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Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via recognition of cognate sequences and interfer-

ence of transcriptional, translational or epigenetic processes. Bioinformatics tools developed for miRNA study include those for

miRNA prediction and discovery, structure, analysis and target prediction. Wemanually curated 95 review papers and�1000

miRNA bioinformatics tools published since 2003. We classified and ranked them based on citation number or PageRank score,

and then performed network analysis and text mining (TM) to study themiRNA tools development trends. Five key trends were

observed: (1) miRNA identification and target prediction have been hot spots in the past decade; (2) manual curation and TM are

themainmethods for collectingmiRNA knowledge from literature; (3) most early tools are well maintained andwidely used;

(4) classic machine learningmethods retain their utility; however, novel ones have begun to emerge; (5) disease-associated

miRNA tools are emerging. Our analysis yields significant insight into the past development and future directions of miRNA tools.
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Introduction

MicroRNA (miRNA) is a small �21–22nt noncoding RNA, which

is a known regulator of essential biological processes in animals

and plants. The biogenesis of miRNA is shown in Figure 1. In

animals, the miRNA gene is typically transcribed by RNA poly-

merase II as primary RNA, which is cleaved into hairpin-shaped

precursor miRNA (pre-miRNA) by nuclear RNase III Drosha, and

then exported to the cytosol by exportin-5 [1]. In cytosol, pre-

miRNA is cleaved by Dicer into the miRNA duplex, of which one

arm is loaded into Argonaute (AGO) protein in the RNA-induced

silencing complex (RISC) and used as a guide sequence in bind-

ing with the protein-coding RNAs (mRNAs) [2]. Animal miRNAs

bind to their target mRNAs imperfectly, and the process is

dominated by the first eight nucleotides from miRNA 50 end,

which is called the seed region [3].
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miRNA biogenesis is dynamic and has great diversity. One

type of miRNA is called mirtron (or intronic miRNA), which

arises from spliced-out introns in a Drosha-independent man-

ner [4]. miRNA cluster is a group of miRNAs, which are adjacent

to one another in the genome and transcribed as a single poly-

cistronic unit [5]. Unlike in animals, the two-step process of

plant miRNA biogenesis occurs in the nucleus [6]. Most plant

miRNAs are transcribed by the DNA-dependent RNA polymer-

ase II and generate pri-miRNA [7, 8]. After a forkhead-associated

domain-containing protein encoded by Dawdle (DDL) acts to

stabilize the molecule, the pri-miRNA transcript is processed to

generate pre-miRNA by the nuclear RNase Dicer-like 1 (DCL1)

and its associated RNA-binding proteins (RBPs) Serrate (SE) and

Hyponastic Leaves 1 (HYL1) [9, 10]. The pre-miRNAs are then

exported to the cytoplasm after methylation and incorporated

into the Argonaute 1 (AGO1) to bind to mRNA and inhibit the ex-

pression of target mRNAs [11, 12]. In contrast with animals,

plant miRNAs bind to their targets with extensive complemen-

tarity (with a maximum of five mismatches) [3].

miRNA functions in posttranscriptional regulation of target

gene expression [1]. One miRNA could simultaneously target

several genes located within the same cellular signaling path-

way [13–15]. Recent studies have shifted our understanding of

how miRNAs interact with their targets, which include not only

mRNAs but also long noncoding RNAs (lncRNAs), pseudogenes

and circular RNAs (circRNAs) [16]. Competing endogenous RNA

(ceRNA) regulates other RNA transcripts by competing for

shared miRNAs [17]. With the ability to interact with multiple

target genes, miRNAs have been proven to influence many

important biological processes such as cell growth, tissue differ-

entiation, cell proliferation, embryonic development and apop-

tosis [18]. Dysregulated miRNA plays critical roles in the

progression of various diseases, such as aging, cardiovascular

disease and cancer [18]. In animals, miRNAs can be packaged

into exosomes or microvesicles and secreted into the extracel-

lular environment, including various biological fluids, and can

therefore perform long distance cell–cell communication [19].

Circulating miRNAs could also act as potential biomarkers for

the diagnosis and prognosis of various cancers as well as other

known diseases and syndromes [20, 21].

Since the discovery of the first miRNA lin-4 in 1993, 48 885

mature miRNAs in 271 species have been identified and

deposited into the gold standard central repository miRBase

[22]. Figure 2 shows a time line of the accumulation of miRNA

biology knowledge, experimental technique progress and

advances in bioinformatics tools that have led to several fun-

damental discoveries. We previously curated about 1000

miRNA bioinformatics tools to build a comprehensive data-

base called miRToolsGallery [45]. In miRToolsGallery, tools

are classified into categories such as miRNA sequence and

annotation, miRNA target gene prediction, novel miRNA dis-

covery and miRNA expression profiles [45]. miRToolsGallery

contains comprehensive information about the tools, such as

the implementation technology and method, date of publica-

tion and the number of citations. In this review, we mine the

details in miRToolsGallery and miRNA tools review papers to

obtain an overview of the range of miRNA bioinformatics

tools and identify key trends in their development over time.

Figure 1. miRNA biogenesis of animal/plant and bioinformatics tools associated within each process. The canonical and non-canonical miRNA biogenesis pathways of

animal/plant are shown in the side panels. Examples of bioinformatics tools cataloged by biogenesis process are listed in the middle.
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Tools related to miRNA biogenesis
and function

Many bioinformatics tools have been developed for each pro-

cess of miRNA biogenesis and to help biologists investigate

questions in miRNA biology. Annotation tools are among the

most important in the field. A platform for miRNA data storage

is required for each miRNA sequence, pre-miRNA secondary

structure, miRNA gene loci and other miRNA annotation infor-

mation. Widely used annotation associated miRNA tools are

listed. miRBase [22] is the main portal for miRNA storage and

acts as a repository, which collects all known miRNA sequences

and annotations for all species. Rfam [46] is a uniform system

for RNA annotation and contains miRNA family information.

miRIAD [47] was designed to host information about intragenic

miRNAs and their host genes, while mirtronPred [48] predicts

mirtrons from intronic sequences. mirSTP [49] is a program for

identifying miRNA transcription start sites (TSSs). MetaMirClust

[50] provides comprehensive information about miRNA clusters

and their conservation.

Structure tools are also important. The secondary and ter-

tiary structure of miRNA is important for recognition by specific

binding proteins or for interaction with other RNAs. Structural

features and free energy are key features of a machine learning

method for predicting miRNA molecules. Representative

miRNA structure prediction tools are ViennaRNA and

RNAstructure. ViennaRNA [51] software package contains many

tools to predict and compare RNA structure. RNAstructure [52]

is a complete package and includes algorithms for RNA second-

ary structure prediction and analysis.

Identification tools are also important. As novel miRNA

identification is a complex but essential process, various tools

have been designed for this purpose. MiRscan [53] is an early

user-friendly tool for identification of conserved miRNAs in

nematodes. miRNAFold [54] is a fast ab initio method for miRNA

prediction at a large scale in the genome. There are several tools

that identify miRNAs based on next-generation sequencing

(NGS) data, such as miRDeep [55] and miRanalyzer [56].

Cleavage site, binding and target discovery tools also play an

important role. As the mechanism of Dicer cleavage site selec-

tion is still not fully understood, tools like LBSizeCleav [57] and

PHDcleav [58] train a Support Vector Machine (SVM) model to

predict these sites in pre-miRNAs. The AGO protein family is an

essential component of the RISC and plays a central role in

miRNA targeting. Therefore, many tools were developed to de-

tect miRNA-binding sites from AGO-CLIP-Seq (e.g. AGO-PAR-

CLIP and AGO-HITS-CLIP) data, such as miRBShunter [59], Antar

[60] and miRTar2GO [61]. For studying miRNA function, many

tools are designed to predict or collect miRNA targets, such as

miRNA target prediction tools like miRanda [62], TargetScan

[63], PicTar [64], RNAhybrid [65] and PITA [66], and experimen-

tally validated miRNA target databases like miRecords [67] and

miRTarBase [68].

Phenotyping, networking and extracellular miRNA tools add

diversity to the field. Linking miRNA to phenotype is another

method for the annotation of miRNA function, so several tools

Figure 2. Historical time line of miRNA research. The development of experimental and computational aspects of miRNA is illustrated. Red, green, orange and blue

marks the event concerning experimental technology, miRNA biology, computational technology and representative tools, respectively. On the bottom panel, versions

of miRBase are listed. Symbols and abbreviations follow. miRNA biology: lin-4, the first miRNA to be discovered [23]; let-7, the first human miRNA to be discovered [24];

DICER, Dicer was found to be required for miRNA maturation [25, 26]; Biomarker, miRNAs dysregulated in tumor tissue and could be potential biomarker [27]; Drosha,

Drosha was identified as the initiator of the miRNA maturation process [28]; RISC, the mechanism of the miRNA into the RISC complex was characterized [29, 30];

isomiR, as a new term defined [31]; Circulating miRNA, the presence of miRNAs in 12 human body fluids was examined [19]; and ceRNA, hypothesis of ceRNA [17].

Experimental technology: miRNA microarray, early microarray application to profile miRNA [32, 33]; Roche 454, the first commercially successful second-generation

sequencing system developed by 454 Life Sciences [34]; miRNA-Seq, early NGS application to profile miRNA [33, 35]; High-throughput sequencing of RNA isolated by

crosslinking immunoprecipitation (HITS-CLIP), identified interaction sites between miRNA and target mRNA by sequencing AGO protein–RNA complexes [36]; CLASH,

identified miRNA–target RNA duplexes associated with AGO [37]. Methods: Random forest (RF) [38]; SVM [39]; Support Vector Regression (SVR) [40]; TM [41]; Manually

Curated (MC); Hidden Markov Model (HMM) [42]; SOM [43]; Convolutional Neural Networks (CNN) [44]. The representative tools are described in the main text.

1838 | Chen et al.
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aim to collect phenotype associated miRNAs for animals and

plants. HMDD [69] collects the manually curated human dis-

ease-related miRNAs, and PASmiR [70] contains the specific

miRNAs for plant stress. The existence of ceRNA and miRNA

sponge makes miRNA linked to other noncoding RNAs

(ncRNAs) (lncRNA, circRNA etc.), which contain miRNA re-

sponse elements (MREs) [71, 72]. miRNA interaction network

analysis is a popular research direction, and many databases re-

cord specific types of interactions (e.g. miRNA-lncRNA, miRNA-

circRNA and miRNA-mRNA). Frequently used miRNA inter-

action databases are starBase [73] and PceRBase [74]. starBase

integrates several data sets about miRNA interaction with other

RNA and ceRNA network. PceRBase is specific for recording

plant ceRNAs. Extracellular miRNAs are potential biomarkers

for clinical application and are collected specifically in some

databases such as miRandola [75] and ExoCarta [76].

Tools related to miRNA analysis workflow

While no comprehensive tool exists for complete miRNA ana-

lysis, a robust analysis pipeline can be constructed from exist-

ing tools. A general miRNA bioinformatics analysis workflow is

shown in Figure 3. As seen in Figure 3A, data sets for miRNA

analysis can be downloaded from public databases and litera-

ture can be retrieved from PubMed. Expression data, including

miRNA sequencing (miRNA-Seq) and miRNA microarray, can be

downloaded from Gene Expression Omnibus (GEO) [77],

Sequence Read Archive (SRA) [78], The Cancer Genome Atlas

(TCGA) [79] and other biological data distribution centers. In

Figure 3B, mining literature is one of the main activities in the

bioinformatics field. Collecting and summarizing the results

from previous work have profound significance, and databases

constructed to host and organize this knowledge are required.

In Figure 3C, recent technological advances in NGS have made it

easier to capture the expression of miRNA. For miRNA NGS data

analysis, the essential process is to align the short reads to the

genome. Currently, many tools like Bowtie [80] and SOAP [81]

can perform alignment efficiently, and short-read aligners are

always wrapped in the pipeline tools.

In Figure 3D, novel miRNA identification can be curated

from the literature, obtained from a genome via de novo predic-

tion, or based on NGS data. A selected list of miRNA identifica-

tion tools is shown in Table 1. For example, miPred [84] is a

random forest (RF)-based miRNA predictor, which can distin-

guish between real and pseudo-miRNA precursors. miRDeep

[55] is a pipeline tool supporting miRNA prediction and differen-

tial expression analysis based on miRNA-Seq data. Generation

of miRNA expression profile is a key part of miRNA analysis.

Identification of abnormally expressed miRNAs or co-

expression of miRNAs may link miRNA to its function based on

the experimental design. miRExpress [98] is implemented for

generating miRNA expression profiles from miRNA-Seq data

without the need for sequenced genomes. isomiRs (miRNA iso-

forms) refer to those sequences that have variations with re-

spect to the canonical reference miRNA sequence [31]. isomiRex

[99] is a Web-based tool for identification of miRNAs and

isomiRs using NGS data. Single-nucleotide polymorphism (SNP)

on miRNA or on miRNA target site could affect the interaction

between them and further impact on the function of miRNA.

MirSNP [100] is a database that collects SNPs in predicted

miRNA target sites. To understand the transcriptional regula-

tion of miRNAs, identifying their TSS and transcription factor

binding site is required. microTSS [101] integrates H3K4me3

ChIP-Seq and DNase-Seq data to enable the characterization of

tissue-specific promoters of miRNA, while miRStart [102] inte-

grates cap-analysis gene expression with TSS-Seq and

H3K4me3 ChIP-Seq data. TransmiR [103] is a database for stor-

ing TF–miRNA regulatory relationships.

Figure 3. Standardized miRNA analysis workflow and examples of associated tools. The left panel with arrows shows the general bioinformatics miRNA analysis work-

flow, and the right panel shows the list of related tools. The tools are labeled with different colors and shapes corresponding to the same item on the left workflow. (A)

Data sets download, (B) search of background knowledge, (C) read alignment, (D) identification and characterization of known and novel miRNAs, (E) target prediction

and (F) downstream analysis.
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miRNA target prediction occupies the core position in the en-

tire workflow, and it is the key step to reveal the miRNA function

and links miRNA to other RNAs (mRNA, lncRNA and circRNA) as

seen in Figure 3E. A list of representative miRNA target prediction

tools is shown in Table 2. TargetScan [63], for example, is a Web

server that predicts target genes of miRNA by searching for con-

served sites that match the seed region of each miRNA. mirSOM

[111] is a miRNA target prediction tool based on self-organizing

map (SOM). DIANA-TarBase [105] is a manually curated experi-

mentally validated miRNA targets database. Context-MMIA [118]

collects miRNA targets based on text mining (TM).

Finally, a variety of tools can assist downstream analysis as

seen in Figure 3F. Many databases are based onmanually curated

knowledge. miR2Disease [119] records associations between

miRNA and disease, miRandola [75] collects extracellular

miRNAs and SM2miR [120] contains associations between drugs

and miRNAs. Many databases focus on a specific purpose, such

asmiRCancer [121], ChIPBase [122], while others integrate various

miRNA data such as miRGator [110], miRNEST [123], miRSystem

[124] and RNAcentral [125]. Selected resources to deal with differ-

ent aspects of miRNA related research are shown in Table 3.

An increasing number of databases andmethods for predicting

diagnostic and prognostic miRNA biomarkers of disease are being

developed. Collecting biomarker features (association with dis-

ease, secretion characteristics, etc.) and constructing a network of

related miRNAs are popular research strategies. Integrated data-

bases collect data from different sources and integrate various

types of data sets, with a user-friendly query interface and data

visualization function. Pipeline tools aggregate basic or classic

tools and involve several additional downstream steps to perform

a particular complex miRNA analysis. There are variant tools with

different purposes, forms and implementation technologies.

Trends from miRNA bioinformatics tool
publications

We obtained 95 miRNA bioinformatics tools associated review

papers from PubMed, which can be classified into the following

main topics: miRNA identification, miRNA target prediction,

miRNA-regulated network, expression profile, features (disease

or stress, biomarker) association, NGS tools, tools based on ma-

chine learning algorithms and tools specific for plants. The sta-

tistics of review topics by year since 2005 is shown in Figure 4.

As the figure shows, most review papers concern miRNA identi-

fication and miRNA target prediction. miRNA identification

tools show the technological migration from non-NGS to NGS-

based analysis [131]. With improvements in laboratory and

computational techniques, the tools of miRNA target prediction

have evolved accordingly. AGO-CLIP-Seq, AGO-RIP-Seq and

AGO-HITS-CLIP using tools can tell us the binding site of

miRNAs [132]. Many reviews discuss the application of machine

learning techniques for miRNA analysis, and deep learning

has already been applied to target prediction [133]. More

Table 1. Selected miRNA identification tools

Tool name Organism Algorithm

category

Publication

span

Last

update

Current

version

Platform Link References

MiRscan A EC 2003 2003 – WB http://genes.mit.edu/mirscan/ [53]

RNAz A SB, TS 2005–10 2011 v2.1 WB, SA https://www.tbi.univie.ac.at/software/RNAz/ [82]

triplet–SVM A, P ML 2005 2005 – SA http://bioinfo.au.tsinghua.edu.cn/mirnasvm/ [83]

MiPred A, P ML 2007 2016 v0.1 WB http://server.malab.cn/MiPred/ [84]

miRDeep A NB, SB,

ML

2008–12 2016 v2.0.0.8 SA https://www.mdc-berlin.de/8551903/en/ [55]

CID-miRNA A ML 2008 2008 – WB https://github.com/alito/CID-miRNA [85]

UEA sRNA

workbench

A, P NB 2008–17 2018 v4.5 SA http://srna-workbench.cmp.uea.ac.uk/

mircat2/

[86]

miRanalyzer A, P IA, NB 2009–10 2012 v0.3 WB, SA http://bioinfo2.ugr.es/miRanalyzer/stand

alone.html

[56]

MicroPC P EC 2009 2009 – WB http://www3a.biotec.or.th/micropc/ [87]

HHMMiR A, P ML 2009 2009 v1.2 SA http://biodev.hgen.pitt.edu/kadriAPBC2009.

html

[88]

MatureBayes A ML 2010 2010 – WB, SA http://mirna.imbb.forth.gr/MatureBayes.html [89]

miRDeep-P P NB, SB,

ML

2011 2011 v1.3 SA https://sourceforge.net/projects/mirdp [90]

miRNAFold A, P SB, TS 2012–16 2016 – WB, SA https://evryrna.ibisc.univ-evry.fr/evryrna/mir

nafold/mirnafold_home

[54]

miRDeep* A, P NB, IA, SB 2013 2016 v37 SA http://www.australianprostatecentre.org/re

search/software/mirdeep-star

[91]

miReader A, P NB, ML 2013 2016 – SA http://scbb.ihbt.res.in/2810-12/miReader.php [92]

miRPlex A, P NB, ML 2013 2013 v0.1 SA https://www.uea.ac.uk/computing/mirplex [93]

miRdentify A NB, TS 2014 2014 v1.0 SA http://www.ncrnalab.dk/#mirdentify/mirden

tify.php

[94]

miRPlant P NB, IA 2014 2017 v5.1 SA https://sourceforge.net/projects/mirplant/ [95]

deepSOM A, P ML 2016 2016 v0.19 WB, SA http://fich.unl.edu.ar/sinc/blog/web-demo/

deepsom/

[96]

Mirnovo A, P NB, ML 2017 2018 v1.0 WB, SA http://wwwdev.ebi.ac.uk/enright-dev/

mirnovo/

[97]

Note: Algorithm category: Structure-based (SB), evolutionary conservation (EC), machine learning (ML), thermodynamic stability (TS), integrated approach (IA), NGS-

based (NB); Organism: Animal (A), plant (P); Platform: Stand-alone (SA), Web-based (WB).
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miRNA-associated disease databases or tools are emerging,

especially for cancer research, implemented based on expression

profiles, TM or manually curated [134]. The full review paper list

is available in Supplementary Table S1.

The number of miRNA tool papers has risen rapidly from

2003 to 2017 (shown in Figure 5 line chart, red line) and the

amount of miRNA tools is larger than other ncRNA tools. Based

on basic statistics from miRToolsGallery, 66.6% of papers were

published in seven journals [45]. A substantial fraction (13.3%)

of tools have published an updated version (Figure 5) suggesting

many tools are updated regularly and maintained well. Web-

based tools are the most popular type of miRNA tool, and the

databases or Web services often integrate multilevel omics data

or multiple basic tools.

Based on TM and tag statistics frommiRToolsGallery (Figures 6

and 7), we observed several notable trends. First, we found that

topics from 2003 to 2017 changed. Through the tag usage rate

across years in four different sub-catalogs (‘Implementation tech-

nology’, ‘Species’, ‘Methods’ and ‘Tags’), we found ‘SVM’ and

‘Random forest’ were the most widely used machine learning

methods applied in the miRNA field. Representative tools are

miRDB [109], SVMicrO [137], miPred [84] and MiRmat [138].

‘Manually curated’ is another label to mark a database, and it

occupied the second position after ‘SVM’ based on the word cloud

in Figure 6. Representative tools were DIANA-TarBase [105],

miRecords [67], miR2Disease [119], HMDD [69] and TransmiR [103].

Although neural network is not new for the miRNA field, deep

learning, as a new form, began to be applied to miRNA prediction

in tools such as MiRTDL [117], iDeep [139] and deepTarget [140].

In bioinformatics tools developing techniques, PHP and MySQL

are the most frequently used, and Perl is the dominant program-

ing language in this field; however, R and Python are emerging.

Web-based tools occupied a dominant proportion of all the tools,

as they have the advantage of ease-of-use and do not require

programming skills [45]. Before 2010, target prediction was a

popular research direction, while after 2011, integration of previ-

ous works (e.g. target prediction), miRNA–target interaction net-

work analysis and NGS data analysis became popular. With a

deeper understanding of miRNA biochemistry and function, new

sequencing technology (NGS) development, novel experimental

results, publication of computational algorithms/techniques and

novel miRNA bioinformatics tools have sprung up. During the

first years, miRNA tools were developed equally for various spe-

cies, but recently, tools for human research have been dominat-

ing the field. As shown in Figure 7, word clouds based on the

abstract and title of papers published each year illustrate that

‘target’ is in the keywords across all the years. As miRNA target

prediction is beneficial to analyze miRNA function, there are

many target prediction tools, experimentally validated target

databases and miRNA–target gene interaction analysis tools,

which form the basis for other studies.

We can divide the development of miRNA analysis tools into

three stages: Stage 1 (2003–05), Stage 2 (2006–09) and Stage 3

(2010–17). In Stage 1, functions of miRNA tools are usually spe-

cific and mainly focus on miRNA sequence annotation, miRNA

target prediction and miRNA identification. Since 1993,

Table 2. Selected miRNA target prediction tools

Tool name Organism Algorithm

category

Publication

span

Last

update

Current

version

Platform Link References

miRanda A SM, CH, ML,

CM

2003–10 2010 v3.3a WB, SA http://34.236.212.39/microrna/home.do [62]

RNAhybrid A SM, CH 2004–06 2006 v2.1.2 WB, SA https://bibiserv.cebitec.uni-bielefeld.de/

rnahybrid

[65]

TargetScan A SM, EC, CM 2005–15 2018 v7.2 WB, SA http://www.targetscan.org [63]

PicTar A CM, EC 2005–06 2007 – WB http://pictar.mdc-berlin.de/ [64]

TargetFinder P CM 2005–10 2015 v1.7 SA https://github.com/carringtonlab/

TargetFinder

[104]

TarBase A, P MC, IA 2006–17 2017 v8 WB http://carolina.imis.athena-innovation.gr/

diana_tools/web/index.php?

r¼tarbasev8

[105]

RNA22 A CM, CH 2006–12 2015 v2.0 WB https://cm.jefferson.edu/rna22/ [106]

GenMiRþþ A, P EX, ML 2007 2007 – SA http://www.psi.toronto.edu/genmir/ [107]

PolymiRTS A IA, SM, PE 2007–14 2014 v3.0 WB http://compbio.uthsc.edu/miRSNP/ [108]

miRDB A ML 2008–16 2016 v5.0 WB http://www.mirdb.org [109]

miRGator A IA, EX 2008–13 2013 v3.0 WB http://mirgator.kobic.re.kr/ [110]

miRecords A MC 2009 2013 v4 WB http://c1.accurascience.com/miRecords/ [67]

mirSOM A ML, SM, CM 2011 2011 – WB https://bioinformatics.uef.fi/mirsom/ [111]

miRWalk A IA, TM 2011–15 2018 v3.0 WB http://mirwalk.umm.uni-heidelberg.de/ [112]

mirDIP A IA 2011–17 2018 v4.1 WB http://ophid.utoronto.ca/mirDIP/ [113]

miRTarBase A, P MC 2011–18 2017 v7.0 WB http://mirtarbase.mbc.nctu.edu.tw [114]

psRNATarget P SM, CM 2011–18 2018 v2 WB http://plantgrn.noble.org/psRNATarget/ [115]

miRTarCLIP A IB 2013 2013 v1.0.1 WB, SA http://mirtarclip.mbc.nctu.edu.tw/ [116]

MiRTDL A ML 2016 2016 – WB, SA http://nclab.hit.edu.cn/CCRM/ [117]

miRBShunter A IB 2017 2017 v0.2 SA https://github.com/TrabucchiLab/

miRBShunter

[59]

miRTar2GO A IB, CH, SM 2017 2017 – WB http://www.mirtar2go.org [61]

Note: Algorithm category: Seed matching (SM), complement matching (CM), compensatory hybridization (CH), evolutionary conservation (EC), machine learning (ML),

Immunoprecipitation-Methods based (IB), expression correlation (EX), text mining (TM), manually curated (MC), integrated approach (IA), polymorphism effects (PE);

Organism: Animal (A), plant (P); Platform: Stand-alone (SA), Web-based (WB).
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Table 3. Selected other functional miRNA tools

Tool name Brief introduction Organism Publication

span

Last

update

Current

version

Platform Link References

ViennaRNA RNA secondary structure

predictor

A, P 2003–15 2018 v2.4.7 WB, SA http://rna.tbi.univie.ac.at/ [51]

miRBase Archive of miRNA sequen-

ces and annotations

A, P 2004–14 2018 v22 WB http://www.mirbase.org/ [22]

HMDD Human miRNA disease

database

A 2008–14 2014 v2.0 WB http://210.73.221.6/hmdd [69]

Bowtie Short-read aligner A, P 2009 2017 v1.2.2 SA http://bowtie-bio.source

forge.net

[80]

mirPath miRNA pathway analysis A 2009–15 2015 v3.0 WB http://snf-515788.vm.okeanos.

grnet.gr/

[126]

miR2Disease Human miRNA disease

database

A 2009 2008 - WB http://www.mir2disease.org/ [119]

ExoCarta Exosome miRNA database A 2009–16 2015 - WB http://www.exocarta.org/ [76]

SeqBuster Pipeline for the analysis of

miRNA-Seq data set

A 2010–16 2016 v1.2.1 SA https://pypi.org/project/

seqcluster/

[127]

TransmiR A database of transcription

factor-miRNA regulations

A, P 2010 2013 v1.2 WB http://www.cuilab.cn/transmir [103]

dbDEMC A database of differentially

expressed miRNAs in

cancers

A 2010–17 2017 v2.0 WB http://www.picb.ac.cn/dbDEMC [128]

starBase Pan-Cancer ceRNA

database

A 2011–14 2013 v2.0 WB http://starbase.sysu.edu.cn/ [73]

miTALOS miRNA pathway analysis A 2011–16 2016 v2 WB http://mips.helmholtz-muen

chen.de/mitalos

[129]

miRStart A database of miRNA TSSs A 2011 2011 - WB http://mirstart.mbc.nctu.edu.

tw/

[102]

miRandola A database of circulating

miRNA

A 2012–17 2017 v2017 WB http://mirandola.iit.cnr.it/ [75]

miRNEST Integrative resource of

miRNA-associated data

A, P 2012–14 2014 v2.0 WB http://rhesus.amu.edu.pl/mirn

est/copy/

[123]

miR_editing Scripts for detecting editing

sites in miRNA-Seq data

set

A 2012–13 2013 - SA http://www.tau.ac.il/�elieis/

miR_editing

[130]

ChIPBase A database of transcription

factor–miRNA

regulations

A 2013–17 2016 v2.3.4 WB http://rna.sysu.edu.cn/

chipbase/

[122]

SM2miR A database of the associ-

ation between miRNA

and small molecules

A 2013 2015 - WB http://210.46.85.180:8080/

sm2mir/index.jsp

[120]

YM500 Database for miRNA-Seq in

human cancer research

A 2013–17 2017 v3 WB http://driverdb.tms.cmu.edu.

tw/ym500v3/

[150]

isomiRex Web platform for isomiR

identification

A, P 2013 2013 - WB http://bioinfo1.uni-plovdiv.bg/

isomiRex/

[99]

PHDcleav Dicer cleavage sites

predictor

A 2013 2013 - WB http://crdd.osdd.net/raghava/

phdcleav/

[58]

PASmiR A database for miRNA mo-

lecular regulation in

plant abiotic stress

P 2013 2015 - WB http://pcsb.ahau.edu.cn:8080/

PASmiR

[70]

microTSS miRNA TSS identification

scripts

A 2014 2014 v1.0 SA http://www.microrna.gr/

microTSS/

[101]

Chimira Web platform for miRNA

modifications detection

A, P 2015 2017 v1.5 WB http://wwwdev.ebi.ac.uk/

enright-dev/chimira/

[161]

MirGeneDB Curated miRNA gene

database

A 2015 2018 v2.0 WB http://mirgenedb.org/ [159]

DREAM Web platform for detecting

RNA editing association

with miRNAs

A 2015 2015 - WB http://www.cs.tau.ac.il/

�mirnaed/

[160]

IsomiR Bank A database for tracking

isomiRs

A, P 2016 2016 - WB http://mcg.ustc.edu.cn/bsc/

isomir/

[151]

TissueAtlas Tissue specificity miRNA

database

A 2016 2016 - WB https://ccb-web.cs.uni-saar

land.de/tissueatlas/

[152]

Continued
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biological and bioinformatics approaches have discovered thou-

sands of miRNAs in animals, plants and other species and

deposited these into miRBase [22]. Many bioinformatics tools

have been developed to identify miRNA. Based on the column

‘Algorithm Category’ in Table 1, we can see the major

bioinformatics techniques behind the tools: structure based,

evolutionary conservation, machine learning, thermodynamic

stability, integrated approach and NGS-based [141, 142]. In this

stage, the sequence conservation, thermodynamic analysis and

structure prediction were applied to discover novel miRNA in

Figure 4. Circular graphic of miRNA identification and miRNA target prediction mentioned in reviews since 2005. Each sector contains the reviews published in each

year. Each column represents a review paper, and each block with a different color indicates the specific topics in the review paper.

Table 3. (continued)

Tool name Brief introduction Organism Publication

span

Last

update

Current

version

Platform Link References

miRNAme

Converter

miRNA ID converter A, P 2016 2018 v1.8.0 WB, SA http://163.172.134.150/

miRNAmeConverter-shiny

[149]

mirSTP miRNA TSS tracking

program

A 2017 2017 - SA http://bioinfo.vanderbilt.edu/

mirSTP/

[49]

ParSel Web platform for predicting

survival associated

miRNA

A 2017 2017 - SA https://github.com/debsin/

ParSel

[153]

isomiR2

Function

Integrated workflow for

identifying isomiRs in

plants

P 2017 2017 - SA https://github.com/347033139/

isomiR2Function

[162]

PceRBase Plant ceRNA database P 2017 2016 - WB http://bis.zju.edu.cn/pcernadb [74]

miRsig Pan-cancer miRNA-miRNA

interaction database

A 2017 2017 - WB http://bnet.egr.vcu.edu/miRsig/ [154]

OncomiR Web platform for exploring

pan-cancer miRNA

dysregulation

A 2017 2017 - WB http://www.oncomir.org/ [155]

Note: Organism: Animal (A), plant (P); Platform: Stand-alone (SA), Web-based (WB).
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tools such as MiRscan [53] and RNAz [82]. miRNAs function by

interacting with target genes [1]. Based on the column

‘Algorithm Category’ in Table 2, we can see the major bioinfor-

matics techniques behind the tools: seed matching,

complement matching, compensatory hybridization, evolution-

ary conservation, machine learning, immunoprecipitation-

Methods-based, text mining, expression correlation, manually

curated, integrated approach and polymorphism effects [141,

143–145]. Seed matching, complement matching and evolution-

ary conservation were used to predict the miRNA targets in

tools such as TargetScan [63]. Many tools created in Stage 1 are

updated regularly and still frequently used, such as miRBase

[22] and TargetScan [63]. Those tools are considered classic

based on citation, usage and longevity, and they have a pro-

found impact on subsequent tools.

In Stage 2, miRNA expression profile-related tools, such as

miRGator [110], miRNAMap [146] and miRExpress [98] appeared,

benefiting from the development of miRNA expression techni-

ques (Microarray and NGS). Predicting miRNA target via paired

mRNA/miRNA expression data made great progress at this

stage, such as GenMiRþþ [107]. As the technology developed,

more ways were available to study miRNA and more problems

needed to be solved with the help of bioinformatics tools.

In Stage 3, an increasing number of integrated tools emerged,

such as mirDIP [113], miRSystem [124], Chipster [147], miRDeep*

[91] and Tools4miRs [148]. With the generation of big data, inte-

grated tools (also known asmeta-server) and knowledge (manual-

ly curated database), miRNA bioinformatics tools appeared to be

entering a new phase. New knowledge of miRNA, isomiR data-

base, arm switching phenomena and miRNA modification tools

came out. Through time, miRBase updated the nomenclatures of

miRNA and provided handy and useful ID conversion tools that

were in high demand, such as miRNAmeConverter [149] and

miRBase Tracker [156]. At the same time, many types of minority

but useful tools were developed. Impressively, a smart phone ap-

plication (APP) was developed to view arm switching based on

miRNA-Seq data called RNA-Seq Viewer [157]. Advanced immu-

noprecipitation methods combined with NGS technology gave

new insight into the interaction between RBPs and miRNA, pro-

vided more evidence for miRNA target prediction with tools such

as starBase [73] and SimiRa [158], and more training data for ML

enhanced tools like iDeep [139]. Meanwhile, novel global run-on

sequencing techniques and precision run-on sequencing pro-

vided a new means to identify active miRNA TSSs and have been

incorporated in mirSTP [49]. miRBase [22], as the standard central

repository for miRNA sequences and annotation, has been chal-

lenged recently by miRCarta, a superset of miRBase, and

mirGeneDB [159], a uniform system for the annotation and no-

menclature of miRNA genes. Meanwhile, miRNA modification (or

RNA editing) and isomiR analysis are frequently considered in

Figure 5. Statistic of miRNA tools. Line chart: The number of publications of ncRNA-related bioinformatics tools by year since 2003. Different colors represent different

ncRNAs, including miRNA, siRNA, piRNA, lncRNA and circRNA. miRNA statistic data were extracted from miRToolsGallery [45], and other ncRNAs were collected with

the same method as described in miRToolsGallery. Donut chart: the number of publications per tool, platforms of tools and status of tools are presented as

percentages.
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recent miRNA-Seq analysis tools. For example, DREAM [160] and

miR_editing [130] are tools for detecting RNA editing association

from miRNA-Seq dataset. Chimira [161] can analyze small RNA

sequencing data and miRNA modifications. isomiR2Function

[162] is a pipeline for analysis of plant miRNA variants. isomiR-

Benchmark [163] is an isomiR identification tool. QuickMIRSeq

[164] is a pipeline for accurate quantification of known miRNAs

and isomiRs.

Trends from popularity analysis

miRNA tools popularity is measured by PageRank algorithm and

total citation count. A total of 1254 miRNA tool-related papers

with rank criterions are listed in Supplementary Table S2. When

ranking the papers by total citation count (citation scope is total

literature from PubMed), we found that short-read alignment

tools BWA [165] and Bowtie [80] occupied the first and second

Figure 6. Tags statistic of miRNA tools based on miRToolsGallery. Heat map for top tags in each catalog, the values of which equal the term frequency divided by

miRNA tool count in each year. The bar chart shows the miRNA tool count in each year. The word cloud shows the tag usage in each tag catalogs based on all data

from 2003 to 2017. The full tags statistic table is available in Supplementary Table S3.
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position, followed by miRNA target prediction tools TargetScan

[63] and PicTar [64], and the comprehensive miRNA registry

database miRBase [22]. When ranking the papers by PageRank

algorithm (citation network only limited to all the miRNA tool

papers), the order was different. Three types of tools occupied

the top 10 positions: the sequence and annotation databases

Rfam [46] and miRBase [22]; target prediction tools TargetScan

[63], MiRscan [53], miRanda [62] and miRNA–Target Gene

Prediction at EMBL [166]; RNA structure prediction tool suite

ViennaRNA [51] in the 10th place. A miRNA tool list is shown in

Supplementary Table S3.

As Figure 5 shows, the number of publications in the field

has leveled off, suggesting that the field appears to be mature,

which could be supported by the highly cited papers, of which

the first two were published in 2009 (BWA and Bowtie). In add-

ition, it is notable that updated publications of those major

databases were highly cited, suggesting the necessity and utility

of follow-up publications. As an example, the miRBase publica-

tion was in the top 20 cited list five times from 2004 to 2014.

Another example is the target prediction tool TargetScan [63],

which was the most highly cited, and its updated version was

the second most highly cited publication in the list. Notably,

there is a significant overlap between bioinformatics tools that

achieved top rankings based on either total citations or

PageRank algorithm. Many early tools are top ranked, which not

only explains their popularity but also indicates that classic

Figure 7. Word cloud based on literature in each year. The word cloud was generated based on the publication’s abstract and title. TM was performed by a CRAN R

package ‘tm’ [135], and figure was drawn by the ‘wordcloud’ package [136]. ‘miRNA’ is the universal keyword in all the texts, so the ‘miRNA’ was removed from the

word cloud.
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tools are well maintained and still widely used. For example,

many old target prediction tools or miRNA identification tools

are still integrated together as a source of new tools, such as

mirDIP [113] and mirMeta [167]. mirDIP integrates miRNA tar-

gets from about 30 different miRNA target databases, such as

TargetScan [63], miRDB [109] and PITA [66]. mirMeta constructs

an artificial neural network to predict miRNAs based on the pre-

dicted results of the following software tools: MiPred [84],

MiReNA [168], miRPara [169], ProMiR [170] and triplet-SVM [83].

Trends from network analysis

Network analysis of miRNA tool citation relations provides an-

other perspective of the field. The evolving miRNA paper cit-

ation network is drawn in Supplementary Figure S1, in which a

node represents a specific paper and if two nodes have citation

relationship, they will be connected by an edge. As the figure

shows, the networks grow through time and stays tightly con-

nected, suggesting coherence among bioinformatics tools and

subsequent papers based on previous work or available

resources.

Similarly, we built an ncRNA tools network in Figure 8. Here,

we chose miRNA, small interfering RNA (siRNA), Piwi-interact-

ing RNA (piRNA), lncRNA and circRNA, and marked them with

different colors. miRNA tools constitute the majority of the net-

work, which is divided into five different color partitions. siRNA

tools are located separately from the other parts of the network

and are centered around a different hub. Each type of ncRNA

tool gets the most internal citations and closely interacts with

miRNA tools. As miRNA can play an important role in ceRNA

network and be the target of miRNA sponges, miRNA is a central

part of other ncRNA studies. Recently, circRNA emerged as a

new entity. Notably, most circRNA tools, except identification

tools, are integrated with miRNA research, for circRNA contains

the MREs and can act as a miRNA sponge. With the help of other

ncRNA tools, more ceRNA tools have been developed.

Conclusions

Since 2002, miRNA research tools have evolved along with the

development of experimental methods (Figure 2). After the

introduction of NGS technologies, the number of novel miRNA

sequences submitted to miRBase has exploded [22]. However,

new miRNA features, like isomiRs [31] and miRNA SNPs [172],

have been observed from the sequencing data, which has led re-

search to new directions. miRNA target prediction, as a compu-

tational way to predict miRNA function, is probably the most

important part in the miRNA study. Target prediction algo-

rithms have evolved from seed matching (SM) combined with

thermodynamic stability [144], via requirement of co-

expression with target genes [107] to methods using miRNA-

binding site knowledge from AGO IP experiments [36]. Machine

learning, most recently deep learning, is widely used [133, 141].

Single methods are combined to integrated platforms to

improve the plausibility of the predictions [113]. The algorithms

are improved continuously by adding novel knowledge, for

example, the recent finding that alternative polyadenylation

of target genes may mediate miRNA regulation [173, 174]

will probably be integrated into forthcoming target prediction

tools.

The involvement of miRNAs in several human diseases

makes them potential diagnostic biomarkers [20, 21], and there-

fore, miRNA tools for disease research are emerging [134, 175].

Novel miRNA biomarkers are explored from manually curated

information, by TM from literature and from predicted miRNA–

target relations in expression data. Increasingly, database

records or methods to predict diagnostic and prognostic miRNA

biomarkers of disease are being developed [176].

Figure 8. ncRNA tools interaction network. The left network was based on the tool’s publication citation. The miRNA tools publications were extracted from

miRToolsGallery. Other ncRNA tools were retrieved from PubMed with the same criterion like miRToolsGallery. Gray nodes represented the tools that can be applied

by up to two different ncRNA analyses. The right chord diagram represents the interaction strength of each different ncRNA tool. Different sectors represent different

ncRNA tools, and the link represents the citation number from source to target (e.g. the red link means miRNA tools cited by other ncRNA tools.). The network was gen-

erated by a CRAN R package ‘igraph’ [171] and was drawn with a force-directed layout.
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Although a number of pipeline tools [45, 141] have been

developed to analyze portions of miRNA-related problems,

there is still no ‘one-stop’ tool to integrate all steps. As miRNA-

associated high-throughput sequencing data continue to grow

at an exponential rate, the need for data integration is becoming

critical. Demand for unified nomenclature of new miRNA know-

ledge, such as isomiRs, microRNA-offset RNA [177], loop-miRs

[178], is increasing, and therefore, the current lack of uniform

names complicates each step of data analysis and pipeline

automation [22, 159, 179].

The most troubling aspect of the trends was the date of the

most highly cited or PageRanked tools. As these were very old, it

suggests stagnation in the field. However, many early tools are

still well maintained and frequently wrapped in new tools.

Predictably, future miRNA bioinformatics tools will contain the

following characteristics: (1) aim for new miRNA knowledge,

(2) analyze high-throughput miRNA technology data, (3) inte-

grate multilevel omics data and (4) focus on human disease.

Taken together, this review highlights trends in miRNA bio-

informatics tools development, which may be beneficial to dir-

ect and improve future activity and efforts.

Key Points

• miRNA identification and target prediction remain hot

spots in the miRNA bioinformatics tools field, while re-

cent advances in NGS technologies provide improved

target prediction based on experimental validation.
• Manual curation and TM are the main methods for col-

lecting miRNA knowledge from literature. The collec-

tion goals are diverse and include experimentally vali-

dating targets, disease association, effects of drug

action and biomarker discovery.
• Most early tools are still well maintained and widely

used. They are deservedly classic tools and wrapped in

new single tools or pipeline tools.
• Classic machine learning methods, such as SVM, are still

popularly used in the miRNA field, while novel and

advanced deep learning methods are beginning to appear.
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Supplementary data are available online at https://academi-

c.oup.com/bib.
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