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Abstract The change in the mean temperature in Finland

is investigated with a dynamic linear model in order to

define the sign and the magnitude of the trend in the

temperature time series within the last 166 years. The data

consists of gridded monthly mean temperatures. The grid

has a 10 km spatial resolution, and it was created by

interpolating a homogenized temperature series measured

at Finnish weather stations. Seasonal variation in the

temperature and the autocorrelation structure of the time

series were taken account in the model. Finnish tempera-

ture time series exhibits a statistically significant trend,

which is consistent with human-induced global warming.

The mean temperature has risen very likely over 2 �C in

the years 1847–2013, which amounts to 0.14 �C/decade.
The warming after the late 1960s has been more rapid than

ever before. The increase in the temperature has been

highest in November, December and January. Also spring

months (March, April, May) have warmed more than the

annual average, but the change in summer months has been

less evident. The detected warming exceeds the global

trend clearly, which matches the postulation that the

warming is stronger at higher latitudes.

Keywords Temperature change � Time series analysis �
State space models

1 Introduction

The global average temperature has increased by about

0.8 �C since the mid-19th century. It has been shown (e.g.,

Bloomfield 1992; Gao and Hawthorne 2006; Wu and Zhao

2007; Keller 2009) that this increase is statistically sig-

nificant and that it can, for the most part, be attributed to

human-induced climate change (IPCC 2013; Foster and

Rahmstorf 2011). A temperature increase is obvious also in

regional and local temperatures in many parts of the world.

However, compared with the global average temperature,

the regional and local temperatures exhibit higher levels of

noise, which has largely been removed from the global

temperature due to the higher level of averaging. It is

therefore not always clear that a regional or local warming

signal, although apparent ‘‘to the naked eye’’ in the tem-

perature data, can, under strict assumptions, be considered

statistically significant. Because climate change is one of

the most serious environmental issues today, the question

of statistical significance in local and regional temperature

trends is not only of scientific but also of public interest.

In this article, we consider the time series of Finnish

average temperatures in 1847–2013. Because Finland is

located in northern latitudes, it is subject to the polar

amplification of climate change-induced warming, which is

due to the enhanced melting of snow and ice and other

feedback mechanisms (see, e.g., Screen and Simmonds

2010; Serreze and Barry 2011). Therefore, warming in

Finland is expected to be approximately 50 % higher than

the global average. Conversely, the location of Finland

between the Atlantic Ocean and continental Eurasia causes

the weather to be very variable, and thus the temperature

signal is rather noisy.

The concept of trend in itself is not completely free of

ambiguity (e.g., Wu et al. 2007). Ambient temperature time
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series, for example, exhibit autocorrelation created by

processes that are not completely understood. Therefore,

the choice of the autocorrelation model is somewhat arbi-

trary, which is reflected in the obtained trend and its sig-

nificance level. It is relatively straightforward to calculate

different averages and linear trends from the observed

temperatures. However, to evaluate the significance of the

observed changes relative to the natural year-to-year vari-

ability and to give realistic uncertainty estimates of the

trends we need statistical modeling. In this paper we have

used dynamic regression to model the seasonality and the

background level of the average temperature in Finland for

the years 1847–2013. As our model fits the observed data

well and the non-modeled part of the variability, the model

residuals, can be seen to consisting of independent

Gaussian noise, we can safely say that the uncertainty

attributed to the trend values given here is well justified.

2 Data

Tietäväinen et al. (2010) created an over 160-year-long

time series of monthly mean temperature grids with 10 km

resolution for Finland. Homogenized station values of

monthly mean temperature (Tuomenvirta 2001) from

Finnish weather stations as well as monthly mean tem-

peratures from selected weather stations in Sweden, Nor-

way, and Russia near the Finnish border were used for the

spatial interpolation. A kriging interpolation method

(Matheron 1963; Ripley 1981), especially developed for

climatological applications in Finland (Henttonen 1991),

was used for creating the monthly mean temperature grids.

As external forcing parameters, the kriging method took

into account the geographical coordinates, elevation of the

terrain, and the percentage of lakes and sea in each grid

box. At the 10 km resolution, a total of 3,829 grid boxes

were needed to cover the whole of Finland. Besides,

according to Tietäväinen et al. (2010), this spatial model

has previously been applied in climatological research

projects conducted by Venäläinen and Heikinheimo

(1997), Vajda and Venäläinen (2003), Venäläinen et al.

(2005), Vajda (2007), and Ylhäisi et al. (2010).

The spatial representativeness of the observation station

network is highly dependent on time. A meteorological

observation network was initiated in 1846 by the Societas

Scientiarum Fennica—The Finnish Society of Sciences and

Letters (Finska Vetenskaps-Societeten). The extent of data

is limited to temperature measurements from six stations in

the first year of the time series in 1847. After decades of

slow growth in the number of observation stations, in the

1880s, many new observation stations were established in

different parts of southern and central Finland; however, in

northern Finland, the first weather stations were not set up

until the early 20th century. Therefore, data from Sweden

and Norway is crucial. The number of stations used for the

interpolation process increased continuously until the

1970s, when there were 179 stations in the network, after

which it has slowly decreased. The density of the station

network is still higher in southern and central Finland than

in the northern part of the country. Stations outside of

Finnish borders were removed from the kriging interpola-

tion after 2002 and currently there are more than 120 sta-

tions in the network. More details on the station network

can be found in Tietäväinen et al. (2010).

The limited amount and uneven distribution of the

observation stations is the main source of uncertainty in the

interpolated temperature fields. Tietäväinen et al. (2010)

determined the errors and uncertainties in the annual and

seasonal mean temperatures calculated from the monthly

grids for the whole of Finland. According to their study, the

uncertainty in annual and seasonal mean temperatures of

Finland during the 19th century was large, with a maxi-

mum of more than ±2.0 �C in wintertime in the mid-

1800s. At the beginning of the 20th century, the uncertainty

related to the limited station network was in wintertime less

than ±0.4 �C and during other seasons less than ±0.2 �C.
For the monthly mean temperature grids, corresponding

uncertainty calculations have not been made. Even though

the Finnish station values of monthly mean temperatures

were homogenized, minor uncertainties may have been

introduced into the temperature grids both by inaccuracies

in the homogenization process and possible remaining

heterogeneities in the station time series (Tietäväinen et al.

2010). Figure 1a shows the annual mean levels of the

temperature in Finland and 1b shows the monthly values

from the last decade in order to demonstrate the yearly

variation in the time series. In this paper, we use the data

set of Tietäväinen et al. (2010) that has been extended to

the end of year 2013.
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Fig. 1 a Annual means of the temperature in Finland b seasonal

variation of temperature within period 2002–2013
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3 Statistical methods

A trend is a change in the statistical properties of the

background state of a system (Chandler and Scott 2011).

The simplest case is a linear trend, in which, when appli-

cable, we need to specify only the trend coefficient and its

uncertainty. Natural systems evolve continuously over

time, and it is not always appropriate to approximate the

background evolution with a constant trend. Furthermore,

the time series can include multiple time dependent cycles,

and they are typically non-stationary, i.e., their distribu-

tional properties change over time.

In this work, we apply dynamic regression analysis by

using dynamic linear model (DLM) approach to time series

analysis of Finnish temperatures. DLM is used to statisti-

cally describe the underlying processes that generate vari-

ability in the observations. The method will effectively

decompose the series into basic components, such as level,

trend, seasonality, and noise. The components can be

allowed to change over time, and the magnitude of this

change can be modeled and estimated. The part of the

variability that is not explained by the chosen model is

assumed to be uncorrelated noise and we can evaluate the

validity of this assumption by statistical model residual

diagnostics.

Our model is, of course, just one possibility to

describe the evolution of the observed temperatures. We

see it as a very natural extension to non-dynamic multiple

linear regression model. The method allows us to esti-

mate both the model states (e.g. time-varying trends) and

the model parameters (e.g. variances related to temporal

variability), and we can assess the uncertainties and sta-

tistical significance of the underlying features. In this

study, we are not trying to use the model to predict future

temperatures, but to detect trends by finding a description

that is consistent with the observed temperature vari-

ability. To study the adequacy of our chosen model, we

examine the model residuals to see if the modeling

assumptions are fulfilled.

With a properly set-up and estimated DLM model, we

can detect significant changes in the background state and

estimate the trends. The magnitude of the trend is not

prescribed by the modeling formulation, and the method

does not favor finding a ‘‘statistically significant’’ trend.

The statistical model provides a method to detect and

quantify trends, but it does not directly provide explana-

tions for the observed changes, i.e., whether for example

natural variability or solar effects could explain the chan-

ges in the background level. Model diagnostics and the

increase in the observational data will eventually falsify

incorrect models and other poorly selected prior specifi-

cations (see e.g. Tarantola 2006).

Dynamic linear models are linear regression models

whose regression coefficients can depend on time. This

dynamic approach is well known and documented in time

series literature (Chatfield 1989; Harvey 1991; Hamilton

1994; Migon et al. 2005). These models are sometimes

called structural time series models or hidden Markov

models. The latter comes from the fact that dynamic

regression is best described by the state space approach

where the hidden state variables describe the time evolu-

tion of the components of the system. Modern computa-

tionally oriented references of the state space approach

include Petris et al. (2009) and Durbin and Koopman

(2012). The first describes a software package dlm for R

statistical language that can be used to do the calculations

described in this paper. We have used the Matlab software

and computer code described in Laine et al. (2014). In this

work, we use a DLM to explain variability in the temper-

ature time series using components for a smooth varying

locally linear mean level, for a seasonal effect, and for

noise that is allowed to have autoregressive correlation.

The autoregressive stochastic error term is used to account

for long-range dependencies, irregular cycles, and the

effects of different forcing mechanisms that a model with

only second order random walk for mean and stochastic

seasonality does not suffice to explain.

A DLM can be formulated as a general linear state space

model with Gaussian errors and written with an observation

equation and a state evolution equation as

yt ¼ Ftxt þ vt; vt �N 0;Vtð Þ; ð1Þ
xt ¼ Gtxt�1 þ wt; wt �Nð0;WtÞ; ð2Þ

where yt are the observations and xt is a vector of unob-

served states of the system at time t. Matrix Ft is the

observation operator that maps the hidden states to the

observations and matrix Gt is the model evolution operator

that provides the dynamics of the hidden states. We assume

that the uncertainties, represented by observation uncertainty

vt and model error wt are Gaussian, with observation

uncertainty covariance Vt and model error covariance Wt.

The time index t will go from 1 to n, the length of the time

series to be analyzed. In this work, we analyze univariate

temperature time series, but the framework would also allow

the modeling of multivariate series. We use notation com-

mon to many time series textbooks, e.g., Petris et al. (2009).

Trend will be defined as a change in the mean state of

the system after all known systematic effects, such as

seasonality, have been accounted for. To build a DLM for

the trend we start with a simple local level and trend model

that has two hidden states xt ¼ lt at½ �T , where lt is the
mean level and at is the change in the level from time t-1 to

time t. This system can be written by the equations
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yt ¼ lt þ eobs; eobs �Nð0; r2t Þ; ð3Þ

lt ¼ lt�1 þ at þ elevel; elevel �Nð0; r2levelÞ; ð4Þ

at ¼ at�1 þ etrend; etrend �Nð0; r2trendÞ: ð5Þ

The Gaussian stochastic ‘‘e’’ terms are used for the

observation uncertainty and for random dynamics of the

level and the trend. In terms of the state space Eqs. (1) and

(2) this model is written as

xt ¼ ltat½ �;Gtrend ¼
1 1

0 1

� �
;Ftrend ¼ 1 0½ �;

Wtrend ¼
r2level 0

0 r2trend

" #
andVt ¼ r2t

� �
:

ð6Þ

Note that only the state vector xt and the observation

uncertainty covariance (a 1� 1 matrix) depend on time t.

Depending on the choice of the variances r2level and r2trend,
the mean state lt will define a smoothly varying back-

ground level of the time series. In our analyses, we will set

r2level ¼ 0 and estimate r2trend from the observations. As

noted by Durbin and Koopman (2012), this will result in an

integrated random walk model for the mean level lt, which
can be interpreted as a cubic spline smoother, with well-

based statistical descriptions of the stochastic components.

Temperature time series exhibit strong seasonal vari-

ability. In our DLM, the monthly seasonality is modeled

with 11 state variables, which carry information of the

seasonal effects of individual months. In general, the

number of states is one less than the number of observa-

tions for each seasonal cycle when the model already has

the mean level term. The corresponding matrices Gseas,

Fseas (11� 11 and 1� 11 matrices) and the error covari-

ance matrix Wseas (11� 11) for the time-wise variability in

the seasonal components are modeled as (Durbin & Ko-

opman, 2012):

Gseas ¼

1 �1 �1 � � � �1

1 0 0 0

0 1 0 0

..

. . .
. ..

.

0 � � � 0 1 0

2
6666664

3
7777775
;

Fseas ¼ 1 0 . . . 0½ �;Wseas ¼

r2seas 0 � � � 0

0 0

..

. . .
.

0 0

2
66664

3
77775:

ð7Þ

We allow autocorrelation in the residuals using a first

order autoregressive model (AR(1)). In DLM settings, we

can estimate the autocorrelation coefficient and the extra

variance termr2seas togetherwith the othermodel parameters.

For a first order autoregressive component with a coefficient

q and an innovation variance, r2AR, we simply define

GAR ¼ q½ �;FAR ¼ 1½ �;WAR ¼ r2AR
� �

; ð8Þ

and both q and r2AR can be estimated from the observations.

The next step in the DLM model construction is the

combination of the selected individual model components

into larger model evolution and observation equations by

G ¼
Gtrend 0 0

0 Gseas 0

0 0 GAR

2
64

3
75;F ¼ Ftrend Fseas FAR½ �;

W ¼
Wtrend 0 0

0 Wseas 0

0 0 WAR

2
64

3
75; ð9Þ

and the analysis then proceeds to the estimation of the

variance parameters and other parameters in model for-

mulation (e.g. the AR coefficient q in the matrix GAR), and

to the estimation of the model states by state space Kalman

filter methods.

To get more intuitive meaning of the model and the

stochastic error terms involved, we write the observation

equation for our model as

yt ¼ lt þ ct þ gt þ et; t ¼ 1; . . .; n; ð10Þ

where yt is the monthly temperature at time t, lt is the

mean temperature level, ct is the seasonal component for

monthly data, gt is an autoregressive error component, and

et is the error term for the uncertainty in the observed

temperature values. The simplification r2level ¼ 0 in Eq. (4)

allows us to write a second difference process for the mean

level lt as

D2lt ¼ lt�2 � 2lt�1 þ lt
þ etrend; with etrend �Nð0; r2trendÞ; ð11Þ

see e.g. Durbin and Koopman (2012) Sect. 2.3.1. For the

seasonal component ct, we have a condition that the 12

consecutive monthly effects sum to zero on the average, so

for each t:

X11
i¼0

ct�i ¼ eseas; with eseas �Nð0; r2seasÞ: ð12Þ

The term gt follows a first order autoregressive process,
AR(1), with coefficient q:

gtþ1 ¼ qgt þ eAR;with eAR �Nð0; r2ARÞ: ð13Þ

Finally, the observation uncertainty term et is assumed

to be zero mean Gaussian as

et �N 0; r2t
� �

; ð14Þ
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where the observation standard deviations rt are assumed

to be known and correspond to the uncertainties from the

spatial representativeness of the observations and from the

averaging and the homogenization processes (Tietäväinen

et al. 2010). The additional error terms r2trend, r
2
seas, and r2AR

account for the modeling error in the components of the

model and are estimated from the data.

In the model construction above, we have four unknown

model parameters: the three variances for stochastic model

evolution, r2trend, r
2
seas, r

2
AR and the autoregressive coefficient

q. If the values of these parameters are known, the state space

representation and the implied Markov properties of the

processes allow estimation of the marginal distributions of

the states given the observations and parameter by the Kal-

man filter and Kalman smoother formulas (Durbin & Ko-

opman, 2012). The Kalman smoother gives efficient

recursive formulas to calculate the marginal distribution of

model states at each time t given the whole set of observa-

tions yt; t ¼ 1; . . .; n. In a DLM these distributions are

Gaussian, so defined by a mean vector and a covariance

matrix. In addition, the auxiliary parameter vector

h = [r2trend, r
2
seas, r

2
AR, q] can be estimated using a marginal

likelihood function that is provided as a side product of the

Kalman filter recursion. This likelihood can be used to esti-

mate the parameter h using maximum likelihood method and

the obtained estimates can be plugged back to the equations.

We use Bayesian approach and Markov chain Monte Carlo

(MCMC) simulation to estimate the posterior distribution of

h and to account for its uncertainty in the trend analysis.

The level component lt models the evolution of the

mean temperature after the seasonal and irregular noise

components have been filtered out. It allows us to study the

temporal changes in the temperature. The trends can be

studied visually, or by calculating trend related statistics

from the estimated mean level component lt. Statistical
uncertainty statements can be given by simulating real-

izations of the level component using MCMC and the

Kalman simulation smoother (Durbin and Koopman 2012,

Laine et al., 2014).

The strength of the DLM method is its ability to estimate

all model components, such as trends and seasonality, in one

estimation step and to provide a conceptually simple

decomposition of the observed variability. Furthermore, the

analysis does not require assumptions about the stationarity

of the series in the sense required, e.g., in classical ARIMA
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temperatures as dots and the

mean temperature level lt as a
smooth solid line. The decadal
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the model are shown as mean

(solid black line) and with 50

and 95 % probability limits

(darker and lighter gray bars)

Table 1 Modeled decadal average temperatures [�C] with lower and

upper limits of the 95 % probability limits as in Fig. 2

Decade Lower 95 % Mean Upper 95 %

1840–1850 0.063 0.38 0.71

1850–1860 0.20 0.45 0.69

1860–1870 0.34 0.53 0.74

1870–1880 0.41 0.61 0.77

1880–1890 0.50 0.70 0.87

1890–1900 0.63 0.83 1.0

1900–1910 0.83 1.0 1.2

1910–1920 1.1 1.2 1.4

1920–1930 1.2 1.4 1.6

1930–1940 1.4 1.6 1.9

1940–1950 1.5 1.7 1.9

1950–1960 1.5 1.7 1.8

1960–1970 1.5 1.7 1.9

1970–1980 1.5 1.8 2.0

1980–1990 1.7 2.0 2.1

1990–2000 2.1 2.2 2.4

2000–2010 2.3 2.6 2.8

2010–2020 2.4 2.8 3.2
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time series analyses and ARIMA analyses can be seen as

special cases of the DLM analyses. For example, the simple

local level and trend DLM of Eqs. (3–5) is equivalent to the

ARIMA (0,2,2) model. In addition, the state space methods

can easily handle missing observations; they are extendible

to non-linear state space models, to hierarchical parameter-

izations, and to non-Gaussian errors (e.g. Durbin and Ko-

opman 2012 and Gonçalves and Costa 2013). Details of the

construction procedure of a DLM model and estimations of

model states and parameters can be found in Gamerman

(2006) and in Petris et al. (2009). We use an efficient

adaptive MCMC algorithm by Haario et al. (2006) and the

Kalman filter likelihood to estimate the four parameters in h.
The details of the estimation procedure can be found in

Laine et al. (2014) who use similar DLM model to study

trends in stratospheric ozone concentrations. We also con-

ducted our analyses with dlm-package in R-software (Petris

2010) to verify the computations.

4 Results and discussion

We used a dynamic linear model with a local linear trend, a

12-month dummy type seasonal component, and an AR(1)

autocorrelated error term to decompose the temperature

time series. The time series consisted of 2004 monthly

observations from years 1847–2013. Figure 2 shows the
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Fig. 3 Parameter prior (dotted

line) and posterior (solid)

probability distributions. Priors

are log-normal for variances and

uniform U(0,1) for the

correlation parameter q. The
posterior is estimated from the

MCMC chain by using kernel

density estimation method

Table 2 Prior and posterior means and corresponding relative stan-

dard errors shown in Fig. 3

Parameter

name

Posterior

mean

Posterior

standard%

Prior

mean

Prior

standard%

r2trend 0.00011 71 0.0004 200

r2seas 0.0019 140 0.01 1,000

r2AR 2.3 1.7 2.0 500

q 0.34 6.3 prior is uniform(0,1)
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Fig. 4 Residual diagnostics plots for the DLM model. Upper panel

shows the autocorrelation function estimated from the standardized

residuals; lower panel shows the normal probability plot of the

standardized residuals
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measurement series and the modeled mean background

temperature lt. For clarity, the observations in the figure

are annual averages, but in all of the statistical analyses

monthly data are used. The mean temperature has risen in

two periods, from the 1850s to the late 1930s and from the

end of the 1960s to the present day, and was close to a

constant between 1940 and 1970. It has been suggested that

the global mean temperature oscillates quasiperiodically on

a multidecadal time scale either globally (e.g., Henriksson

et al. 2012, and references therein) or regionally (e.g.,

Sleschinger and Ramankutty 1994). The multidecadal

oscillation is suggested to provide part of the explanation

both for the near-constant global mean temperatures in

recent years, despite the warming effect of increasing

greenhouse gas concentrations, and for the declining global

mean temperature in the 1950s and 1960s, along with the

cooling caused by postwar anthropogenic aerosol emis-

sions. Therefore, we tested the data for 60–80-year oscil-

lations in order to see whether a multidecadal oscillation is

present also in our data and whether the observed changes
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Fig. 5 Monthly mean temperatures with the mean modeled temperature and corresponding 95 % probability limits
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in the trend of the time series are due to this phenomenon.

The results (not shown) indicated that taking account the

multidecadal oscillations did not improve the model, as the

change in BIC-value used in model comparison was almost

negligible, thus we decided not to include them in the final

model.

The variance parameters in matrices Vt and Wt and the

autocorrelation coefficient q used in the DLM were esti-

mated using the MCMC simulation algorithm. The length

of the MCMC chain was 10,000, the last half of the chain

was used for calculating the posterior values, and the

convergence of the MCMC algorithm was assessed using

plots of the MCMC chain, by calculating convergence

diagnostics statistics, and by estimating the Monte Carlo

error of the posterior estimates.

From the first to the last 10-year period of the data (from

1847–1856 to 2004–2013), the average temperature in

Finland has risen by a total of 2.3 ± 0.4 �C (95 % proba-

bility limits). This equals to an average change of 0.14 �C/
decade. The number of measurement stations in the first

years of the measurement period was rather low, which is

accounted for in the observational error r2t , but this causes
only a small increase in the uncertainty estimates at the

beginning of the series. Figure 2 also shows the Finnish

decadal average temperatures estimated from the model as

grey bars for 50 and 95 % probability limits, and the actual

numbers are presented in Table 1. The temperature change

was negligible in the middle of the 20th century, but the

current temperatures show an indisputably rising trend. The

mean temperature within 2000–2010 was almost one

degree higher than in the 1960s and more than two degrees

higher than in the 1850s.

Figure 3 shows the prior and posterior probability dis-

tributions for the unknown parameters and the numeric

values for prior and posterior means are shown in Table 2

with corresponding relative standard errors.

The residual diagnostics for the DLM model are shown in

Fig. 4. The distribution of residuals agrees well with the nor-

mality assumption and there is no significant autocorrelation.

The same model, but without the seasonal component,

was fitted for observations of each month separately.

Figure 5 shows that the change in the temperature has not

been even between the months. The increase in temperature

has been highest in late autumn and in spring but the change

in summer months, especially in July and August, has been

smaller. The temperature changes from 1847–1856 to

2004–2013 for each month have been collected in Table 3.

5 Conclusions

By using advanced statistical time series approach, a

dynamic linear model (DLM), we were able to model the

uncertainty caused by year-to-year natural variability and

the uncertainty caused by the incomplete data and non-

uniform sampling in the early observational years, and to

estimate the uncertainty limits for the increase of the mean

temperature in Finland. The Finnish temperature time

series exhibits a statistically significant trend, which is

consistent with the human-induced global warming. Our

analysis shows that the mean temperature has risen by a

total of 2.3 ± 0.4 �C (95 % probability limits) during the

years 1847–2013, which amounts to 0.14 �C/decade. The
warming trend before the 1940s was close to linear for the

whole period, whereas the temperature change in the mid-

20th century was negligible. However, the warming after

the late 1960 s has been more rapid than ever before.

Within the last 40 years the rate of change has varied

between 0.2 and 0.4 �C/decade. The highest increases were
seen in November, December and January. Also spring

months (March, April, May) have warmed more than the

annual average. Impacts of long-term cold season and

spring warming have been documented e.g. in later freeze-

up and earlier ice break-up in Finnish lakes (Korhonen

2006) and advancement in the timing of leaf bud burst and

flowering of native deciduous trees growing in Finland

(Linkosalo et al. 2009). Although warming during the

growing season months has been small in centigrade it has

resulted in attributable growth in growth of boreal forests

in Finland in addition to other drivers (forest management,

nitrogen deposition, CO2 concentration) since the 1960s

(Kauppi et al. 2014). The analysis of a 166-year-long time

series shows that the temperature change in Finland fol-

lows the global warming trend, which can be attributed to

anthropogenic activities (IPCC: Climate Change 2013).

The observed warming in Finland is almost twice as high

as the global temperature increase (0.74 �C/100 years),

Table 3 Temperature change, between the last and the first 10 years,

for each month

Month Lower 95 % Mean Upper 95 %

January 2.3 3.2 4.4

February 1.0 1.9 2.8

March 2.2 2.8 3.5

April 2.1 2.5 3.2

May 2.5 3.0 3.5

June 1.0 1.4 1.8

July 0.2 0.7 1.4

August 0.1 0.6 1.1

September 0.3 0.7 1.4

October 1.4 1.9 2.4

November 3.2 3.9 5.0

December 3.8 4.8 5.9
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which is in line with the notion that warming is stronger in

higher latitudes.
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Laine M, Latva-Pukkila N, Kyrölä E (2014) Analysing time-varying

trends in stratospheric ozone time series using the state space

approach. Atmos Chem Phys 14:9725–9797. doi:10.5194/acp-

14-9707-2014
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Venäläinen A, Heikinheimo M (1997) The spatial variation of long-

term mean global radiation in Finland. Int J Climatol

17:415–426. doi:10.1002/(SICI)1097-0088(19970330)17:4\415:

AID-JOC138[3.0.CO;2-#
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