or recurrence matri-
ces, which are consistent with the null. It would, thus,
be beneficial to construct surrogates of phase space tra-
jectories in order to obtain distributions of correspond-
ing RQA statistics, which could then be used for sta-
tistical testing.

A promising method is using twin surrogates [168],
which constructs surrogates from (1) identifying twins
in the phase space trajectory (points which share the
same neighbourhood) and (2) randomly jump to one
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Table 1 Merged Scopus subjects

Summary subject Subjects included

Health and Life Sciences Health Sciences

Medicine

Health Professions

Nursing

Life Sciences

Physics and Astronomy Physics and Astronomy

Physical Sciences

Economics, Finance, Business Decision Sciences

Business, Management
and Accounting

Economics,
Econometrics and
Finance

Engineering Engineering

Energy

Materials Science

Chemistry Chemistry

Chemical Engineering

Pharmacology,
Toxicology and
Pharmaceutics

Biochemistry, Genetics and
Molecular Biology

Biochemistry, Genetics
and Molecular Biology

Immunology and
Microbiology

Neuroscience, Psychology Neuroscience

Psychology

Environmental, Earth and
Planetary Sciences

Environmental Science

Earth and Planetary
Sciences

of the possible futures of the existing twins. The draw-
back is, of course, that for proper statistical testing we
would seek around 1, 000 surrogates or more and in
the described method this number is determined by the
total number of twins, which is a property of the data
and is often too small.

Another idea for line-based RQA statistics in the run-
ning window approach for transition detection is based
on bootstrapping line structures [169]. To estimate the
unknown variance of the diagonal line length distribu-
tion of a RP, surrogate line length distributions are
bootstrapped from the cumulative line length distribu-
tion of all windows. Although this approach is working
well in most cases, the resulting confidence intervals are
sensitive to the number of bootstrapped lines. There is
no objective way to determine this number, because the
number of lines can vary between the windows.

Thus, there is still an urgent need for robust methods
that construct RP surrogates, which preserve the basic

properties (correlation structure) of, e.g. the RP or the
underlying state space trajectory. This would affect all
existing RQA measures and would allow to make state-
ments about the statistical relevance a measured RQA
statistic has, even in passive experiments with single
runs.

3.6 Machine learning combined with recurrence
analysis

Machine learning (ML) approaches become more and
more accepted and used also in complex systems sci-
ence. RPs and RQA are already used as features in ML
applications mainly for classification purposes, but also
automated feature extraction methods are increasingly
used (Sect. 2.9). The main question here is whether
the RQA features, some of which have a relationship
to dynamical invariants (i.e. have physical meaning),
are a useful preprocessing step before applying a par-
ticular ML method for classification or prediction. Or
whether suitable image feature extraction methods,
such as CNNs are the way to go. Certainly, the compu-
tation of RQA features does not depend on too many
free parameters and, thus, does not require any addi-
tional hyperparameter optimization or training. This is
an important point, as multiple stacked ML methods
easily become unmanageably complex models that are
potentially prone to overfitting and additionally require
a large amount of (stationary) training data. For the
direct application of CNNs to the time series image
(Fig. 12C), a sound study is also needed examining the
difference between feeding a RP or the unthresholded
distance matrix.

New directions in using ML approaches are time
series-based predictions using reservoir computing,
which might benefit by applying concepts from RPs
and the according recurrence networks.

The future developments with respect to ML and RPs
will see further cross-fertilisations. For example, ideas
of time series imaging used for ML-based classifications
such as Gramian summation fields and Markov transi-
tion fields [170, 171] could provide new definitions for
recurrences.

4 Conclusions

Methodical research on recurrence plots (RPs) and
recurrence quantification analysis (RQA) is still a lively
field. The last years have revealed a number of impor-
tant new solutions for specific research questions, but
also gave some answers to more general challenges in
RP-based data analysis. Nevertheless, there are still fur-
ther open ends and directions which should be consid-
ered in the future.
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A Appendix

A.1 Citations

To measure the number of citations per year for the
basic, most cited works, a search query was placed
at Web of Science (2022-05-04) using the DOIs of the
paper [2, 31–35]. The search query for DOIs was

The search results are available via
https://www.webofscience.com/wos/woscc/citation-

report/bd5b7e1a-63b3-4345-9626-215d23f8e7e1-
35998ece.

A.2 Subjects

The database of publications (N = 3, 618 by May 2022)
on or using RP-based methods [36] is used to retrieve
the Scopus subjects of them. This has been performed
using a Python script to get this information via
the Altmetric web service. Some of the Scopus sub-
jects were summarised because of significant overlap
(Table 1). A publication can cover multiple Scopus sub-
jects; therefore, the information in Fig. 2B does not
mean exclusive subjects per publication and the total

sum of presented subjects does not correspond to the
total number of publications.

A.3 Measuring the calculation time for recurrence
analysis

We measured the calculation time for creating a RP and
calculation of the standard RQA measures depending
on data length N for the Rössler system with the stan-
dard parameters (a = 0.25, b = 0.25, and c = 4) [172]
and a sampling time of Δt = 0.05. We used only the
x -component of the Rössler system after removing the
first 1,000 points as transients and applied a simple time
delay embedding with m = 3 and τ = 6. The RP and
RQA calculations were implemented in MATLAB (Ver-
sion R2022a), R (Version 4.0.2), Julia (Version 1.6.4),
and Python (Version 3.8.8). For MATLAB, we used the
rp code v1.1 provided by [173], for R the crqa package
v2.0.2 [174], for Julia the package DynamicalSystems.jl
v1.4.0 (RecurrenceAnalysis v1.5.2) [40], for Python the
pyunicorn v0.6.1 package [39], as well as the PyRQA
v8.0.0 package [175]. The CRP Toolbox for MATLAB
was not used, because the implementation is interwoven
with a graphical user interface and, thus, the new ren-
dering engine of MATLAB is strongly interfering and
slowering the calculations since its introduction in 2014
[176].

The recurrence analysis was performed on the time
series obtained from the Rössler system with grow-
ing length, starting with N = 200, increasing in steps
to provide equidistant points along the x -axis in a
log–log plot. The increase in length was stopped when it
exceeded 100,000 or when the calculation time exceeded
30 sec (i.e. final time series had lengths 200, 237, 282,
335, 398, 473, 562, 668, 794, 944, 1,122, 1,334, 1,585,
1,884, 2,239, 2,661, 3,162, 3,758, 4,467, 5,309, 6,310,
7,499, 8,913, 10,s593, 12,589, 14,962, 17,783, 21,135,
25,119, 29,854, 35,481, 42,170, 50,119, 59,566, 70,795,
84,140, and, 100,000). For each selected length, the cal-
culation time was measured 5 times and then averaged.

The calculations were performed on a 2.3 GHz Quad-
Core Intel Core i7 with 16GB RAM, except the calcula-
tions using the PyRQA package, which were performed
on a Nvidia GPU Tesla V100 with OpenCL 1.2.
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