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I. Introduction

In the VUV-soft x-ray photon energy region, i.e., for 
photon energies in the 10-eV ≤ ħω < 1000-eV range, de-

tailed theoretical understanding of the photoionization 
process has been achieved for the case of a single elec-

tron ionized from one of the outer subshells of a closed-
shell atom. Qualitative aspects of this understanding are 
based upon a few properties of realistic atomic central 
potentials, which were used in the first attempts to inter-

pret the experimental data obtained in the 1960s in this 
new photon energy region.1 A more quantitative theo-

retical understanding of the new data, however, took 
much of the 1970s to develop, if we use the criterion that 
theoretically calculated results must agree with experi-
mental measurements to within ~10%. Although a seem-

ingly large number of competing theoretical methods 
were developed to treat atomic photoionization,2 mainly 
of closed-shell atoms, these methods have in common 
the inclusion of certain key kinds of electronic interac-

tions, known generically as particle-hole interactions. 
Thus one may summarize concisely our current under-

standing of closed-shell atom, single-electron photoion-

ization processes by describing the effects of these im-

portant types of electronic interactions. Our aim in this 
paper is to present just such a concise summary of the 
physical basis for the successes of theory that have thus 
far been achieved. We discuss both the qualitative and 
the quantitative aspects of our current theoretical under-

standing. Furthermore we have attempted to outline the 
scope of current and future theoretical research by indi-
cating those aspects of the photoionization process that 

either have not yet been fully explored or adequately un-

derstood. Due to the brevity of this paper, we have only 
been able to cite a relatively few references, chosen pri-
marily for illustrative purposes. We refer the interested 
reader to other recent review articles for more detailed 
descriptions than can be presented here of the various 
theoretical2 and experimental3 methods and results.

II. Realistic Central Potential Models

A. Qualitative Explanation of Nonhydrogenic Behaviors

The hydrogen atom cross section, which is nonzero at 
threshold and decreases monotonically with increasing 
photon energy, serves as a model for inner-shell pho-

toionization cross sections in the x-ray photon energy 
range. For VUV photon energies, however, the cross sec-

tions for subshells with l ≥ 1 frequently have the behav-

ior shown in Figure 1 for the 4d subshell in Xe4: a cross 
section that rises from threshold to a maximum (the 
so-called delayed maximum above threshold) then de-

creases to a minimum (the so-called Cooper minimum5), 
then rises again to a second maximum, and finally de-

creases monotonically at high energies in accordance 
with hydrogenic behavior. The dominant channel con-

tributing to the cross section in Figure 1 is that of the f 
wave:

Xe4d105s2 5p6(1S0) + γ → Xe+4d95s25p6f(1P1).   (1)

Using the realistic Herman-Skillman central potential6 

and adding to it the centrifugal potential l(l + 1)/2r2 for l = 3, 
one finds that the effective potential7 (shown in Figure 2) 
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that determines the radial continuum f wave function 
has a potential barrier in Xe (Z = 54). This potential bar-

rier prevents low-energy continuum f electrons from 
penetrating the atomic core region (where the 4d elec-

tron is localized) until the continuum electron has suf-
ficient energy to overcome the barrier. This is the expla-

nation for the delayed cross-section maximum above 
threshold. Since the continuum f-electron wave func-

tion has a substantial amplitude only at large radial dis-

tances, the radial dipole amplitude 〈4d |r | f 〉  is negative 
at threshold, since the outer loop of the 4d wave func-

tion has a negative amplitude. At large energies  , how-

ever, the dipole amplitude must have a hydrogenic be-

havior and hence must become positive. This implies 
that at some energy, usually occurring shortly after the 
continuum electron is able to surmount the potential 
barrier, the dipole amplitude is zero. This explains the 
occurrence of the Cooper minimum in the cross section. 
The second cross-section maximum is then just a result 
of the increase of the dipole amplitude to positive values 
before the hydrogen-like monotonically decreasing be-

havior begins.

The central potential model thus explains quali-
tatively the nonhydrogenic cross-section features ob-

served experimentally for subshells with l ≥ 1. Quantita-

tively, the central potential model cross sections disagree 
with experiment, often by factors of 2 near threshold. 
Furthermore the s-subshell cross sections cannot be in-

terpreted at all. Thus the task of the 1970s for theoreti-
cians was to discover which electronic interactions are 
responsible for the quantitative disagreement between 
central potential model predictions and experiment. Be-

fore discussing what was discovered, we emphasize the 
usefulness of the central potential model by mention-

ing two of its more recent contributions to the theory of 
photoionization.

B. More Recent Results Obtained with the Central Po-

tential Model

Experimental results on the 4d-subshell absorption 
spectrum in the rare earths8 and the 3p-subshell ab-

sorption spectrum in the transition metals9 have been 
interpreted largely on the basis of the central potential 
model.10 These spectra are characterized by (1) an in-

tense structured main peak above the 4d or 3p ionization 
threshold, which decreases in intensity with increasing 
atomic number Z, and (2) numerous weak resonance-
like features in the vicinity of threshold. The main peak 
appears at first sight to be the above-described delayed 
maximum above threshold, particularly since, as shown 
in Figure 2, the l = 3 effective potentials in the rare earths 
(Z = 57 and 63) and the l = 2 effective potentials in the 
transition metals (compare Z = 29) have significant po-

tential barriers. However, the central potential model 
cross sections are very small and essentially flat! This 
puzzle was resolved when it was discovered that all the 
intensity in the central potential model goes into the dis-

crete transition 4d → 4 f in the rare earths and 3p → 3d 
in the transition metals,10 as shown in Figure 3, which 
contrasts this behavior with that of the 4d-subshell cross 
section in Xe and the 3p-subshell cross section in Ar. The 
difference in behavior between Xe and the rare earths 
(respectively, Ar and the transition metals) is that in the 
former case the potential barrier keeps out all bound f 
electrons (respectively, d electrons), whereas in the lat-
ter case the potential well is deep enough to bind the 4 f 
orbital (respectively, 3d orbital) in the inner-well region. 
The close proximity of the 4 f and 4d orbitals in the rare 
earths and the 3d and 3p orbitals in the transition metals 
accounts for the large intensities observed in the follow-

ing photoabsorption transitions:

        rare earths: 4d104 fN +γ→  4d94 fN+1,
transition metals: 3p63dN + γ →  3p53dN+1.         (2)

Calculations11 of the term level structure of the configu-

rations on the right in Equation (2) correspond in inten-

sity and location with observed experimental features. 
The transitions in Equation (2) also explain why the ob-

served main peak intensities decrease with increasing Z: 

Figure 1. Theoretical photoionization cross section for the 4d subshell 
in Xe vs photoelectron energy. (Hartree-Fock-length results from Ref-
erence 4.)

Figure 2. Effective potential Veff(r) plotted vs coordinate r for l = 2 and 
l = 3 electrons. Veff(r) is the sum of the Herman-Skillman atomic poten-

tial V(r) and the centrifugal potential l(l + 1)/(2r2) (from Reference 7).
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The number of vacancies in the 4 f or 3d subshells de-

creases with increasing Z. Although the decay of the ex-

cited configurations on the right in Equation (2) via au-

toionization,10, 12 super Coster-Kronig13 or other Auger 
transitions is still not well understood,14 the central poten-

tial model prediction10 that the absorption intensity passes 
through these configurations has been well confirmed and 
was the key to interpreting these very complex spectra.

Another recent prediction of the central potential 
model, not yet confirmed experimentally, is the occur-

rence of multiple minima in the photoionization cross 
section of excited atoms. In calculations for unexcited at-
oms, each subshell has been found to have at most a sin-

gle Cooper minimum. Figure 4 shows the cross sections 
calculated for the 5d electron in excited Cs.15 There is a 
sharp resonancelike feature just above threshold that is 
actually due to a change in sign of the 5d → f radial di-
pole matrix element from positive to negative. The usual 
Cooper minimum, in which there is a change in sign of 
this element from negative to positive, occurs at much 
higher energies (shown in the insert in Figure 4). The 
similarity of the first minimum to a window resonance 
indicates that one must be very careful in interpreting 
excited atom photoionization spectra.

III. Quantitative Description of Closed-Shell Atom 
Single-Photoionization Spectra: The Particle-Hole 
Interactions

In the 1970s it was proved by a large number of calcu-

lations for closed-shell atoms that the most important 
electronic interactions are those in which two electrons 
interact in such a way as to either excite or de-excite 
each other out of or into their initial subshell locations 
in the unexcited atom. (When an electron is excited out 
of a subshell it is said to leave behind a vacancy or hole.) 
To analyze the effects of these interactions on the cross 
sections it is convenient to classify them in three catego-

ries, which we discuss in turn.

A. Intrachannel Scattering Interactions
The many-body perturbation theory (MBPT) dia-

gram for this interaction is shown on the left in Figure 
5(a); on the right a slightly more pictorial description 
of this interaction is shown. The wiggly line indicates a 
photon, which is absorbed by the atom in such a way 
that an electron is excited out of the nlth subshell. Dur-

ing the escape of this excited electron, however, it col-
lides or interacts with another electron from the same 
subshell in such a way that the second electron absorbs 
all the energy imparted to the atom by the photon; the 
first electron is de-excited back to its original location in 
the nlth subshell. For closed-shell atoms, the photoion-

ization process leads to a 1P1 final state in which the in-

trachannel interaction is strongly repulsive. Hence with 
respect to central potential model or average- of-config-

uration Hartree-Fock (HF) calculations, which include 
only a weaker average intrachannel interaction in gener-

ating the basis wave functions, inclusion of these inter-

actions serves to shift the delayed maximum in the cross 
section to higher energies (usually too high) as well as 
to broaden this peak and decrease its amplitude. [Note 
that in those HF calculations (known as term-dependent 
HF calculations) that include the correct 1P1 intrachan-

nel interaction in solving for the HF wave functions, no 
further treatment of these interactions is necessary: one 
obtains cross sections equivalent to those obtained by 
starting from an arbitrary basis set of final state wave 
functions and explicitly treating the intrachannel inter-

actions within this basis set.]

Figure 3. Squared radial dipole matrix elements [ ∫0
∞ Pnl (r)rP l'(r)dr]2, 

plotted as a function of  using Herman-Skillman wave functions. For 
Ar and V, nl= 3p and l’ = d; for Xe and Ce, nl = 4d and l′ = f (from Refer-

ence 10).

Figure 4. Photoionization cross section for the excited 5d orbital of Cs. 
Inset shows the high energy behavior of the cross section (from Refer-

ence 15).
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As an example of the effect of intrachannel interac-

tions, consider the 3p-subshell photoionization cross 
section in Ar shown in Figure 6. The central-potential 
model calculation16 (HS) has the same qualitative fea-

tures as the experimental data17 (open circles) but has a 
cross section that peaks at too low an energy and is far 
too high and narrow. The solid lines indicate the result 
of treating the intrachannel interactions within the basis 
of the central-potential model wave functions.16 The re-

sult using the length form of the dipole matrix element 

peaks at too high an energy due to the too repulsive in-

trachannel interaction. The result using the velocity form 
of the dipole matrix element gives too low a cross sec-

tion, again due to the too repulsive intrachannel interac-

tion that keeps the continuum wave function out of the 
small r region, which is weighted more strongly by the 
velocity dipole operator. The dashed curves represent 
close coupling calculations,18 which include not only 
the intrachannel interactions but also certain weak inter-

channel interactions (discussed below) involving the 3s 
subshell. Clearly the results are not very different from 
the intrachannel calculations,16 indicating another cause 
for the discrepancy with experiment.

B. Virtual Double Excitations

The MBPT diagram for this type of interaction is 
shown on the left in Figure 5(b). Topologically this dia-

gram is similar to that on the left in Figure 5(a). In fact, 
the radial parts of the two matrix elements are identical; 
only the angular factors differ. A more pictorial descrip-

tion of this interaction is shown on the right of Figure 
5(b): The ground state of the atom before photoabsorp-

tion is shown to have two electrons virtually excited out 
of the nlth subshell. In absorbing the photon, one of these 
electrons is de-excited to its original location in the nlth 

subshell, while the other electron is ionized. These vir-

tual double excitations imply a more diffuse atom than 
in central-potential or HF models with the effect that the 
overly repulsive intrachannel interactions are weakened, 
leading to cross sections that are in very good agreement 
with experiment. Recent calculations of Chang19 for the 
Ar 3p- subshell cross section (Figure 7) demonstrate the 
effect of including these virtual double excitations. The 
curves labeled I are the length and velocity results in-

cluding only the intrachannel interactions. Curves II in-

dicate the effect of including virtual double excitations 
in the initial state: the length and velocity curves are in

Figure 5. MBPT diagrams (left) and scattering pictures (right) for the 
following interactions: (a) intrachannel scattering following photoab-

sorption; (b) photoabsorption by a virtual doubly-excited state of the 
atom; (c) interchannel scattering following photoabsorption.

Figure 6. Photoionization cross sections for the 3p subshell of Ar: – ∙ –, 
Herman-Skillman central potential model calculation; ——, intrachan-

nel calculation of Starace16; - - - , close-coupling calculation of Lipsky 
and Cooper; , experimental results of Samson17 (from Reference 16).

Figure 7. Theoretical calculations of Chang19 for the photoioniza-

tion cross section of the 3p subshell of Ar. Dashed and solid lines give 
length and velocity results, respectively, in three levels of approxi-
mation discussed in the text. Experimentally measured values of the 
Ar cross section are indicated by the solid circles17 and by the solid 
squares (Samson, unpublished) (from Reference 19).
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better agreement, but there is still a sizable discrepancy 
with the experimental results17 (solid circles). Finally 
curves III indicate the result of including virtual double 
excitations in both the initial and the ionic state. Now 
the length and velocity curves are virtually identical and 
are both in excellent agreement with experiment.

C. Interchannel Interactions

A last type of particle-hole interaction that has been 
found to be important, particularly for s subshells, is the 
interchannel interaction shown in Figure 5(c). This in-

teraction has the same form as the intrachannel inter-

action shown in Figure 5(a), except now when an elec-

tron is photoexcited out of the n0l0th subshell, it collides 
or interacts with an electron in a different subshell—the 
n1l1th subshell—in such a way that the second electron 
is ionized, and the first electron falls back into its orig-

inal location in the n0l0th subshell. There are two major 
effects of this interaction: (1) when the binding energy of 
the n0l0th subshell is greater than that of the n1l1th sub-

shell, discrete members of the n0l0th subshell channels 
show up as resonances in the n1l1th subshell cross sec-

tion; (2) when the dipole amplitude for ionization of the 
n1l1th subshell is small compared with that for the n0l0th, 
for example, when n1l1 is an s subshell, the zero-order 
n1l1th subshell cross section can be strongly modified by 
interchannel interactions.

As an example of the first effect—resonance behav-

ior—we consider once again the photoionization of the 
3p subshell in Ar, this time including also the effect of 
interchannel interaction with the 3s subshell. The chan-

nels under consideration are thus

           Ar3s23p6 +  γ   →   Ar+3s23p5 +  e–
→  Ar+3s3p6 +  e–                 (3)

Figure 8 shows the MBPT calculation of Kelly and Si-
mons,20 which includes both intrachannel and interchan-

nel interactions as well as the effect of virtual double ex-

citations. The cross section is in excellent agreement 
with experiment,17, 21 even to the extent of describing 
the resonance behavior due to discrete members of the 
3s → p channel.

As an example of the second effect, strong modifica-

tion of a weak dipole amplitude, we consider again the 
two channels in Equation (3), but this time we focus on 
the 3s-subshell cross section. Figure 9 shows three calcu-

lations, which include intrachannel and interchannel in-

teractions as well as virtual double excitations. There are 
the R-matrix calculation of Burke and Taylor,22 the ran-

dom phase approximation (RPA) calculation of Amu-

sia et al.,23 and the simplified RPA calculation of Lin.24 

As compared with the HF calculation4 shown, which 
only includes the intrachannel interactions, these three 
other calculations show that interchannel interactions 
introduce a strong interference between the channels 
in Equation (3). This interference causes a minimum in 
the 3s-subshell cross section in agreement with experi-
ment.25, 26

As a final example of particularly strong interchannel 
interactions, we consider the 5s-subshell cross section in 
Xe as influenced by the neighboring 4d and 5p subshells. 
The relevant channels are 

Xe4d105s25p6 + γ  →  Xe+4d95s25p6 +  e–
                              →  Xe+4d105s5p6 +  e–

                 →  Xe+4d105s25p5 +  e– .            (4)

Figure 10 shows the calculations of Amusia and Cherep-

kov27 in three approximations. The dot-dash line repre-

sents the HF result for the 5s-subshell cross section. No 
interchannel interactions are included. The dashed line 
represents an RPA calculation including interchannel 
interaction with the 4d →  f channel. One sees that the 
large delayed maximum in the 4d-subshell cross section 
(compare Figure 1) is mirrored in the 5s-subshell cross 

Figure 8. Photoionization cross section for the 3p and 3s subshells of 
Ar. HFL and HFV indicate the length and velocity results obtained 
using HF orbitals calculated in a 1P1 potential. Dot-dash and dashed 
lines represent the length and velocity results of the MBPT calculation 
of Kelly and Simons.20 Only the four lowest 3s → np resonances are 
shown; the series converges to the 3s threshold at 29.24 eV. Experimen-

tal results are those of Samson17 above 37 eV and of Madden et al.21 be-

low 37 eV (from Reference 20).

Figure 9. Photoionization cross section for the 3s subshell of Ar: R-Ma-

trix, R-matrix (length) calculation of Burke and Taylor22; RPAE, RPA 
calculation of Amusia  et al.23; SRPAE, simplified RPA calculation of 
Lin24; HF-L, Hartree-Fock (length) calculation of Kennedy and Man-

son4; ×, experimental data of Samson and Gardner25; , experimental 
data of Houlgate et al.26 (from Houlgate et al.26).
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section. The solid line represents an RPA calculation in-

cluding interchannel interaction with both the 4d →  f  
and the 5p → d channels. One sees that interchannel in-

teraction with the outer 5p subshell produces interfer-

ence leading to a zero in the 5s-subshell cross section.

D. Remarks

The three types of interactions discussed are the most 
important for the outer l ≥ 1 subshells of the rare gases 
and probably for all closed-shell atoms. These interac-

tions form the essential physical content of the many ab 
initio theoretical methods that have been developed to 
treat atomic photoionization such as the RPA,27, 28 the 

MBPT,29 R-matrix method,22, 30 the transition matrix ap-

proach,19, 31 and the multiconfiguration HF approach32 

among others. We emphasize, however, that except for 
the RPA these methods are not restricted to treating only 
the particle-hole class of interactions. In particular, s sub-

shells have such small cross sections that other types of 
interaction may have a significant influence on them.27 

Some of these other interactions are mentioned in Sec. V.

IV. Semianalytic Treatment of Resonance Phenomena

Resonances may be treated in an ab initio theoretical 
calculation by including the interchannel interactions 
described in the previous section. However, to describe 
the rapid oscillations in the cross section in a resonance 
region, one normally must perform many calculations 
over a very finely spaced set of energies. Fortunately 
this is usually not necessary, since much of the rapid en-

ergy variation of the cross section near a resonance can 
be described analytically, thus reducing significantly the 
number of numerical calculations. We describe briefly 
below the two main methods for treating isolated and 
Rydberg series of resonances.

A. Isolated Resonances: Fano Profile Formula

Fano33 has shown that for a single resonance interact-
ing with a single continuum channel, the cross section in 

the neighborhood of the resonance may be described in 
terms of three parameters, which may be obtained either 
by fitting to experimental data or by an ab initio theoret-
ical calculation. These parameters are the resonance en-

ergy Eres, the resonance width Γ, and the so-called q pa-

rameter, which is equal to π times the ratio of the direct 
photoabsorption amplitude (in which a ground state 
electron is photoexcited directly to the resonance state) 
and the indirect photoabsorption amplitude (in which a 
ground state electron is photoexcited to the continuum 
and is then scattered into the resonance state). In terms 
of these parameters, the cross section σ(E) as a func-

tion of energy E in the neighborhood of the resonance 
is given by

σ(E) = σ0 (q + )2/(1 + 2)                                (5a)

where
 = (E – Eres)/(1/2Γ).                                       (5b)

For | q | > 1, one observes primarily a resonance peak, 
whereas for | q | < 1, one observes primarily a resonance 
window. Fano has also treated the cases of several dis-

crete states interacting with a continuum channel and 
of a single discrete state interacting with several conti-
nua.33 Similar formulas have been obtained for partial 
cross sections,34 branching ratios,34 and β parameters35 

in the neighborhood of a resonance.

B. Rydberg Series of Resonances: Quantum Defect 
Theory

Just below an excited ionic state threshold, one is 
faced with the seemingly hopeless task of describing the 
infinite Rydberg series of resonances converging to this 
threshold. The quantum defect theory (QDT) of Seaton36 

and of Lu and Fano37 permits an analytic treatment of 
the resonance energy behavior using only the following 
two assumptions: (1) For radii r > r0, where r0 is of the 
order of the atomic radius, a photoelectron is assumed 
to move only under the influence of a pure Coulomb at-
traction. Hence the photoelectron wave function for r 
> r0 may be written as a linear combination of regular 
and irregular Coulomb functions, which are analytically 
known. The coefficients of this linear combination are 
determined by matching conditions at the radius r = r0  

and thus contain all dynamical information of the pho-

toabsorption process. (2) The matching coefficients are 
assumed to be slowly varying functions of energy near 
threshold since they are determined in the region r < r0, 
where the atomic potential is very deep. That is, small 
variations of the photoelectron’s asymptotic kinetic en-

ergy are not significant compared with the instanta-

neous kinetic energy in the region r < r0. One may ob-

tain these matching coefficients by ab initio calculations 
at one or at most a few energies,36, 38 or by fitting to ex-

perimental energy level and oscillator strength data.37

As a striking example of the usefulness of the QDT, 
consider the calculation of Dubau and Wells39 on the 

Figure 10. Theoretical calculations of Amusia and Cherepkov27 for the 
photoionization cross section of the 5s subshell of Xe, showing the in-

fluence of interchannel interactions (see text for description of curves) 
(from Reference 27).
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photoionization of Be shown in Figure 11. Three chan-

nels were considered:

  Be1s22s2(1S0)  + γ  →  Be+1s22s (2S)p (1P1)

                                     →  Be+1s22p (2P)d (1P1)

→  Be+1s22p (2P)s (1P1)          (6)

The first channel belongs to the lower 2s threshold, and 
the other two channels belong to the upper 2p thresh-

old. The solid line in Figure 11 connects the results of a 
completely ab initio close-coupling calculation [which in-

cludes intrachannel and interchannel interactions among 
the channels in Equation(6)], which was necessarily per-

formed on the finely spaced energy mesh indicated by 
the dots. Coincident with the close-coupling calcula-

tion, except far from the threshold on the left-hand side 
of the figure, is the result of a QDT calculation, which 
is shown by a dashed line whenever it deviates signifi-

cantly from the close-coupling result. The QDT result is 
obtained using a few dynamical parameters calculated 
above the 2p threshold by the close-coupling method 
and then simply extrapolating these parameters below 
threshold. While the extrapolation breaks down a few 
electron volts below threshold (i.e., near the spurious 
2p2d resonance), the power of the QDT is clearly dem-

onstrated. The pluses in the figure show the QDT result 
for the cross section averaged over the autoionizing res-

onances just below threshold. This average is seen to 
join smoothly onto the cross section above threshold, in 
agreement with theorems of Baz40 and Gailitis.41

V. Current Research

Up to now we have presented only what is firmly 
established in the theory of atomic photoionization 
through the comparison of alternative calculational 
methods with well-determined experimental results. It 
is of course more difficult to give an assessment of those 
areas of photoionization research in which theory and 
experiment disagree, or in which there are few experi-
mental measurements, or in which theoretical advances 
are very recent. For these reasons we only comment 
briefly in what follows on a number of current research 
areas, which, taken together, indicate the breadth of this 
field and its relevance to atomic physics as a whole.

A. Real Two-Electron Processes

The importance of virtual two-electron excitations on 
single photoionization processes has been discussed in 
Section III. Here we discuss real two-electron processes 
in which, following photoabsorption, two electrons are 
either ionized or excited out of the atomic ground state.

1. Double Photoionization
In contrast to single-electron photoionization, it is 

not known theoretically what asymptotic boundary con-

dition to apply to the final state wave function in the 

case of two-electron photoionization. In simplest terms, it 
is not known how the two ejected electrons screen one an-

other, particularly when they emerge from the same sub-

shell. In the case of complete screening they see a net Cou-

lomb charge of +1, while in the case of no screening they 
see a net Coulomb charge of +2; reality lies between. This 
important asymptotic problem has recently been exam-

ined by Altick,42 who obtains asymptotic forms for two-
electron wave functions. No calculations using the forms 
have yet been carried out. Below we review the available 
detailed calculations using more standard methods.

1. Two electrons ejected from an outer subshell. Helium 
is the prototype system for studying correlations of two 
electrons. Yet, at present, experimental measurements43 

of the double-to-single ionization ratio in He, σ2+/σ+, are 
-50% higher than the best available theoretical calcula-

tions,44, 45 which use a correlated wave function in the 
initial state and a symmetrized product of uncorrelated 
Coulomb wave functions in the final state. While final 
state correlations are thus not treated, these calculations 
do demonstrate the importance of initial state correla-

tion: when the correlated initial state wave functions are 
replaced by HF wave functions the calculated ratio σ2+/
σ+ decreases by ~80% ! 44

More detailed information regarding the influence of 
various physical processes on the double-ionization cross 
section has been provided by MBPT calculations. The 
first such calculation for Ne by Chang et al.46 found the 
double-to-single ionization cross-section ratio, Ne++2p4:

Ne+2p5, to be 11.1% at a photon energy of 278 eV. This 
result is in excellent agreement with Carlson’s47 measured 
value of 11 ± 1%. The calculation shows that the final state 
processes designated as core rearrangement and virtual 
Auger transition are just as important as initial state cor-
relations in producing double ionization.

The energy dependence of the Ne double-photoion-

ization cross section has been calculated by Chang and 
Poe,48 again using MBPT, over the energy range from 
threshold to 220 eV above. Excellent agreement with ex-

Figure 11. Theoretical calculations of Dubau and Wells39 for photoion-

ization of Be: ●, results of a close coupling calculation whose trend is 
indicated by the solid line; - - -, results of a QDT extrapolation of the 
close-coupling results from above the 2p ionization threshold. Note 
that the 2p2d resonance is spurious and may be eliminated by alterna-

tive QDT extrapolation techniques; +, cross section averaged over au-

toionizing resonances (from Reference 39).



4058 Anthony F. Starace in Applied Optics 19 (1980) 

periment43, 47, 49 is achieved near threshold and at high 
energies, but near the cross-section maximum the calcu-

lated results are considerably higher than experiment, 
as shown in Figure 12. This calculation also shows that 
at low photon energies all energy distributions among 
the two electrons are nearly equally probable, but at 
high photon energies it is much more probable for one 
electron to take nearly all the available kinetic energy 
and for the other to have very little. The MBPT calcu-

lation of Carter and Kelly50 is also shown in Figure 12. 
For ħω > 120 eV their results are in excellent agreement 
with experiment, but for lower photon energies their re-

sults disagree with both experiment and the calculations 
of Chang and Poe.

The double-photoionization cross section for argon 
over an energy range from threshold to ≈200 eV above 
has been calculated by Carter and Kelly.51 Near thresh-

old and at higher energies their results are in excellent 
agreement with experiment.43, 47, 49 Near the peak in the 
experimental cross section, however, their results lie 
20% lower than experiment and are shifted to higher en-

ergies. These calculations show that second- order per-

turbations lower the dipole length cross sections signif-
icantly, particularly near the cross-section peak (where 
this lowering amounts to ≈15%), but have only a small 
effect on the dipole velocity cross sections. Carter and 
Kelly52 have also calculated the double-photoionization 
cross section of carbon, which represents the first such 
study for an open-shell atom.

We conclude that the MBPT calculations have identi-
fied some important final state correlations which, in ad-

dition to initial state correlations, contribute to double 
photoionization. At high photon energies, where one elec-

tron is moving much faster than the other, the MBPT cross 
sections are in very good agreement with experiment. 
Near the peak in the experimental cross sections in Ne  

and in Ar, however, the MBPT cross sections differ sig-

nificantly from the experimental results. At threshold, 
two48, 51 of the three MBPT calculations for Ne and Ar 
are in excellent agreement with experiment.

2. Two electrons ejected from an inner and outer subshell. 
For very high photon energies in which an inner-shell 
electron is ejected very rapidly from an atom, the sub-

sequent ejection of a second electron may be regarded 
as due to the relaxation of the excited ion. Theoretical 
calculations employing such a sudden or shake-off ap-

proximation53 work well at high photon energies, even 
though they ignore final state interactions. When the 
photoelectron leaves slowly, however, one observes the 
so-called post-collision-interaction (PCI) effect54 on the 

electron energy distributions. Figure 13(a) shows pic-

torially the initial inner-shell photoionization, followed 
by [Figure 13(b)] the ejection of a second electron due 
to an Auger transition. In Figure 13(c) the photoelectron 
energy distribution is shown in the case where 1  0, 
so that the Auger decay occurs long after the escape of 
the first electron. The effect of PCI is seen in the energy 
distributions in Figure 13(d), where 1  0, and thus the 
Auger decay occurs while the first electron is escaping. 
Final state interactions are very important in this lat-
ter case. In simple terms, the first electron experiences 
a stronger net ionic charge after the Auger decay and is 
thus slowed down or even trapped in a Rydberg level. 
The Auger electron, on the other hand, experiences a 
weaker net ionic charge due to partial screening by the 
first electron and thus leaves faster. The semiclassical 
analysis of PCI by Niehaus predicts electron energy dis-

tributions that are in very good agreement with experi-
ment.54 No quantum mechanical description of PCI has 
yet been given.

Figure 12. Double-photoionization cross section of Ne as a function of 
photon energy: ——, theoretical calculations of Chang and Poe48 using the 
dipole velocity formula; - - -, ∙∙∙∙∙ , theoretical calculations of Carter and 
Kelly50 using the dipole velocity V and dipole length L formulas; , ex-

perimental measurements of Carlson47; ●, experimental measurements 
of Samson and Haddad49; ×, experimental measurements of Samson and 
Kemeny (unpublished); □, experimental measurements of Schmidt et al.43; 
, experimental measurements of Wight and Van der Wiel.43

Figure 13. Effect of PCI in Auger decay following inner-shell photo-

ionization: (a) pictorial description of inner-shell photoionization pro-

ducing an electron with kinetic energy  1; (b) pictorial description of 
Auger decay producing an electron with kinetic energy 

2
; (c) electron 

energy distribution when  1   0 (no PCI); (d) electron energy distri-
bution when  1  0 (PCI shifts peak of electron 1 to lower energies 
and shifts peak of electron 2 to higher energies). 
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2. Photoionization Plus Excitation

In one respect this process is simpler than double 
photoionization: since only a single electron is ionized, 
the final state wave function satisfies well-determined 
asymptotic boundary conditions. However, one must 
still deal with the multiplicity of excitation channels and 
their mutual interaction. Even for the simple process 

He + γ  →  (He+)*(n = 2) + e–,                    (7) 

a close-coupling calculation including even n = 3 chan-

nels55 gives a cross section that is 30–50% higher than re-

cent experimental data56 over an energy range from 15 
to 40 eV above the n = 2 threshold. 

Regarding the transition in Equation (7) we note 
that only the so-called + final states are populated with 
any intensity.57 Furthermore, Macek58 has shown that 
in a hyperspherical coordinate description, the + states 
emerge simply as one of the adiabatic final states. In hy-

perspherical coordinates the six electron coordinates r1 

and r
2
 are replaced by the set R, α, r̂ 1, and r̂

2
, where

R = ( r1
2 + r

2

2)½,                                    (8a)

α = arctan(r
2
/r1).                                 (8b)

The adiabatic approximation assumes that the angular 
motion in α, r̂ 1, and r̂

2
 proceeds much faster than the 

radial motion in R. Using only the lowest 1S0 and 1P1 ini-
tial and final adiabatic state wave functions in hyper-

spherical coordinates, Miller and Starace59 calculated 
the photoionization cross section for He,

He + γ  →  He+(n = 1) + e–,                      (9)

and obtained agreement with experiment60 to within 
1% at threshold, within 4% at 1 Ry above threshold, and 
within 12% at 1.9 Ry above threshold. Application of the 
hyperspherical coordinate method to the excitation pro-

cess in (7) is in progress.59 Note that similarly good re-

sults using this method have recently been obtained by 
Greene61 for the Be-photoionization cross section below 
the Be+(2p) threshold.

B. Interactions Other than Those of the Particle-Hole Type

1. Relativistic Interactions
The relativistic RPA calculations of Johnson and co-

workers62–64 for the outer subshells of the rare gases rep-

resent a major advance of theory. Results for partial cross 
sections,63 fine structure branching ratios,63 photoelec-

tron angular distributions,63 and photoelectron spin po-

larizations64 are all in very good agreement with exper-

iment. As an example of the results obtained, consider 
those for the Xe 5s-subshell angular distribution asym-

metry parameter β shown in Figure 14. In the absence 
of relativistic interactions, only the 1P channel 5s2 → 

5sp(1P) is allowed and β = 2 independent of energy. Rel-
ativistic interactions permit also the forbidden 3P chan-

nel 5s2 → 5sp(3P), and interference with the allowed 1P 

channel causes β to vary with energy. Not surprisingly, 
the largest variations in β occur near the minimum in 
the 5s-subshell cross section, where the 1P dipole ampli-
tude is smallest. Figure 14 shows that the three fully rel-
ativistic calculations (i.e., the Dirac-Fock calculation of 
Ong and Manson65 and the two relativistic RPA calcu-

lations of Johnson and Cheng63) all show β to vary be-

tween 2 and 0. Only the relativistic RPA calculation in-

cluding all interchannel interactions among the 4d, 5s, 
and 5p subshells, however, reproduces the experimen-

tal data.66, 67

The K-matrix calculation68 shown in Figure 14 starts 
from a nonrelativistic basis of HF wave functions and 
only treats spin orbit interactions in the final state (as 
well as interchannel interactions between the 5s and 5p 
subshells). The small deviation in β from the nonrela-

tivistic value 2 that is obtained in this calculation is due 
to the weakness of the 3P dipole amplitudes that are ob-

tained. Comparison with the other calculations empha-

sizes the importance of using relativistic core wave func-

tions when calculating forbidden dipole amplitudes. 
Similar K-matrix calculations for the photoelectron an-

gular distribution of the 6s electron in Cs69 were much 
more successful: β was found to vary between +2 and –1, 
in agreement with experiment. In Cs, however, the devi-
ation of β from the nonrelativistic value 2 is due to inter-

ferences arising from a fine-structure splitting of an al-
lowed dipole amplitude: 6s(2S) →  p(2P3/2, 1/2 ). Thus in 
Cs a forbidden dipole amplitude does not have to be cal-
culated, and treatment of only final state spin orbit inter-

actions within a nonrelativistic set of basis functions ap-

pears not to be a bad approximation.

Figure 14. Photoelectron angular distribution asymmetry parame-

ter β for the 5s subshell in Xe: RRPA, relativistic RPA calculations of 
Johnson and Cheng63 including interchannel correlations between 
the 5s + 5p and the 4d + 5s + 5p subshells; - - -, Dirac-Fock calcu-

lation of Ong and Manson65; K-matrix: calculations of Huang and 
Starace68 including final-state spin orbit and 5s + 5p interchannel 
correlations in dipole length (∙∙∙∙∙) and velocity (——) approxima-

tion; , experimental results of White et al.67; , experimental re-

sult of Dehmer and Dill.66
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2. Core Relaxation Effects
Whenever an electron is removed from an atom, the 

remaining electrons contract under the influence of the 
stronger net screened nuclear attraction. The deeper the 
subshell from which the electron is removed, the greater 
is the contraction of the outer subshell electrons. This 
contraction affects not only the ionic wave functions but 
also the binding energy and wave function of the pho-

toelectron. One method of treating these effects is to use 
experimental binding energies and to employ ionic HF 
wave functions in the final state rather than keeping the 
atomic HF wave functions. Such a relaxed core approx-

imation has been justified in the context of the RPA by 
Amusia.70 In actuality, however, the importance of ionic 
relaxation depends on the energy of the photoelectron. 
When the photoelectron moves slowly, relaxation takes 
place while it is in the neighborhood, and hence there is 
a significant postcollision interaction with the core. This 
effect is not important at very high photoelectron escape 
velocities.

Wendin28 has discussed relaxation from this more 
general point of view. In Figure 15 we show his results 
for the 4d-subshell photoionization cross section in Ba. 
We see that relaxation effects reduce the unrelaxed RPA 
results by a factor of 2 and broaden them by a factor of 
2! The final result, including relativistic interactions, is 
in very good agreement with experiment. 71

Two final observations might be made: first, in the 
most general sense, relaxation effects include all pro-

cesses by which an ion with a vacancy decays to a 
lower energy state. These processes include ejection of 
one or more Auger electrons and the emission of fluo-

rescence radiation. When the photoelectron leaves the 
atom slowly, these relaxation processes should be con-

sidered together with the initial photoionization pro-

cess. Second, we note that when one uses a correlated 
wave function to describe an atomic system, such as in 

the hyperspherical coordinate description of He intro-

duced by Macek,58 relaxation effects are to a large extent 
taken care of since the wave function is a function of the 
relative positions of the electrons.

3. Long Range Polarization Fields
Polarization effects are known to cause difficulty in 

calculating photoionization cross sections for the alka-

lis and negative ions among others. We mention here, 
however, recent work of Greene et al.72 on extending the 
quantum defect theory to treat an electron moving in 
any long range field. This work has already been used 
to give a detailed treatment of the polarization effects in 
photodetachment of negative ions near threshold.73

C. Open-Shell Atoms

Except for the lightest atoms, relatively few open-shell 
atoms have been studied either experimentally or theo-

retically. On the one hand this is due to the experimen-

tal difficulty of producing open-shell atom vapors and 
on the other hand to the greater number of channels that 
must be considered in a theoretical calculation. Never-
theless a number of heavier open-shell atoms have been 
treated theoretically, among which are Al, Cl, and Ni. 
The R-matrix calculation of LeDourneuf et al.74 for Al is 
shown in Figure 16. Excellent agreement is obtained with 
the measurements of Kohl and Parkinson75 near thresh-

old. Five theoretical calculations for Cl are shown in Fig-

ure 17; there is no available experimental measurement. 
Below ħω = 22 eV, all theoretical calculations except those 
of Starace and Armstrong76 (which neglect interchan-

nel coupling) agree; above ħω = 22 eV, there are signifi-

cant unresolved discrepancies between open-shell RPA,76, 

77 MBPT,78 and R-matrix79 and close-coupling80 calcula-

tions. The R-matrix calculations of Combet-Farnoux and 
Ben-Amar81 for the 3d subshell of Ni represent a very am-

bitious detailed study of a rather complex atom.
A numerical difficulty in calculating open-shell atom 

cross sections is the large number of basis functions 

Figure 15. Photoionization cross sections for the 4d subshell of Ba. Ex-

perimental results of Rabe et al.71: ——. Theoretical results of Wendin79: 

∙∙∙∙∙ = intrachannel calculation; - - -  = RPA; – ∙∙ – = RPA + relaxation of 
4d 10, 5s2, and 5p6 subshells; – ∙ – = RPA + relaxation of 4d 10, 5s2, and 5p6 

subshells + simulation of relativistic effects (from Reference 28).

Figure 16. Photoionization cross section of aluminum: ——, R-matrix 
calculations of LeDourneuf et al.74; ∙∙∙∙∙, experimental data of Kohl and 
Parkinson.75
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that must be used. In this connection, we note that Sta-

race and Shahabi82 have extended the transition ma-

trix method of Chang and Fano31 to treat an arbitrary 
open- or closed-shell atom in the RPA. A new graphical 
method for calculating the transition matrix was devel-
oped, which greatly simplifies the angular momentum 
algebra and provides a pictorial representation of the 
relevant interactions. To obtain dipole amplitudes one 
must solve a set of coupled differential equations at each 
photon energy for a limited number of initial and final 
correlated wave functions. These equations reduce to fa-

miliar forms in the following special cases: for closed-
shell atoms the equations reduce to the Chang-Fano RPA 
equations31; in the absence of ground state correlations 
the equations reduce to the close-coupling equations.83 

Calculations for open-shell atoms are planned.82

D. Photoionization of Atoms in External Fields

Photoionization of atoms in external uniform electric or 
magnetic fields leads to very interesting spectroscopic ef-
fects, among which are quasi-bound resonances in the con-

tinuum.84, 85 Neither process is easy to treat theoretically, 
however. We sketch below the theoretical situations.

1. Uniform Magnetic Field
The Schrödinger equation for the hydrogen atom in 

a uniform magnetic field is not separable in any coordi-
nate system. Near the origin, of course, electronic motion 
is best described in a spherical coordinate system, which 
is appropriate to the Coulomb attraction at r = 0. At large 
distances from the origin, electronic motion is best de-

scribed in a cylindrical coordinate system, which is most 
appropriate for a uniform magnetic field. For low-energy 
excitations of the hydrogenic electron, the hydrogen atom 
has been found to be quasi-separable (in an adiabatic 
sense) in oblate spheroidal coordinates.86 These coordi-
nates reduce to spherical coordinates at the origin and in-

clude a substantial amount of magnetic field distortion at 
larger r. Near and above threshold, motion in the Z = 0 
plane is bounded by the magnetic field. A 1-D WKB cal-
culation of the bound energy levels87 in this plane gives 
agreement with experimentally observed resonances.84, 88 

Development of a 2-D WKB solution for the wave func-

tion of these resonance states is being investigated.89

2. Uniform Electric Field

The Schrödinger equation for the hydrogen atom in 
a uniform electric field is separable in the parabolic co-

ordinates ξ and η. The motion in ξ is always bounded, 
while the motion in η is always unbounded, although 
there may be quasi-bound motion due to a potential bar-

rier. Thus there are no rigorously bound states! For low 
excitations in H, one is concerned with the probability 
of field ionization.90 For higher excitations, in the vicin-

ity of threshold, a WKB calculation91 of the bound ener-

gies for motion in the ξ potential leads to energy level 
spacings that agree with experiment.92

For nonhydrogenic atoms the excited electron’s mo-

tion is separable in parabolic coordinates only outside the 
atomic core. In a spherically symmetric coordinate system, 
which is appropriate near the origin, the excited electron’s 
radial wave function is phase shifted with respect to a pure 
Coulomb wave by the atomic core. The matching of this 
phase-shifted spherical wave function onto the set of para-

bolic coordinate wave functions, which are more appropri-
ate away from the origin, is a major task of theory.93
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