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There is an emerging environmental awareness and social concern regarding the

environmental impact of the textile industry, highlighting the growing need for developing

green and sustainable approaches throughout this industry’s supply chain. Upstream,

due to population growth and the rise in consumption of textile fibers, new sustainable

raw materials and processes must be found. Cellulose presents unique structural

features, being the most important and available renewable resource for textiles. The

physical and chemical modification reactions yielding fibers are of high commercial

importance today. Recently developed technologies allow the production of filaments

with the strongest tensile performance without dissolution or any other harmful and

complex chemical processes. Fibers without solvents are thus on the verge of

commercialization. In this review, the technologies for the production of cellulose-

based textiles, their surface modification and the recent trends on sustainable cellulose

sources, such as bacterial nanocellulose, are discussed. The life cycle assessment of

several cellulose fiber production methods is also discussed.

Keywords: bacterial nanocellulose, fiber, textile, sustainability, cellulose

INTRODUCTION

Mankind practices such as the excessive use of non-renewable sources of energy and raw materials,
and the unlimited generation of waste in the vast majority of industrial processes, have wide
impact on the environment sustainability (Akinsemolu, 2018). Such is the case with the escalating
demand for textile products. The demand for textile fibers was 75.5 million tons in 2010 and is
expected to increase to 133.5 million tons by 2030 (at a growth rate of 3.1%/year) (Häemmerle,
2011; Eichinger, 2012; Hummel et al., 2015). From the production of raw materials, to spinning,
weaving fabrics and dyeing, substantial amounts of water and chemicals are required, including
nutrients and pesticides for growing rawmaterials such as cotton. Downstream, consumers’ use also
bare a significant environmental footprint from the consumption of water, energy, and chemicals
from washing, drying, and ironing (Sajn, 2019). In 2015, the United Nations set up an agenda
aiming to achieve 17 Sustainable Development Goals (SDGs) by 2030, proposing several solutions
to improve the economic and social development and providing the essentials to everyone without
overwhelming nature (a concept understood as sustainability) (United Nations, 2015). The United
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Nations Alliance for Sustainable Fashion emerged to ensure the
achievement of the SDGs in the fashion industry, throughout the
product value chain (United Nations, 2020)1.

For a commercial competitive edge, lignocellulose-based
materials need to have equal or better characteristics than
those of fossil-based ones. Adding functionalities such as
conductivity, magnetic properties, bioactivity, water repellency,
self-cleaning surface effect, and flame retardance can further
improve their competitiveness (Lundahl et al., 2017; Wei et al.,
2020). While taking advantage of their nano-scalar dimension,
spinning nanocelluloses without solvents provides the possibility
of incorporating additives in the filament dope solution while
avoiding the use of solvents which are environmentally damaging
(Lundahl et al., 2017; Ewulonu et al., 2019; Gao et al., 2019).

The bio-based production of chemicals and microbial
technology can also play a major role in this transition
toward the future bioeconomy (Choi and Shin, 2020). Various
microorganisms already play fundamental roles in our daily life
and, if used intelligently, some significant problems associated
with the production of green materials can be solved. Indeed,
the vast diversity of microorganisms provides huge applications
opportunities (Akinsemolu, 2018). The scientific research is still
poor comparatively to what these bio-based knowledge areas
can offer. In this review we also analyze the opportunities and
challenges of using nanocelluloses, from microorganisms and
plants, as sources of the most noble natural raw material for
the textile industry, cellulose. Production methods used in the
textile industry are discussed, such as the methods of Viscose,
Lyocell, and Cellulose Acetate, as well as novel processes using
Ionic Liquids and solvent-free fibers. Finally, the sustainability of
textile fibers and their life cycle assessment (LCA) are analyzed.

TEXTILE FIBERS

Overview
Fibers are the starting point for all textile products that serve the
everyday needs of society. Fibers of short length, called staple
fibers, as is the case of most natural fibers, range between 3
and 20 cm in length. A filament is a fiber of indefinite length,
being silk the only naturally produced. Most regenerated and
synthetic fibers are manufactured as filaments. Distinct methods
of drawing, spinning, and twisting, chosen according to the
type of fiber, are used to form a continuous strand of yarn
(Sinclair, 2015). The filament produced can be used as is, or can
be cut into staple fibers. Artificial staple fibers, as the natural
ones, must be transformed into yarns. At this stage is very
common to blend different fibers, and blends with different
combinations of natural and artificial fibers can be found in
the market. The textile is then produced. Conventional textiles
suit the common decorative or aesthetic usages. Technical textile
products can be grouped into various categories, depending
on their application, such as industrial, medical, packaging,
sports, automotive, construction, aerospatial, geo-textiles, agro-
textiles, and protective clothing. Each segment has a huge variety

1https://unfashionalliance.org/

of products made from diversified fibers/raw materials using
different manufacturing techniques and equipment (Keller and
Giddings, 2020; Rasheed, 2020).

Textiles were produced domestically until the 17th century,
mostly from vegetable sources using cotton, hemp, and flax but
also from animal sources as wool and silk. Then, during the
industrial revolution, the manufacture process was mechanized,
providing totally new and faster processes (Texcoms, 2019). The
fibers produced until the end of the 19th century were all natural
(Figure 1). During the 1900s, the production of man-made fibers
begun, more specifically regenerated cellulose fibers (RCF) by the
Viscose method. This was not the first process for the making
of artificial cellulose fibers to be industrialized, but soon became
dominant. The synthetic fibers appeared in the textile market
only by the 1940’s, made from chemically synthesized polymers
(Sinclair, 2015; Murthy, 2016).

Natural fibers, as animal (protein) and vegetable ones,
compose up to 40% of the textile fibers manufactured annually
in the world. Vegetable fiber (cellulose) is extracted from plants
(Yu, 2014). The most abundant natural polymer on planet Earth
is cellulose, representing over 30–40% of all terrestrial biomass,
with a biosynthesis of 1011 tons annually (Levi et al., 2016;
Kafy et al., 2017; Akhlaghi et al., 2020). Being biodegradable,
renewable, biocompatible, and affordable polymer, cellulose has
several other uses such as in paper, cellulose-based plastics,
food additives, excipients, coatings, diapers, foams, textiles, and
composites (Metsä, 2018; Kim et al., 2019; Havstad, 2020; Stora
Enso, 2021). While generally synthesized by plants, it is also
produced by some bacteria, fungi, and algae. In plants, cellulose
is the main structural constituent of the primary cell wall
(Brigham, 2018).

Cotton makes up around 90% of all natural fibers, being the
most used one for the making of apparel, home furnishings, and
industrial products. It is the main natural fiber crop (Yu, 2014).
The use of cellulosic fibers is expected to grow from the current
level of 3.7 kg per capita to 5.4 kg by 2030 (Häemmerle, 2011).
Cotton fiber contains approximately 90% of cellulose, dried hemp
has 40–50% and wood 40–55%, commonly found combined
with other substances as lignin and hemicelluloses (Ansell and
Mwaikambo, 2009; Wang J. et al., 2019). Additionally to cotton,
flax, ramie, jute, kenaf, and sisal are widely used. Cultivation with
cotton hybrids will expand and so, the harvest yield from 800
(2010) to 925 kg/ha (2030) will increase its production capacity.
However, it will not make up for the disappearance of arable land
and growing demand. It is estimated that only 3.1 kg of cotton
per capita will be accessible in 2030 (Häemmerle, 2011). This
cellulose gap provide new opportunities for man-made cellulosic
fibers (MMCF). The gradual substitution of cotton by pulp-based
fibers is also required from an environmental point of view.
Nowadays, new natural fibers, mainly vegetable ones, are being
utilized as kapok, pineapple, and apocynum (Yu, 2014).

Synthetic fibers have dominated the market since mid 1990s,
overtaking cotton. These are made from organic synthetic high-
molecular mass compounds and are produced synthetically from
petroleum-based raw materials. They represented up to 63% of
the global fiber production in 2019. The most used synthetic
fiber was polyester, with a market share of around 52% of total
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FIGURE 1 | Classification of main natural and man-made fibers [adapted from Murthy (2016), Sinclair (2015)].

global fiber manufacture. Cotton was second, with 23% (Textile
Exchanges, 2020). Currently, fibers have a cost of 1.17 €/kg
for cotton, 1.31 €/kg for Viscose, and 0.86 €/kg for polyester
(Emerging Textiles, 2020)2.

Novel Sources of Cellulose and
Nanocelluloses
In recent years, several nanocelluloses (NC), from microbial and
plant sources, have been tested as a source of textile fibers. The
interest in NCs is essentially focused on taking advantage of
their higher crystallinity, since they promote great mechanical
resistance (Nunes, 2014). NC is not a single material type but
rather a family of materials with very distinct features, mostly due
to different sources and preparation methods (Clemons, 2016).

Bacterial Nanocellulose

An alternative to wood/plant cellulose is bacterial nanocellulose
(BNC) (Figure 2), a homopolysaccharide extruded by Gram-
negative species of the genera Komagataeibacter, Acetobacter,
Rhizobium, Agrobacterium, Pseudomonas, Salmonella,
Alcaligenes, and Sarcina, the only Gram-positive bacterial
genus (Jonas and Farah, 1998; Dourado et al., 2016b). Different
bacteria produce cellulose with distinct morphology, structure,
properties, and yields (Wang J. et al., 2019). To obtain high
yields of BNC, it is necessary to use the highest cellulose
producer species, such as Komagataeibacter xylinus (Dourado
et al., 2016b). In addition to using high BNC producers, other
approaches toward improving the production of BNC include
the use of advanced reactors, complex culture media or even the
development of cell-free enzyme systems (Ul-Islam et al., 2020).

2https://emergingtextiles.com/

The BNC biosynthesis was first observed in kombucha, a
fermented beverage produced by a symbiotic colony of bacteria
and yeast, where a cellulose film is weaved on the culture media-
air interface. It was first reported in Brown (1886), who identified
a film with a structure chemically equivalent to that of plant
cellulose. BNC consists of <100 nm ribbon-shaped fibrils, with
7–8 nm wide nanofibrils randomly aggregated into bundles,
without lignin or hemicellulose (Gorgieva and Trček, 2019).

Bacterial nanocellulose has a chemical structure identical
to that of plant cellulose. Linear homopolymer of glucose
monomers are linked by β-(1→4) glycosidic linkage with the
chemical formula (C6H10O5)n. Nevertheless, it has different
macromolecular structure and properties (Ullah et al., 2019).
The polymerization degrees are within 2000–6000 for BNC and
13,000–14,000 for plant cellulose, decreasing during pulping
and purification. The unbranched chains of cellulose are held
together through strong intra- and intermolecular hydrogen
bonds to make the elementary fibers and the supramolecular
structure (Choi and Shin, 2020; Fang et al., 2020). This structure
possesses exclusive features, such as high mechanical strength,
water-holding capacity, dimensional stability, crystallinity,
biocompatibility, and biodegradability (Picheth et al., 2017).
Given these features, numerous applications of BNC have been
studied: in the biomedical field as a wound dressing, for tissue
regeneration/substitution, drug delivery systems, biosensors and
cancer diagnosis; in the textile and paper industries for fiber
composites and coatings; in the food and cosmetic industries
as an emulsifier and viscosifier (Klemm et al., 2005; Chawla
et al., 2009; Müller et al., 2013; Nimeskern et al., 2013; Lee et al.,
2014; Shi et al., 2014; Rajwade et al., 2015; Ul-Islam et al., 2019;
Amorim et al., 2020; Anton-Sales et al., 2020; Cabañas-Romero
et al., 2020; Farooq et al., 2020; Liu et al., 2020; Nanollose,
2020). The main application is still as a food item known as
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FIGURE 2 | BNC membrane before (A) and after (B) purification.

nata de coco, mostly produced and consumed in Asian countries
(Dourado et al., 2016a).

Bacterial nanocellulose can be produced through static or
agitated cultures (Wang J. et al., 2019), most studies being
carried out using the former (Zywicka et al., 2015). In this
method, BNC is produced in containers filled with nutrients and
incubated for 1–14 days, at 28–30◦C and pH 4–7 (Wang J. et al.,
2019). The efficiency of BNC production in stationary cultures
is strongly connected with the air–liquid surface area (given that
Komagataeibacter strains are mandatory aerobes), where it is
produced as a hydrogel sheet containing around 99% of water
(Wang J. et al., 2019).

To achieve industrial scale production, alternative
fermentation technologies have been studied, using specific
fermentation media and overproducing mutant strains
include agitated and air-lift bioreactors, membrane reactors
and horizontal bioreactors. The idea behind is that the
agitated/shaking culture facilitates the oxygen delivery to
bacteria during cultivation (Wang J. et al., 2019). Agitation
and aeration leads to the formation of fibrous suspensions,
which limits BNC applications and favors cellulose-negative
mutants to control the population (limiting the cellulose yield),
in addition to requiring high stirring power (as the viscosity of
the suspension is too high) (Czaja et al., 2004; Huang et al., 2014;
Rodrigues et al., 2019; Wang J. et al., 2019).

The textile fibers production amounts to 105.6 million tons
per year, worldwide (Garside, 2019). The current BNC global
production is far below this magnitude and confined to small
scale production units (Dourado et al., 2016a; Phisalaphong
et al., 2016; Piadozo, 2016). BNC’s production costs are generally
considered very high, preventing the scale of production from
increasing to industrial levels. Indeed, nata de coco costs around
50–80$US, per kg (dry weight equivalent). The high cost of
the fermentation medium has been pointed out as one main
difficulty for the large-scale production of BNC. This may be
overcome by using residues from the food industry as a low cost
medium, which in addition to reducing the cost of production
also helps to solve environmental problems related to waste
disposal (Ul-Islam et al., 2020). However, according to other
authors, the impact of the nutrients on the final cost is not so
relevant, and the use of residues from the food industry may
lead to more heavily charged wastewaters, hence more expensive
to treat (Dourado et al., 2016a). Another big difficulty lies on
the low BNC yield. In order to increase the yield of BNC
produced, better strains are required, either isolated from nature

or modified by genetic engineering techniques (Zhong, 2020). It
must also be recognized that a comprehensive assessment of the
very large scale industrialization potential of BNC remains to be
accomplished, therefore its potential as a sustainable alternative
for the textile industry cannot be fully ascertained at present
(Choi and Shin, 2020).

Plant Nanocelluloses

The hydroxyl groups on one cellulose chain bond with the other
to develop rigid and stable molecules, giving the plant stiffness
and strength. The hydrogen bonding between cellulose chains
makes it insoluble in water (Thomas et al., 2020). Fibrils are
formed by joining cellulose molecules together. In turn, fibrils
agglomerate into bundles, which the plant uses to form the cell
wall combinedwith hemicelluloses and lignin (Figure 3; Lundahl,
2018). The cellulose fibrils morphology demonstrates a mesh-like
structure (Thomas et al., 2020).

Nanocelluloses (NC) can be produced by top-down
approaches, i.e., the dismantling of fibers by chemical, enzymatic,
or mechanical methods in case of plant NC, or by bottom-up
routes for BNC (Charreau et al., 2020). Plant NC is generally
categorized in cellulose nanofibers (CNFs) and cellulose
nanocrystals (CNCs) (Amorim et al., 2020). The final chemical
and physical properties of NC depend directly on the source and
manufacture conditions (Kargarzadeh et al., 2017). NCs have
characteristics such as high strength and stiffness, low density,
biodegradability, high surface area, and low thermal expansion,
which led to much research and innovation during the last two
decades. Both CNC and CNF have applications as composite
materials, paper and board industry, adsorbent products, food
and beverages, paints and coatings, adhesives, packaging, oil
and gas, electronics, and medical, pharmaceutical, and cosmetic
product (Charreau et al., 2020).

Different raw materials can be used to obtain NCs such
as coconut husk fiber, mengkuang leaves (Pandanus tectorius),
cotton, Agave tequilana, barley wastes, tomato peels, garlic
straw residues, forest residues, corncob residue, Gigantochloa
scortechinni bamboo culms, industrial waste cotton, cassava root
bagasse and peelings, sugar palm fibers (Arenga pinnata), corn
straw, and sago seed shells (Ventura-Cruz and Tecante, 2019).
The raw material needs to be pre-treated to remove lignin
and hemicellulose by milling, pulping and bleaching. CNCs,
also named cellulose whiskers, nanowhiskers, or nanorods, are
manufactured by transverse cleavage of cellulose using strong
acids such as sulfuric and hydrochloric under defined conditions

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 608826

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Felgueiras et al. Trends on Cellulose-Based Textiles

FIGURE 3 | (A) Hierarchical structure of wood fibers: Reprinted (adapted) with permission from Zhu et al. (2013). Copyright (2013) American Chemical Society.

Comparison microscopic image of; (B) bacterial nanocellulose (Li et al., 2017): Published by The Royal Society of Chemistry, (C) nanofibrillated cellulose: Reprinted

(adapted) with permission from Saito et al. (2007). Copyright (2007) American Chemical Society and, (D) nanocrystalline cellulose (Anžlovar et al., 2018).

of temperature, agitation, and time (Clemons, 2016; Charreau
et al., 2020). CNC have a nanosized distribution: a diameter of
4–55 and 90–400 nm in length (Zinge and Kandasubramanian,
2020). After acid hydrolysis, CNC is obtained following
washing, filtration/centrifugation, and dialysis, to take out the
remaining acid (Charreau et al., 2020). Due to CNC higher
crystalline structure, it has less flexibility than CNF (Zinge
and Kandasubramanian, 2020). Currently, CNC is produced in
commercial quantities of 2–260 ton/year (Charreau et al., 2020).

Cellulose nanofibers, also called cellulose nanofibrils
or nanofibrillated cellulose, are obtained by mechanical
disintegration (Amorim et al., 2020). CNF are cellulose
structures of high aspect ratio bearing crystalline and amorphous
regions. Although CNF isolation is associated with mechanical
destructuring methods (pressure, cavitation, shear, and impact
forces), the high energy consumption needed has led to the
integration of pre-treatments to facilitate further fibrillation
(Charreau et al., 2020). A common pre-treatment uses a
2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) catalyst

to mediate the oxidation of native celluloses, that lowers the
energy needed to fibrillate (Clemons, 2016). The product
obtained is a translucent firm gel. CNF can be applied in
absorbent materials, for the reinforcement of composites, as a
rheology modifier agents and, mainly in papermaking, namely
of paperboard, tissue, deodorant sheets, and cosmetics sheets.
CNF is produced in commercial quantities of 24-560 ton/year
(Charreau et al., 2020).

TECHNOLOGIES FOR THE
PRODUCTION OF CELLULOSE TEXTILE
FIBERS

Regenerated Cellulosic Fibers
Regenerated cellulose fibers are obtained by dissolving cellulose,
pure or derivatized, from wood pulp or plant fibers. As
the length of wood pulp fibers is too small for textile use,
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they need to be processed using continuous spinning and a
regenerating technology (Navard, 2013). In the derivatization
step the structure of the starting cellulose is changed, forming
an intermediate compound such as sodium xanthate or acetate
derivatives. Then these intermediate compounds are prepared
and dissolved, along with the regeneration of the fiber
(Woodings, 2001). The improvement of cellulose dissolution
is a prevailing goal. The cellulose structure is transformed
in different ways depending on the type of solvent and
treatment conditions. Cellulose solvents can be divided into two
groups: non-derivatizing–whereby the polymer is dissolved by
intermolecular interactions; derivatizing–where the dissolution
process is combined with the formation of unstable ether, ester or
acetal derivatives. Both groups include aqueous and non-aqueous
solvents (Heinze and Koschella, 2005). Presently, the most used
industrial methods for dissolving cellulose pulp are the Viscose,
Cuprammonium, and Lyocell methods.

Regenerated cellulose was the first man-made fiber utilized in
the textile industry, in the beginning of its development, in the
early twentieth century. These fibers have a smooth and lustrous
silk-like aspect, combined with the outstanding water absorption
capacity of cotton. In 1924 the generic name Rayon was accepted
by the U.S. Department of Commerce and some industrial
corporations to label RCF that include Viscose, Acetate, Lyocell,
Modal, and Cupro (Chen, 2015; Textile Exchanges, 2020).

With an annual production volume of around 7.1 million tons
in 2019, the global production volume of RCF has more than
double since 1990. RCF have a market share of about 6.4% of the
total fiber production volume and is expected to increase in the
coming years. Viscose is the dominant RCF with a market share
of around 79% of all RCF and a production volume of around
5.63 million tons in 2019. Acetate has a market share of around
13% of all RCF with amanufacture of roughly 0.95million tons in
2019 but it is largely utilized for non-textile applications. Lyocell
ranks third most utilized RCF after Viscose and Acetate in 2019.
It had a market share of around 4.3% and a production volume
of 0.3 million tons, being this fiber expected to grow faster than
the others RCF. Using a production process quite similar to that
of Viscose, Modal fibers had a market share of around 2.8% of the
total RCFmarket in 2019 with a production of around 0.2 million
tons. Cupro has a market share of less than 1% of the total RCF
market. There is only one provider of Cupro, manufacturing
17,000 tons in 2019 (Textile Exchanges, 2020).

Regenerated cellulose fibers are being used in the most
diverse materials, from sportswear to health care textiles, alone
or combined with other natural or synthetic fibers, thanks to
their characteristic properties as tensile strength and smoothness
(Karthik and Rathinamoorthy, 2017).

Viscose Rayon

The Viscose process is the world’s most widely used method for
producing RCF. The first patent on the Viscose method was
granted to Cross and Bevan in 1893. Over the past 100 years,
this process underwent many alterations, although the basic
chemistry is still the same, which allowed Viscose to become
one of the most widely used regenerated fibers (Wilkes, 2001;
Thakur et al., 2017).

The process, shown in Figures 4, 5, consists in suspending the
pulp in NaOH and, after steeping for a specified period of time,
shredding and aging. The viscosity of the pulp depends on the
aging time. The aged pulp is then treated using carbon disulfide
(CS2) to form the orange-colored cellulose xanthate. Lastly, this
derivative is dissolved in NaOH with a lower concentration,
the starting stage of Viscose formation (Shaikh et al., 2012).
The polymer is finally precipitated in acid, for simultaneous
neutralization and regeneration of the cellulose using a wet-
spinning equipment. Then, several steps of washing and drawing
yield a regenerated fiber of pure cellulose (Olsson and Westman,
2013; Chen, 2015). Currently, carbon disulfide can be reused
up to 70%, the remaining being converted into sulfuric acid
(H2SO4), which is also recovered (Rana et al., 2014).

Despite being made from wood, the fiber production by
Viscose process is known to cause significant environmental
problems due to the high usage of chemicals, such as sodium
hydroxide, producing sodium sulfate as a by-product. The
life cycle of the Viscose process encompasses other impacts,
associated to how reagents are produced and recycled, as well as
the consumption of energy, the use of fossil fuel and deforestation
(Shen et al., 2010).

Recently, the companyNanollose announced the development
of a Viscose making process using BNC. This method
transforms BNC into NullarborTM Tree-Free Viscose fibers using
manufacturing equipment compatible with those currently used
by the industry (Jinzarli et al., 2019; Nanollose, 2020)3.

Lyocell Rayon

The direct dissolution of cellulose (without derivatization) has
been the object of research for many years. This process may
also ease the manufacture of regenerated cellulose by omitting
several steps (Perepelkin, 2007; Olsson andWestman, 2013). The
technology of direct dissolution of cellulose is a simpler process,
reducing the use of chemicals by ten times in comparison to the
Viscose process. Also, a direct solvent is easier to recycle, since
no byproducts are formed, resulting in a more environmentally
friendly process (Olsson and Westman, 2013). However, the
Lyocell production costs are higher than the Viscose, due to the
high cost of solvent and the use of high temperatures for cellulose
dissolution (Alam and Christopher, 2017).

History of Lyocell

Lyocell is the first successful technology of cellulosic fibers by
direct dissolution, resulting in fibers with exceptional properties,
making it a serious competitor to the Viscose process, since
it is more environmentally friendly (White, 2001; Peng et al.,
2017). Lyocell fiber has higher tenacity (especially wet tenacity),
higher modulus, lower shrinkage, better thermal stability, higher
crystallinity, and greater degree of orientation, than Viscose
(Edgar and Zhang, 2020). The Lyocell fiber market is estimated
to grow from 760 million € in 2016 to over 1.35 billion € by 2024
(Pulidindi and Chakraborty, 2016).

A patent describing the process of cellulose dissolution using
N-methylmorpholine-N-oxide (NMMO) solvent was filled by
Mcorsley (1981), In 1992, in Mobile Alabama, United States, the

3https://nanollose.com/
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FIGURE 4 | Mechanism of Viscose fiber production [addapted from McKeen (2017), Rodgers and Waddell (2013)].

company Courtaulds, achieved the full commercial production
with the trade name TENCEL R© (Chen, 2015). Lenzing, an
Austrian company, started the production of Lyocell fiber in 1990
with their first pilot plant. The full-scale production plant came
into operation in 1997 and the fiber was called Lenzing Lyocell R©.
In 2004, Lenzing purchased the TENCEL R© Group (Perepelkin,
2007). Today, Lenzing is the world’s biggest Lyocell fiber producer
(Rana et al., 2014). Other companies have emerged with new
brand names for fibers obtained using this technology, as Alceru
(TITKRudolstadt), Newell (AkzoNobel), Acelon (Greencell), and
Excel (Grasim) (Sayyed et al., 2019).

The solvent and phase diagram

N-methylmorpholine-N-oxide, commonly known as NMMO, is
the most used of all non-derivatizing cellulose solvents, due to
its capacity to directly dissolve high concentrations of cellulose,
while preserving the chemical properties of the polymer. The
possibility of recycling up to 99.7% of the solvent, makes the
process economically viable and more environmentally friendly
(White, 2001; Olsson and Westman, 2013).

N-methylmorpholine-N-oxide is completely soluble in water
and very hygroscopic. The polarity of the N–O bond also results

in a great ability to form hydrogen bonds. There are three
types of NMMO: anhydrous NMMO, monohydrate NMMO
(NMMO·H2O) with 13.3% (w/w) H2O, and disesquihydrate
NMMO (NMMO·2.5 H2O) with 28% (w/w) H2O (Wikandari
et al., 2016). NMMO’s oxygen can form two hydrogen bonds
with hydroxyl groups from water or cellulose (Figure 6), the
competition between water and cellulose for these hydrogen
bonds, being the central feature of this dissolution process
(Maia et al., 1981).

Since NMMO is thermally unstable, the dissolution of
cellulose in NMMO at high temperatures is accomplished in
well-controlled environment. NMMO degrades at temperatures
higher than 120◦C. Due to its reactivity, stabilizers should be
added at the start of the dissolution process, most commonly
propyl gallate (Rosenau et al., 2002).

The degradation of NMMO and following side reactions may
include N-methylmorpholine, morpholine, and formaldehyde
(Olsson and Westman, 2013). Some reactions are started by
transition metal ions such as iron and copper and that’s
why these should not be used in this process (Klemm et al.,
2005). Mechanical energy facilitates the rupture of cellulose-
cellulose intermolecular bonds, favoring the interaction with

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 March 2021 | Volume 9 | Article 608826

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Felgueiras et al. Trends on Cellulose-Based Textiles

FIGURE 5 | Schematics of Viscose fiber production [addapted from Alagirusamy and Das (2015), Sayyed et al. (2019)].

FIGURE 6 | N-methylmorpholine-N-oxide–cellulose dissolution mechanism: Reprinted with permission from Pinkert et al. (2010). Copyright (2010) American

Chemical Society.

NMMO. Furthermore, the apparent viscosity decline with
shear stress due to cellulose alignment, as anticipated for
non-Newtonian polymer solutions. Cellulose concentration and
degree of polymerization (DP) also influence the viscosity
(Olsson and Westman, 2013).

The NMMO-water-cellulose phase diagram (Figure 7), shows
the relative amounts of H2O and NMMO required for cellulose
dissolution to occur. NMMO–water mixtures are direct solvents
for cellulose in its monohydrate state. With a higher amount of
water, cellulose will not dissolve, since a competition for NMMO
takes place between cellulose and water, the interaction with the
latter being favored. Thus, NMMO only links with cellulose when
there is shortage of water molecules (Biganska andNavard, 2003).

The process (described in more detail in the next section) starts
with using a high water content, to induce the swelling of the
cellulose fibers. An homogeneous pulp is produced containing,
e.g., 35% of H2O, 9% cellulose, and 56% NMMO (point C in
Figure 7). Then, the excess of water is removed under vacuum
(point B). After further water removal, dissolution occurs at
point A with a 14% cellulose, 10% H2O, and 76% NMMO
(Golova et al., 2010).

Dissolution process

The first industrial system used to dissolve cellulose with NMMO
(Figure 8), involved the initial cellulose swelling. A cellulose
pulp must first be milled into small particles to improve the
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FIGURE 7 | Schematic phase diagram of the cellulose–MMO–H2O system: (line CBA) variation in the composition of the system during cellulose dissolution via the

traditional MMO process; (closed circles) composition of the system during cellulose dissolution via the solid-phase MMO process; (I) MMO monohydrate and (II)

MMO 2.5-hydrate (Golova et al., 2013).

surface contact area with NMMO. Then it is mixed with
NMMO containing 20–30% of water (Zhang S. et al., 2018).
The amount of pulp fed to the mixer has to be quantified,
to control the cellulose content. Mixing is done at 70–90◦C,
with high-speed refiners, to further break down the pulp,
improving the solvent wetting. The resulting swollen pulp is
then heated to 90–120◦C, under vacuum, to remove excess
water, yielding a clear dark amber-colored solution, to a final
cellulose concentration within 10–18% (m/m) (White, 2001)The
use of low pressure reduces the temperature required for water
evaporation, so the NMMO does not undergo exothermic
degradation (White, 2001). After dissolution, impurities such
as undissolved pulp fibers are filtered. The mixture is then
extruded and spun through an air gap into a spin bath with a
polar liquid, like water or alcohol. These coagulation agents are
miscible with NMMO, removing it from the cellulose solution
(Biganska and Navard, 2011). This process is called dry-jet
wet-spinning and consist of thousands of small holes through
which the solution is extruded into fibers (White, 2001). Various
other technologies are used in fiber spinning dope such as
kettle-type dissolution, twin-screw extruder dissolution, vacuum
mixed propulsive dissolution and vacuum membrane propulsive
dissolution technology. The first one is intermittent, the others
are continuous. Currently, the most used technology in industrial

manufacturing is continuous vacuum film propulsive dissolution
technology (Jiang et al., 2020).

To facilitate the cellulose dissolution process, various pre-
treatment methods have been researched such as enzyme
treatment, to enhance reactivity, microwave heating process to
reduce crystallinity, mechanical blending technique, enzymatic
peeling treatment, ball or vibration milling, steam explosion, and
electron beam irradiation. However, industrially, most of the
these are technically and economically non-viable (Sayyed et al.,
2020). Pre-swelling at temperatures from 30 to 75◦C lowers the
pulp’s crystallinity and forms a homogeneous solution with lower
time and power consumption during the dissolution process.
This makes Lyocell process more energy-efficient and sustainable
(Sayyed et al., 2020).

The DP of cellulose pulp influence the mechanical strength
of Lyocell fiber. The higher DP, the superior the mechanical
strength; yet, a very high DP may result in a poorer solubility
and an increase in the viscosity of spinning dope. The balance
between DP and the solubility of dissolving pulp has a substantial
impact on the spinning process and the mechanical properties of
fiber (Jiang et al., 2020). Due to the difference in the DP between
BNC and plant cellulose, the use of the same concentration may
yield different results, given the large difference in viscosity. For
example, a 6% (m/m) solution of BNC (DP 2000) has a viscosity
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FIGURE 8 | NMMO based lyocell process [addapted from Jiang et al. (2020), Sayyed et al. (2019)].

103 Pa.s, which in the case of wood cellulose (DP of 600) is
achieved only at 18% (m/m) (Makarov et al., 2019).

Bacterial nanocellulose Lyocell fibers have been produced
by Gao et al. (2011). In their work, water was added to
NMMO at 13.3% m/m and the mixture was heated at 90◦C
for 30 min. Then BNC powder was added (7% m/m) and
the mixture was heated at 80◦C for 12 h. The solution was
extruded and BNC filaments were formed. The regenerated BNC
fibers had a cellulose II crystalline structure, lower degree of
crystallinity, smaller crystalline sizes, and better thermal stability
than native BNC. This regenerated BNC fibers had a tensile
strength of 0.5–1.5 cN/dtex and extension at break of 3–8%
(Gao et al., 2011).

A different process for Lyocell fiber production, using the
NMMO-water-cellulose solid-phase system at a concentration of
cellulose under 25% (m/m), was developed at the All-Russian
Scientific-Research Institute of Polymer Fibers (Golova et al.,
1992; Golova, 1996). The method uses high-melting hydrate
forms of NMMO, which better dissolves cellulose, substantially
accelerating the process. The process starts with a solid-phase
activation of cellulose by NMMO with a water content of
8% (m/m) or less. Cellulose dissolution occurs under triaxial
compression, shearing, and forced plastic flow. Then, under
temperature (105◦C) and shear rate, the cellulose dissolves into
a highly homogeneous and concentrated solution (Golova et al.,
2013). This method has been successfully used with BNC fibers
with a DP of ∼1500 and a solid-phase activation of BNC
and NMMO (water < 10%); the mixture was heated at 120◦C
until a fluid solution was obtained (Makarov et al., 2019).
The authors claim that the (mechanochemical) activation is

mandatory for a homogeneous solutions to be obtained, as no
swelling occurs. Concentrations of up to 8% of BNC were used,
6% being optimal. The fibers were spun by dry-jet wet-spinning
into a water coagulation bath. The mechanical properties of
the obtained fibers are shown in Table 1, along with other
synthetic, natural and regenerated (man-made) cellulosic and
organic synthetic fibers. The mechanical properties of Lyocell
produced with BNC are similar with data for Viscose and Lyocell
fibers (Makarov et al., 2019, 2020).

Nonetheless, the Lyocell process has some limitations related
to NMMO’s intrinsic properties. The N–O moiety blocks the
application of redox-active agents, whereas the cyclic ether
structure is susceptible to thermal runaway reactions, requiring
stabilizers. The side reactions and considerable byproduct
formation can cause the degradation of cellulose, a temporary
or permanent discoloration of the spun fibers, a drop in
product performance, a relevant decomposition of NMMO
and higher consumption of stabilizers. So, alternative direct
solvents for cellulose dissolution would be highly attractive for
environmental and economic reasons (Rosenau et al., 2001;
Hummel et al., 2015).

Cellulose Acetate

Although not so widely used, another method of producing fibers
is available whereby cellulose acetate is obtained. Cellulose acetate
is the acetate ester of cellulose. It was first manufactured at
commercial scale by Celanese in 1923 (Sayyed et al., 2019) by
reacting a cellulose pulp with acetic anhydride, to form acetate
flakes (Figure 9). Then, these flakes are dissolved in a solvent
and filtered to produce the spinning cellulose dope solution
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TABLE 1 | Mechanical properties of different fibers.

d (µm) Young’s Modulus (GPa) Tensile Strength (MPa) Elongation (%) References

BNC Lyocell 10.3–15.4 8.6–10.1 420–495 5.5–6.5 Makarov et al., 2019

Ioncell – 30 700–800 – Sashina, 2019

Lyocell 9 22–31 472–624 6.8–13.7 Gindl et al., 2008; Manian et al., 2018

Viscose 10.5 9.3–11.6 220–340 8–23.5 Gindl et al., 2008; Manian et al., 2018

Cotton 10–27 8 600 7 Bunsell, 2018

Wool 15–40 2 170 35 Bunsell, 2018

Flax 15–20 65 650 1–3 Bunsell, 2018

Silk 12 8 400 25 Bunsell, 2018

Hemp 45 50 500 1–2 Bunsell, 2018

Jute 69 35 350 2.5 Bunsell, 2018

Polyamide 66 (Nylon 66) 20 <5 1000 20 Bunsell, 2018

Polyester (PET) 15 15 800 15 Bunsell, 2018

Kevlar 49 12 135 3000 4.5 Bunsell, 2018

(Ertas and Uyar, 2017). The cellulose dissolution with acetic acid
and acetic anhydride is done in the presence of sulfuric acid.
Partial hydrolysis of cellulose acetate in then performed in a
controlled manner, to remove the sulfate and a sufficient number
of acetate groups, to yield a product with wanted properties. The
cellulose dope solution is then extruded through a spinneret and
the yarns are produced by solvent evaporation. This process for
producing acetate fiber is made using the dry-spinning method
(Sayyed et al., 2019), and is mainly used to produce cigarette
filters but also for drug delivery and nanofibers. These cellulose
acetate fibers have limited use in the textile industry because of
their poor strength, poor abrasion resistance and poor thermal
retention (Watabe et al., 2018).

Ionic Liquids

Research on the use of Ionic liquids (ILs) for the direct
dissolution of cellulose, first used in 2002, has shown promising
results. A new class of next-generation RCF named Ioncell
have recently been developed utilizing a novel IL solvent
1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH] [OAc])
(Michud et al., 2016). Ioncell fibers have been shown to
exhibit better mechanical properties than all previously known
ones, namely, their tensile strength reaches 0.7–0.8 GPa and
elastic modulus of 30 GPa (Wanasekara et al., 2016; Sashina,
2019). Several garments have been produced and commercial
production is expected by 2025 (Ioncell, 2020)4. The IL process
is carried out using the Lyocell technology since the cellulose
solution is spun according to the NMMO-based Lyocell method,
in a dry-jet wet-spinning process where the filament go through
an air gap and coagulate in a bath where the regenerated cellulosic
fibers are formed (Sayyed et al., 2019).

Ionic liquids are liquids made-up of cations and anions,
thus they can be designated as salts in the liquid state (Singh
and Savoy, 2020). Overall, the dissolution process of cellulose
in ILs is still not fully clarified (Hermanutz et al., 2019). The
ILs ability to dissolve cellulose is due to small hydrogen bond
accepting anions that can compete with the hydrogen bonding

4https://ioncell.fi/commercialization/

between the cellulose chains and cations that help increase the
solubility (Andersson, 2018). ILs dissolves cellulose with no
prior derivatization in concentrations of up to 300 g.L−1 and
offer a potentially more environmentally friendly alternative to
traditional processes (Hina et al., 2015; Wanasekara et al., 2016).
These solvents are thermostable up to 300◦Cwith a melting point
up to 100◦C. ILs practically do not have vapor pressure, and
therefore do not pollute the atmosphere (Sashina, 2019). Due to
their wide range of properties, they have been increasingly used in
various fields of study such as biochemistry, engineering, physics,
etc. as a green solvent. The properties of ILs can be modified
depending on their application by altering the combination of
cations and anions (Singh and Savoy, 2020).

Ionic liquids usually comprise imidazolium, pyridinium,
or organic ammonium cations and anions such as
chloride, bromide, or more complex structures such
as hexafluorophosphate, trifluoromethyl sulfonate,
bis(trifluoromethylsulfonyl)imide, and methylimidazolium
chloride ([Amim]Cl) (Sayyed et al., 2019). ILs have been
investigated either to dissolve or to create appropriate support
for the functionalization of cellulose. For cellulose solubility,
the counter anions with halide, such as the imidazolium type,
have the best performance. One disadvantage with ILs with
halide anions is their relatively high viscosities, which brings
processing difficulties during dissolution (Isik et al., 2014). These
ILs demonstrate good dissolution characteristics, allowing the
production of cellulose dopes in concentration ranges that shows
good spinnability (Sayyed et al., 2019). For industrial use, any
IL selected for cellulose dissolution and processing has to match
specific criteria for an economic process development: the IL
should be easy to produce, recyclable in high amount (>99.5%),
possess the lowest possible toxicity, should have literally no vapor
pressure, a low melting point, a low propensity to side reactions
and degeneration, have high dissolution capability for different
pulp sources (Andersson, 2018; Hermanutz et al., 2019). To
obtain concentrated cellulose solutions suitable for spinning,
the researchers have tried to use ILs based on imidazolium,
pyridinium and ammonium cations (Sashina, 2019). Currently,
nearly thousand ionic liquids are described in the literature
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FIGURE 9 | Mechanism of the cellulose acetate preparation [addapted from Sayyed et al. (2019), Silva et al. (2017)].

(Meksi and Moussa, 2017; Wang H. et al., 2019; Zhang et al.,
2019; Yang et al., 2020).

Filaments Without Solvents
Regenerated cellulose fibers have beneficial characteristics
from both synthetic and natural fibers: they have uniform
morphological, mechanical, and physical properties, as synthetic
fibers. Also, they bear biodegradability, CO2 neutrality, and
low density of natural fibers. Still, their mechanical properties
are lower than those of CNF (Hooshmand et al., 2015). To
preserve the characteristics of CNF, several studies have been
made to elaborate a system of filament production without
solvents. Spinning CNF requires lower energy use and no
harmful chemicals are used (Lundahl et al., 2017). Instead of
dissolution, CNF are dispersed in water and spun into air or
reusable organic solvents. This process was announced in 2011
and has since then progressed in the improvement of the fibers’
mechanical properties and process scale-up (Iwamoto et al., 2011;
Lundahl, 2018).

An isolated cellulose crystallite has a Young’s modulus of up
to 160 GPa and tensile strength of 6–7 GPa, exceeding those of
carbon and Kevlar fiber in its longitudinal direction, while in
the transverse direction a value of 8–57 GPa is observed (Wang
et al., 2017). Thus, the mechanical performance of cellulose can
be optimized when the crystallites are well aligned, a goal that
can be accomplished by spinning (Lundahl, 2018). Wet and
dry-spinning have to date been applied on CNF at laboratory
scale, using a syringe pump, extruder, capillary rheometer, or 3D
printer (Lundahl, 2018).

In the production of filaments, TEMPO oxidized CNF is used
(Iwamoto et al., 2011) and extruded through a spinneret in a
wet or dry-spinning process (Figure 10). In wet-spinning, a
coagulation bath with acetone, water, ethanol, or CaCl2 solution

is used. The characteristics for the coagulants are miscibility with
water, moderate polarity and hydrogen bonding ability (Iwamoto
et al., 2011; Walther et al., 2011; Kim et al., 2019). The coagulant
bath rapidly induces the generation of “a skin” on the surface of
the CNF extrudate, stabilizing it against interfiber aggregation, to
allow the formation of distinct macrofibers (Walther et al., 2011).
In dry-spinning, the dope is pushed through the spinneret and
the solvent is evaporated (Clemons, 2016). Independently of the
spinning method, a high molecular alignment is induced in the
drawing step, which is key to the high stiffness and strength of
the fibers (Clemons, 2016).

Several parameters such as the spinning speed, inner diameter
and length of needle, and drying temperature, affect the
alignment of CNF and hydrogen bond formation between CFNs
(Kim et al., 2019). In the first report of CNF filament production
through a wet-spinning process, the influence of spinning rates
(from 0.1 to 100 m/min) were studied. The highest speed rate
resulted in filaments with better mechanical properties (Iwamoto
et al., 2011). By using post drawing, more efficient alignment
of the nanofibrils is achieved resulting in further improvement
of the mechanical properties of the fibers (Walther et al., 2011).
A wet-stretching process is used to induce high fibers orientation,
improving their Young’s Modulus from 8.2 to 33.7 GPa (Torres-
Rendon et al., 2014). Various concentrations of CNF were tested,
from 1 to 12%, being the higher ones processed through dry-
spinning and the lowers by wet-spinning (Iwamoto et al., 2011;
Hooshmand et al., 2015; Kim et al., 2019). In a study using
a wet-spinning system 2% (m/m) CNF was considered the
perfect solids content for achieving a high CNF alignment and
filament strength, specifically, a Young Modulus of 37.5 GPa
and Tensile Strength of 543.1 MPa (Kim et al., 2019). The
mechanical properties of CNF filaments produced through the
various processes are summarized in Table 2.
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FIGURE 10 | Schematic illustrations of simplified systems for (A) wet-spinning and (B) dry-spinning. Reprinted (adapted) with permission from Lundahl (2018).

Copyright (2018) American Chemical Society.

Flow focusing is another method for CNF filaments
production, resulting in fibers with the strongest tensile
performance, as compared to other methods (Table 2). The fibers
are generated by aligning a CNF suspension in a double flow
focusing channel through coagulation with acid, as shown in
Figure 11 (Mittal et al., 2018). The obtained filament has a
Young’s modulus of 86 GPa and tensile strength of 1570 MPa,
superior to those known natural or synthetic fibers (Mittal et al.,

TABLE 2 | Mechanical properties of different cellulose nanofiber filaments.

Spinning Young’s

Modulus

(GPa)

Tensile

Strength

(MPa)

Elongation

(%)

References

Wet-spinning 23.6 321 2.2 Iwamoto et al., 2011

22.5 275 – Walther et al., 2011

33.7 289 1.6 Torres-Rendon et al., 2014

28.9 369.6 – Geng et al., 2017

23.9 383.3 6.6 Kafy et al., 2017

37.5 543.1 3.7 Kim et al., 2019

Dry-spinning 12.6 222 3.6 Hooshmand et al., 2015

6.5 100 – Ghasemi et al., 2017

Flow focusing 86 1570 – Mittal et al., 2018

BNC wet-spinning 16.4 248.6 3.8 Yao et al., 2017

BNC stretching 65.7 826 2.5 Wang et al., 2017

2018). The specific strength of this CNF fibers also exceeds that
of metals, alloys, and glass fibers.

To our knowledge, the first and only company, to produce
fibers without solvents, cellulose dissolution or any other harmful
and complex chemical processes, is Spinnova Ltd. (Finland). The
raw material is pulp from FSC certified wood. After mechanical
pulping, the ground pulp passes through a single nozzle, where
the fibers and fibrils rotate and align with the flow, providing a
strong and elastic fiber network. The fiber is then spun and dried,
suitable for spinning into yarn and then knitting or weaving into
fabric (Salmela et al., 2016). The future goal is the recycling of the
fibers for several times, minimizing the use of virgin materials.
Spinnova fiber is now (2020) close to commercialization. The
technology has been scaled up from a small pilot scale to an
industrial pilot scale (Spinnova, 2020)5.

Filaments based on aligned BNC nanofibers were prepared
by wet-spinning and drawing procedures (Yao et al., 2017). This
macrofibers showed Young’s modulus of 16.4 GPa and tensile
strength of 248.6MPa using optimal process conditions (BNC 5.4
wt%; spinning rate 18.9 m/min), in which nanofibers displayed a
high degree of alignment. The nanofiber suspensionwas prepared
by TEMPO oxidation and then spun into an acetone coagulation
bath (Yao et al., 2017). BNC Filaments without TEMPO oxidation
were also produced. A super-strong and super-stiff cellulose

5https://spinnova.com/our-method/fibre/
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FIGURE 11 | Schematic of double flow-focusing channel used for CNF assembly (Mittal et al., 2018).

macrofibers was obtained from aligned ultralong BNC nanofibers
via a facile and scalable wet-drawing and wet-twisting method
(Wang et al., 2017). The macrofibers showed perfect integrity and
well aligned structure, with a tensile strength of 826 MPa and
Young’s modulus of 65.7 GPa. BNC membranes were cut with a
width of 7 mm and were wet-draw, becoming longer and thinner.
From these, BNC macrofibers with diameters of around 300 µm
were fabricated by wet-twisting and subsequently drying at 90◦C
for 12 h (Wang et al., 2017).

SUSTAINABILITY AND LIFE CYCLE
ASSESSMENT

The rapid population growth and careless consumption of
natural resources are causing serious global problems, such
as air and water pollution and global warming. Fossil fuels
exceeds 50% of the word’s total energy sources and based
on present water consumption, water resources are likely to
decrease by 30% in 2050 (Kazan et al., 2020). In the last few
decades, the environmental problems caused by humankind
are reaching dangerous levels, being the search and adoption
of more environmentally sustainable processes a mandatory
paradigm change.

In this regard, environmental impact assessment gains a
significant importance to rate the environmental effects of
industrial activities. LCA can be used to evaluate a product,

process or activity repercussions on the environment (Van Der
Velden et al., 2014). “Cradle to gate” LCA studies take in account
the rawmaterials and fuels used, as well all the processes involved
until the product is delivered at the factory gate for further
processing; “cradle to grave” involves, in addition to the later,
post-manufacturing processes until the product (garment) end of
life (Dibdiakova and Timmermann, 2014).

The global textile supply chain is complex, involving several
stages (Figure 12). It is widely recognized that the textile industry
is a major contributor to the environmental pollution and
resource consumption. Among all, this industry is placed at fifth
place in terms of the release of chemical oxygen demand (COD),
implying large quantities of wastewater production and chemical
consumption (Roos et al., 2018; Zhang Y. et al., 2018). Along
COD, textile wastewaters may contain substances with a high
biological oxygen demand (BOD), total suspended solids, oil and
grease, sulfides, sulfates, phosphates, chromium, copper, and/or
the salts of other heavy metals. The major part of the chemical
substances used in textile manufacture are generated during
wet processing (dyeing, washing, printing, and fabric finishing).
Textile dyeing and finishing mills utilize 200 tons of water for
every metric ton of textiles produced. The textile industry is a
major energy-consuming industry with low efficiency in energy
utilization. A large quantity of non-renewable energy sources is
consumed in the form of electricity, not so much in the process of
textile production (15–20%) but mostly in subsequent laundering
processes during consumer use (75–80%) (Choudhury, 2014).
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FIGURE 12 | The business involved in the textile and clothing supply chain [adapted from Choudhury (2014)].

TABLE 3 | LCA cradle-to-gate of different impact categories per 1000 kg of fiber (functional unit) produced under different methods.

Impact Category Cotton Fiber Tencel (lyocell) Viscose Austria Viscose Asia Polyester

Water Use (m3) 5730 1 263 2 445 2 319 3 125 3

Energy Demand (GJ) 55 1 65 3 70 3 106 3 96 3

Global Warming (kg CO2-Equiv.) 2000 1 50 3 −250 3 3800 3 4100 3

Acidification (kg SO2-Equiv.) 41 1 13 3 14 3 45 3 21 3

Eutrophication (kg phosphate-Equiv.) 22 1 1.9 3 1.2 3 2.3 3 1.2 3

Ozone Depletion (×10−3 kg CFC11 Equiv.) 0.2 1 0.07 3 0.03 3 0.28 3 0.07 3

Land Use (ha/year) 1.07 1 0.22 3 0.69 2 0.35 3 0 4

1Cotton Incorporated (2012).
2Taylor (2010).
3Shen and Patel (2010).
4Dibdiakova and Timmermann (2014).

Although the entire process of textile production generates
hazardous wastes, in this review we focus only on raw materials
and fibers production. A cradle-to-gate LCA study, shown
in Table 3, makes possible to evaluate the environmental
impact of different fiber production processes (Dibdiakova
and Timmermann, 2014). It is important to mention that,
for a true comparative LCA, the same framework must be
used for all stages of the life-cycle of a commercial product,
process, or service (this means using the same criteria for
a life cycle inventory of the required resources (energy
and materials) across the value chain and determining
the corresponding emissions to the environment). Data
here collected was obtained from different sources and
therefore a direct comparison of the impact categories is
not straightforward.

Polyester, the most widely used synthetic fiber, has a lower
water consumption than the other cellulose fibers, but has
the highest impact on global warming from CO2 emissions
and also a high demand on energy (Zambrano et al., 2019).
Cotton is the most used natural raw material in textile industry
(Kazan et al., 2020). Nutrients and pesticides are used in raw
material production to increase quantity and product quality
and so, they pollute the groundwater and surface water. Up
to 25% of global pesticide usage in agriculture corresponds
to cotton production (Kazan et al., 2020). Although cotton
has the advantage of being biodegradable, it has a significant
water consumption, with an average global water footprint
of 5730 m3/ton in crops production and required water for
processing (Cotton Incorporated, 2012). Some of the negative
aspects of cotton production can be overcome by growing

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 March 2021 | Volume 9 | Article 608826

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Felgueiras et al. Trends on Cellulose-Based Textiles

organic crops but it still has many negative environmental
aspects compared to other fibers (Textile Exchanges, 2014;
La Rosa and Grammatikos, 2019).

Regarding the processing stage, the Viscose process has
different environmental impacts depending on where it is
produced (Shen et al., 2010). The problems with these fibers
are the chemicals used in the regeneration process and the need
for large plantation areas for wood production. These plantation
areas need to have a sustainable managing system, and preferably
be certified, and, in the past, this was not always true.

Currently, the most environmentally friendly fibers on the
market are produced by the Lyocell process (Shen et al., 2010).
The solvent used is non-toxic and recyclable being the main
challenge the sustainable sourcing of cellulose. Tencel, made of
cellulose from sustainable eucalyptus plantations, which grows
quickly and requires no irrigation or pesticides, is the best option
on the market regarding its environmental impact. BNC may
be the solution to Lyocell flaws as it can be produced anywhere
without the use of forest resources. An attributional LCA was
applied to a projected production of BNC, by static culture,
following a cradle-to-gate approach which comprises the removal
of natural resources and their conversion, the production of
BNC, the utilities, the energy and equipment used, as well as the
treatment and disposal of the waste produced by the BNC process
chain. The results showed that water was the main resource used,
most of which being returned back to fresh water after treatment.
The BNC manufacture facility itself contributed little extent to
the consumption of resources and environmental impact of the
global life cycle. The materials production were accountable for
most of natural resources utilized (water), and the emissions
liberated to the environment, in this case released to fresh water
(Forte et al., 2019).

CONCLUSION

Textile industry evolved over the years. Several types of fibers
have been produced to fulfill people’s needs and demands,
polyester, cotton and Viscose being the most used. However,
these fibers have environmental implications associated to raw
material processing and transport, filamentmanufacture, product
and byproducts disposal. Currently, the most environmentally
friendly cellulose fibers on themarket are produced by the Lyocell
process. Current trends include the development of filaments
without using solvents, the development of new solvents and
new sources of fibers, which include different nanocelluloses,

namely bacterial cellulose. This presents a superior outlook in
terms of sustainability. However, the large scale production of this
biotech cellulose is still to be demonstrated. Further research is
still needed to scale up its production as their production cost.

Man-made cellulosic fibers are here to stay. Since its discovery,
more than 100 years ago, they assume an important role in
the textile industry. Along the history its commercialization
faced one major problem: the price. These fibers are more
expensive than cotton, and a lot more expensive than synthetics.
But the world has changed. The population growth, and the
increasing economic power in some underdeveloped economies
are putting a tremendous pressure under some industries,
especially those producing essential goods, like the textile
industry for garment. To allow an increase in textile production,
fibers production must increase also. Cotton cannot respond to
this increase, because there is no arable land available, and nor
the synthetics, presenting some major problems on recyclability,
biodegradability, row material availability in the future and
microplastics pollution. MMCF will have a very important role
in the response of this need. And in the eternal quest for
optimization, the MMCF will evolve along the entire value chain
to minimize its environmental foot print, improving production
methods and raw materials supply.
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