TRENDY: An Adaptive and Context-Aware Service
Discovery Protocol for 6LoWPANs

Talal Ashraf Butt, lain Phillips, Lin Guan, George Oikonomou
Department of Computer Science, Loughborough University, UK
{T.A.Butt,l.W.Phillips,L.Guan,G.Oikonomou}@Iboro.ac.uk

ABSTRACT

We propose, TRENDY, a new registry-based Service Discov-
ery protocol with context awareness. It uses CoAP-based
RESTful web services to provide a standard interoperable
interface which can be easily translated from HTTP. In ad-
dition, TRENDY introduces an adaptive timer and grouping
mechanism to minimise control overhead and energy con-
sumption. TRENDY’s grouping is based on location tags to
localise status maintenance traffic and to compose and offer
new group based services. Our simulation results show that
TRENDY techniques reduce the control traffic considerably
and also reduce the energy consumption, while offering the
optimal service selection.

Categories and Subject Descriptors

D.2.8 [Discovery and look-up for things and their ser-
vices on the Web]: Service discovery—=Service selection,
Web services, CoAP, 6LoWPAN

1. INTRODUCTION

The IoT (Internet of Things) vision has drastically changed
the way we foresee the future Internet. The low cost, data
rates and power consumption based devices are becoming
smarter with the advancement of computing technology.
TETF’s 6LoWPAN standard has made it possible for even
networks of resource-constrained devices to connect directly
to the Internet. Such IP based connectivity also gives the
opportunity for the reusability of existing infrastructure and
proven standards, without any translation gateways. These
developments have changed the profile of WSNs from iso-
lated and application-specific to be more interconnected and
directly accessible 6LoWPANs. However, these networks still
have constraints, including limited packet size, intermittent
communication, high packet loss, and restricted power and
throughput. Within these challenges, resource sharing can
be achieved by abstracting resources as services. A service
can provide any data reading or measurement, e.g. tempera-
ture reading of a sensor, etc., which can be shared inside the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WoT 2012, June 2012; Newcastle, UK

Copyright 2012 ACM 978-1-4503-0624-9/11/06 ...$10.00.

6LoWPAN or with an external IP network. Furthermore, ser-
vices can be composed to create higher-level services, which
can be combined to create mashups and provide new function-
ality [12]. The discovery of the available services is crucial
to avail this potential, which can be achieved by employing
suitable service discovery and selection protocols.

The use of the existing IP-based service discovery solutions
is an obvious choice to be considered. However, large packet
sizes and heavy control overheads of these solutions make
it infeasible to operate them directly on a 6LoWPAN, due
to the necessary fragmentation. Similarly other available
distributed solutions are also not viable, due to their excessive
demand for broadcast.

The WoT (Web of Things) vision depicts a view where a
collection of web services can be discovered, composed and
executed [12]. Although web services paradigm can remark-
ably change the way we access the services, they are a poor
match with constrained networks [11]. Both SOAP (Simple
Object Access Protocol) based big web services, and REST
(Representational state transfer) are based on heavy proto-
cols, which make them impractical for such networks. How-
ever, constrained nodes can benefit from IETFE’s CoAP [11]
(Constrained Application Protocol) standard, which offers
compact and optimized RESTful web services.

In this paper, we have presented TRENDY, a registry based
service discovery protocol based on CoAP based web ser-
vices. TRENDY uses intelligent adaptive timers to vary the
reporting time period, which reduces the control traffic sig-
nificantly. Furthermore, TRENDY’s architecture is established
on location-based grouping of the nodes, which diminishes
the energy consumption and also enables the localised compo-
sition of services. In addition, TRENDY offers optimal service
selection based on the context and reliability of the server
and popularity (demand) of the service.

2. RELATED WORK

There are several service discovery protocols. These can
be classified into three broad categories on an architectural
basis: centralized, distributed and hierarchical. Centralized
architectures have a central directory, where Service Agents
(SA) register their services. Subsequently, User Agents (UA)
discover the services by sending unicast queries to directory.
On the other hand, distributed architectures demand every
node to collaborate using broadcast or multicast to discover
a service. Hierarchical architectures employ some nodes with
high capabilities, to represent a cluster of nodes in their
vicinities.

The industry-standard, IP-based Service Discovery Pro-

tocols (SDP) including SLP, UPnP, JINI and Salutation
are not directly applicable to 6LoOWPANs. NanoSLP [3],
a miniaturised version of SLP, is an attempt to use SLP
with reduced features and only supports a directory-less ar-
chitecture. In [2], the author employs SSLP [4] inside the
6LoWPAN and provided the interoperability with SLP by us-
ing a Translation agent (TA). However, this solution involves
complexity and delay of translation, each time message is
translated to or from SLP. NanoSD [5], a distributed ap-
proach uses multicast and broadcast extensively and requires
each node to keep the service information of its neighbors.
In [1], a DNS based approach is introduced, which introduces
compression. However, it makes assumptions regarding the
availability of the required information and database entries.
In [10], TCP/IP based web portal’s mechanism is used with
the help of regional locals (master nodes) for the local service
discovery and data servers are used in the network, which
provide a complex mechanism that increases cost burden.
Another recent approach [8] provides RESTful web services
using HTTP based service discovery using existing or in-
jected strategies, but it does not address the management
and status maintenance of the registered services. Some
Internet drafts of the IETF CoRE work group have offered
few solutions for service discovery. The mDNS based solu-
tions are mostly relied on the availability of IP multicast.
However, Resource directory * uses CoAP as underlying com-
munication protocol, but it does not address the bottleneck
problem caused by the service update messages. In addition,
other requirements, e.g. optimal service selection are not
considered.

The IoT vision has significantly changed the way we ap-
proach the solution for a 6LoOWPAN. There is a need of a
SDP for 6LoWPAN which should consider:

e Scalability: The solution which can manage and control
discovery overhead in a dense network, while keeping
track of the availability of service hosts.

e Compact size: The complexity of the solution should
be implementable on the resource-constrained devices.

e Compact communication: The limited bandwidth
(20kbps to 250 kbps) and packet size (60-80 bytes) at
the application layer of 6LoWPAN, demands a careful
use of bandwidth. Large packets will get fragmented
and result in multiple packets, which can overwhelm the
entire network.

e Sleeping nodes: Constrained nodes usually save their
limited power sources by sleeping most of the time, using
a Radio Duty Cycling (RDC). The solution should assign
high priority to this issue, by giving some alternatives
like proxy which can act on behalf of sleeping nodes.

e Heterogeneity: Normally, heterogeneous devices are
used in a 6LoOWPAN (e.g. home automation); the solu-
tion should accommodate the devices regardless of their
hardware.

e Interoperability: Different standards for lower layers
are being used in the LowPANs. The solution should
be inter-operable to work between networks with diverse
standards. Interoperability aids the application develop-
ment, as single application can be used across different
networks.

"http:/ /tools.ietf.org/html/draft-shelby-core-resource-
directory-02

e Energy efficiency: This is the key to increasing the
lifetime of the network. The solution should optimise
its operation by minimising its control overhead. Fur-
thermore, most of the nodes in multi-hop networks waste
their energy by passing the message towards the sink.

e Fewer requirements: The assumptions of multiple
resource-rich devices should be ignored. However, the
protocol should be opportunistic enough to exploit the
availability of high-capacity devices in the network.

e Service selection: During the process of service discov-
ery, redundant nodes can be found in a network offering
the same service. A solution must be able to select the
optimal service in specific context (location) depending
on factors, including past service demand, reliability and
remaining energy.

e Service composition: Many services are discovered
and invoked together, mostly depending on their vicinity.
For example, switching lights on and off in a room will
require all the actuators of lights to be called collectively.
A service discovery protocol should consider this aspect
to allow grouping of different services in a locality, to
offer new services.

e Adaptivity: A SDP should be adaptive enough to
change different parameters: status maintenance interval,
etc., with the changing requirements, to decrease the
bandwidth in use.

3. TRENDY AIMS AND ARCHITECTURE

TRENDY maintains a registry on a DA (Directory Agent),
where SAs (Service Agents) register services. UAs (User
Agents) query the DA, to find the location of a service.
Other features of TRENDY are:

e An adaptive timer mechanism, which reduces status main-
tenance overhead considerably.

e An architecture based on lightweight, location-based
grouping to reduce the effect of high traffic towards the
single DA, without the prerequisite of resource-rich capa-
bility nodes. It ensures that most of the traffic generated
in one location does not affect the whole multi-hop net-
work. Furthermore, grouping mechanism enables the
network to offer new group based services (e.g. switching
lights).

e A service selection algorithm, which searches for the
optimal service in terms of location and remaining battery
life of a SA.

e CoAP (Constrained Application Protocol) is used as an
application-layer communication protocol, which enables
the interoperable RESTful web service paradigm in 6LoW-
PAN. Therefore, it enables a more efficient and easy
programming paradigm for potential future applications.

e The DA can optionally act as a proxy providing caching
and decreasing service invocation time.

e It operates independent of the specific routing protocol.
This allows for future development of routing without
affecting TRENDY. We do not yet investigate the potential
of combing clustering at the routing and service-discovery
levels.

3.1 Architecture

The architecture of TRENDY categorises SAs into GLs

Location: INBO1 Location: JMFO1 Location: RUT03

Figure 1: Architecture of TRENDY

(Group Leaders) and GMs (Group Members). We argue that
a directory based architecture is inevitable for a 6LoWPAN,
where nodes mostly sleep, and broadcasting is expensive to
discover a service in case of a distributed solution. Figure 1
presents TRENDY's architecture. In a 6LoWPAN, an edge
router works as a bridge between the WSN and IP networks
by adaptation layer. In most of the 6LoWPANSs, edge router
is resource-rich compared to all other devices in the network.
TRENDY aims to exploit the underlying architecture of 6LoW-
PAN by interweaving the service discovery solution with the
existing infrastructure. This is achieved by embedding the
DA role in an edge router.

TRENDY’s architecture is distinct from clustering as a GL
does not provide the functionality of a distributed directory,
nor it is elected by the surrounding nodes. The DA uses the
capability information of the nodes to assign them different
roles. TRENDY provides the scalability by creating groups
to deal with the increasing size of the PAN. The benefits of
using our grouping technique are multifaceted; it localizes the
status maintenance and empowers DAs to execute location-
based commands. For example, the DA can ask a GL in a
specific location to switch off the room lights or reduce the
level of heating in the area. Resultingly, a more evolvable
programming paradigm is enabled to facilitate the future
WoT applications.

3.2 Entities and Roles

Figure 2 shows the relationship between different entities
of TRENDY. Details of the functionality of these entities and
their operation together is covered in this section.

3.2.1 Group Member (GM):

All SAs are required to implement a CoAP resource for
the role of Group Member (GM), to send an UPD (Update)
message periodically to DA. These messages will keep DA
informed, about the availability of a GM. Later, during the
formation of groups a GM receives a YGL (Your Group
Leader) message, it then starts sending the UPD messages
to its GL.

3.2.2 Group Leader (GL):

TRENDY requires some SAs to offer the functionality of
Group Leader (GL) by implementing an additional CoAP
resource called Group Leader to perform its role. On top of
GM'’s capability, a GL is required to understand messages
for grouping including SGL (Selected Group Leader), YGM

| User Agent (UA) |

CoAP] HTTP

Directory Agent (DA)
| Resource: Trendy Server |

| Registry || Group Management |

| Resource: Trendy Reporting |

CoAP
i i

Group Member (GM) Group Leader (GL)

Figure 2: Relationship between TRENDY’s Entities

(Your Group Member), YGL, NRP (Not Reported) and GLD
(Group Leader Done). Every selected GL keeps the record
of assigned GMs by keeping a list of their IP addresses and
status. There can be multiple GLs in a single location, if one
GL is not able to maintain the nodes in that location.

3.2.3 Directory Agent (DA):

The DA has a backbone role in TRENDY’s architecture.
We have used the RPL (IPv6 Routing Protocol for Low
power and Lossy Networks) routing protocol in experiments,
and the DA sits at the root. This ensures that the DA can
communicate with all other nodes in the network. However,
any other routing protocol can be used for this purpose. The
responsibilities of a DA include:

e Maintenance of a Registry table to store all the service
information in the network.

e Provision of adaptive timer to decrease the overall control
overhead.

e Construction and re-construction of groups, by selecting
of Group Leaders and negotiating with them.

e Provision of different discovery options, including selec-
tion of optimal service.

e Optionally it can act as a proxy, in that situation other
benefits like caching can be exploited.

3.2.4 User Agent (UA):

The UA (User Agent) is a client interested in discovering
services available in the network. A UA sends queries to the
DA. The protocol used for communication between a UA,
and DA can be COAP (default) or HT'TP (if DA acting as a
proxy), depending on the solution. A UA can be either part
of the sensor network or send a request from elsewhere in
the Internet.

4. TRENDY PROTOCOL DETAILS

This section covers the working of TRENDY’s protocol by
explaining it’s different stages.

4.1 Registration

In TRENDY, it is mandatory for every SA (GM or GL) to
register with the DA. At first, the SA sends a UPD message
with its location, battery information and service informa-
tion. The service information is formatted using comma
separated URLs of available resources on a SA. Therefore, it

is recommended for developers to use self explanatory URLs
for resources. However, every SA is required to implement
a well-known resource to enable the detailed resource dis-
covery using core-link format?. The DA responds with an
acknowledgement carrying a period of time window. After
successful registration, every SA is bound to inform the DA
about its status at least once in a time window, using UPD
message. Upon reception of every subsequent UPD message,
the DA marks the respective SA active in the registry. The
DA checks its registry after every time window, and deletes
the records of inactive SAs. Moreover, an adaptive timer is
employed at the DA, which keeps a counter for every node
and increments it when a UPD is received from that node.
This counter value is piggybacked in the acknowledgement by
the DA. GM multiplies its reporting time with the received
counter value. Consequently, the number of UPD message
decrease considerably over the time.

The IP address of the DA can be either hard coded in
a SA, or distributed as DHCP parameter if this protocol
is in use. The assumption taken here is that all SAs will
inform the DA with location information that can be used
to form groups. The location information either be static
in the SA or can be assigned using web service interface.
This information depends on the locality of a device, e.g. in
a building monitoring and automation scenario: the SAs
deployed in the same room or specific corridor can be assigned
similar location tags.

4.2 Grouping

In order to guarantee the availability of the discovered
service, the DA needs to maintain the status of the nodes.
However, as the number of nodes increases in the network,
the load of status maintenance increases. In a multi-hop
network, other nodes get involved in the operation of passing
the message forward until it reaches at DA. TRENDY proposes
a grouping overlay, to keep the load of status maintenance
in the specific area of the 6LoWPAN and to deal with group-
based requests.

Grouping mechanism eradicates the bottleneck problem
associated with the centralized directory, by reducing the
traffic for status maintenance at the DA. Location tags of
the nodes are exploited by this mechanism to form groups
of nodes. The DA then adaptively recognises nodes in the
close vicinity and groups them, with a respective GL. Group
Leaders keep track of their remaining battery and after
reaching a threshold value can inform the edge router to
select a new GL.

The architecture of TRENDY in figure 2 shows the relation-
ship between the different agents. The process of making a
group is:

1. The DA periodically analyses the registry for grouping.

2. The DA selects all GLs by using their service informa-
tion, to send SGL messages to them. The confirmation
from GL is received in an acknowledgement, with a pig-
gybacked value specifying the maximum number of GM
it can support. If multiple GLs are available for the same
location, the DA will select the optimal one based on the
rank (explained in section 5.2).

3. For every new GM, the DA sends a YGM message with
the GM’s IP address to respective GL.

Zhttp://tools.ietf.org/html/draft-ietf-core-link-format-11

Discovery queries Description

?location=INBO1 Location based
?location=INBO1&type=temp Location and type based

Table 1: Trendy’s discovery queries

4. The GL confirms the addition of new GM and sends back
the confirmation to the DA, with the GM’s IP address
(for validation).

5. The GL periodically checks the newly added GMs, and
synchronises them by sending YGL message with its
trendy counter value to them. This needs an acknowl-
edgement from GM to confirm the call.

6. The registered GM then starts sending UPD message to
GL instead of DA, and uses the received counter value
to reset their reporting interval.

7. The GL periodically checks the status of GMs after an
appropriate interval, and reports the inactive ones to DA
by sending NRP message with GM’s IP address to DA.

A GL acts as a mediator to watch availability status of
GMs in its group. Furthermore, it ensures that only the
most closer nodes in the vicinity are involved in passing the
message, thus it reduces the energy overhead for rest of the
network. In addition, the overlay creates an opportunity to
make GLs more responsible, by including other functions,
e.g. aggregation, group actuation (turning all lights in a
room). However, the current specification of TRENDY does
not support these features, but future work will include more
advanced GLs. A GL can inform the DA anytime about it’s
depleting battery, when it comes to a certain threshold, by
using GLD message. It continues the GL responsibility until
informed by DA with a new GL address.

4.3 Discovery

Services are maintained at the DA to enable easy discovery.
A UA sends a SREQ message to DA, using CoAP (default)
or HTTP protocol. A UA specifies the trendy/server URL
with CoAP’s GET method and URL queries (examples shown
in Table 1) for service discovery. Furthermore, the UA can
optionally append best in the payload to get the optimal
service. The DA discovers the most appropriate service
using context, by reading the query variables. In case of an
optimal service selection request by the UA, the DA selects
the best service (if multiple services have been discovered).
Subsequently, the DA responds back to the UA by appending
the service information (resource’s URL and IP address of
the host) of optimum service or list of services in the payload.
If a DA is offering the HTTP protocol interface, then it acts
as a proxy and responds on behalf of a SA.

S. TRENDY TECHNIQUES

This section covers the detail of TRENDY’s proposed tech-
niques.

5.1 Adaptive Reporting Timer

We propose an adaptive timer for reporting. At the start,
nodes send UPD messages by selecting a random value be-
tween 0 and n (selected based on number of nodes), to
reduce the probability of collisions, as every node sends UPD
message at different intervals. The algorithm significantly
decreases the number of packets required for status mainte-

nance by the nodes.

The DA maintains a trendy counter value for every reg-
istered node, to enable the TRENDY timer. The value of
the trendy counter starts with 1 and it is incremented till
counter_maximum. Depending on the environment and ap-
plication needs, the maximum trendy counter value can be
chosen to guarantee optimal system status update. How-
ever, this value can be changed dynamically. In future work,
we will enable DA to keep separate maximum value for
each group, which will be increased or decreased depending
on the demand of a certain area. The first UPD from a
node is considered as registration by the DA, and responded
with a basic time window value. Subsequent UPDs are re-
sponded with trendy counter in the payload. Whenever DA
receives an UPD message from a new node it initialises the
trendy_counter at node’s registration time. After registra-
tion, the DA follows algorithm 1 for every subsequent UPD
message. This algorithm updates the trendy_counter, which
subsequently enables a SA to increase the time period for
its next UPD message. The trendy_current is used to keep

Algorithm 1 On receiving an UPD message

if trendy_counter_not_changed&&trendy_current <=1
then
if trendy_counter < counter_mazimum then
trendy_counter + +
end if
end if
trendy_current < trendy_counter

the current counter’s value, which gets decremented after
every time window. On the other hand, the trendy_counter
holds the standard counter value for next increment. This
algorithm only increases the counter value, when it reaches
its minimum and is not already incremented in the time
window.

Every SA gets the basic DA report time window in the
payload for the first UPD, and a trendy_counter value in
later responses. Whenever an acknowledgement is received
from DA, SA follows the algorithm 2. This algorithm ran-
domises a point between 50-90% of time window and then
multiplies it with the trendy_counter. Each SA starts with
the default trendy_counter value of 1.

Algorithm 2 SA report time interval calculation

trendy_counter < received_trendy_counter
report_time < 0.5 X time_period
interval < 0.4 X time_period
report_time += random between 0 and interval
if trendy_counter = 1 then
de fault_report_time < report_time
end if
report_time < report_time * trendy_counter

The selection of a random value ensures fewer numbers
of collisions. Every SA follows the same algorithm while
reporting to GL or DA.

5.2 Optimal GL Selection

TRENDY devises an optimal GL selection mechanism to
select among multiple potential GLs in a location. Whenever
DA finds any GM with no GL allocated, it selects a GL
based on the location. If more than one GLs are available,
it goes through the list of GLs and compares their ranks.

These ranks of GLs are maintained by DA and updated every
time the registry is analyzed for grouping. The equation to
calculate rank is:

_b

1000

Where sT is serving time of a GL in hours, nGM is the
number of GM supported by GL, f is the number of failures

in response to YGM messages, b is battery consumed, which
is divided by 1000 to reduce its effect on the equation.

rank = sT +nGM — f —

5.3 Optimal Service Selection

In TRENDY, the DA maintains service information, location,
battery consumed, and registration time for all registered
nodes. Furthermore, it keeps hit count for every service,
which is incremented whenever the service is discovered and
selected to be sent to the UA. The DA offers location-based
discovery by exploiting the available information. In addition,
if a UA has also specified the best in the request message,
the DA will select the optimum one from the searched list.
In this case, the DA, first of all, discovers services by using
query parameters and uses the following algorithm:

1. Select the best service based on hit count.

2. If the decision is not made, then select the one whose
server has less battery consumed.

3. If still deciding, then select one with earliest registration
time

6. EXPERIMENTS AND RESULTS

The main objective of TRENDY is to provide optimal ser-
vice selection and architecture to offer group based services,
while minimising the control overhead and reducing energy
consumption. This section covers the details of the experi-
ments undertaken for performance analysis and discusses the
gathered results.

6.1 Simulation Setup

We use the CONTIKI operating system with RPL as a
routing protocol and COOJA [13] to simulate all SAs. The
DA is implemented in JAVA and runs on a Linux machine
communicating with COOJA. We use two different imple-
mentations of CoAP. Erbium [6]: a CONTIKI based CoAP
implementation, which is used inside the 6LoWPAN for SAs;
and Californium®: used to implement the DA. All our simu-
lations consist of 26 Tmote Sky nodes where one node acts as
a border router, which are placed randomly in a 30m x 20m
wide field. We use ContikiMAC as Radio Duty Cycling
(RDC) and Carrier Sense Multiple Access (CSMA) as MAC
protocol. CONTIKI’s ENERGEST module is used to mea-
sure the energy consumed at each node. All SAs register with
the DA. Each node starts with a reporting interval randomly
selected between 100 and 300 seconds to prevent collisions.
In experiments, the DA’s basic time window is fixed to 600
seconds and maximum trendy_counter value to 9. Each
simulation is executed for 10 time windows and repeated 10
times to get the average results. The performance of TRENDY
is analysed by comparing following three scenarios: 1. BASIC:
All nodes report their status to DA using a constant interval.
2. TRENDYTIMER: TRENDY adaptive timer is used by all
nodes to report status. 3. TRENDYFULL: Both TRENDY

3http://people.inf.ethz.ch /mkovatsc/californium.php

Method Control Packets Energy (J)

(MEAN) (SDEV) (MEAN) (SDEV)
BASIC 810 16.13 62.08 5.33
TRENDYTIMER 163 28.18 61.27 7.53
TRENDYFULL 297 10.62 60.13 4.85

Figure 3: Control Overhead and Energy Consumed

grouping mechanism and adaptive timer are employed. This
scenario maintains three GLs and 22 GMs. In all scenarios,
nodes implement battery, location and light CoAP-based
services. GLs in the third scenario only implement resources
needed to act as a group leader.

6.2 Control Overhead

The control overhead of TRENDYTIMER scenario sur-
passes the performance of other cases. The TRENDYFULL
scenario constitutes more control overhead, which is un-
derstandable as traffic increases with the extra grouping
communication. However, in both cases number of packets
for control overhead remained far lower than the BASIC
scenario, as shown in figure 3.

6.3 Energy Consumption

The results of our experiments depict that BASIC sce-
nario with the constant reporting interval has consumed
more energy than TRENDY based scenarios. The benefits of
proposed grouping mechanism are supported by the results.
The implementation with TRENDYFULL has performed
slightly better compared with other solutions, as shown in
figure 3. The figure shows the total energy consumption of
the network (all 25 nodes excluding border router) in joules
(J). These results are over 10 runs of the experiment.

7. CONCLUSIONS AND FUTURE WORK

The advent of new standards has enabled constrained net-
works to become an active part of the Internet. The next
step is to integrate these networks with the web to fully con-
ceive WoT paradigm. Service discovery and selection play a
significant role in this regard, as it is a costly process due to
communication overheads. Moreover, node sleep cycles pose
concerns regarding the accuracy of a directory-less service
discovery solution. This paper proposes TRENDY, which is
an adaptive and context-aware service discovery protocol. It
uses an adaptive timer to decrease the bandwidth utilisa-
tion by reducing the control overhead. Moreover, TRENDY’s
grouping mechanism decentralises the status maintenance
traffic burden and provides an application level grouping,
which can be exploited to compose new group based services
(e.g. switching all lights in a room). In addition, it has a
compact implementation size (experiments done with Tmote
Sky) and employs CoAP as a communication protocol which
has an optimised header size. Furthermore, CoAP enables
the RESTful web service paradigm and thus has inherent
interoperability with other solutions. TRENDY also provides
the optimal service selection mechanism based on service
popularity, remaining battery and host uptime.

The future plan is to enable a DA to act as a proxy and
to offer new group based services by service composition.
Additionally, new GL roles will be designed and implemented,
where a GL can forward a request to whole group and can
aggregate the results of its group. Furthermore, TRENDY is
currently simulated with 26 nodes, so more focus will be

given to enhance it to work for large-scale network. The
performance will be analyzed by simulations and deployment
to physical hardware testbeds [9]. Lastly, we plan to adopt
trickle-style [7] algorithms for TRENDY’s adaptive timers and
investigate the potential of performance and efficiency gains.

8. REFERENCES

[1] F. Anwar, M. Raza, S. Yoo, and K. Kim. Enum based

service discovery architecture for 6lowpan. In Wireless

Communications and Networking Conference (WCNC),

2010 IEEFE, pages 1-6. IEEE, 2010.

S. Chaudhry, W. Jung, C. Hussain, A. Akbar, and

K. Kim. A proxy-enabled service discovery architecture

to find proximity-based services in 6lowpan. Embedded

and Ubiquitous Computing, pages 956-965, 2006.

C. Jardak, E. Meshkova, J. Riihijarvi, K. Rerkrai, and

P. Mahonen. Implementation and performance

evaluation of nanoip protocols: Simplified versions of

tcp, udp, http and slp for wireless sensor networks. In

Wireless Communications and Networking Conference

(WCNC 2008) IEEE, pages 2474-2479. IEEE, 2008.

[4] K. Kim, S. Yoo, H. Lee, S. Park, and J. Lee. Simple
service location protocol (sslp) for 6lowpan.
drraft-daniel-6lowpan-ssip-00, 7, 2005.

[5] A. Kovacevic, J. Ansari, and P. Mahonen. Nanosd: A
flexible service discovery protocol for dynamic and
heterogeneous wireless sensor networks. Mobile Ad-hoc
and Sensor Networks, International Conference on,
0:14-19, 2010.

[6] M. Kovatsch, S. Duquennoy, and A. Dunkels. A

low-power coap for contiki. Mobile Ad-Hoc and Sensor

Systems, IEEE International Conference on, 0:855-860,

2011.

P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle:

A self-regulating algorithm for code propagation and

maintenance in wireless sensor networks. In Proceedings

of the 1st conference on Symposium on Networked

Systems Design and Implementation-Volume 1, pages

2-2. USENIX Association, 2004.

[8] S. Mayer and D. Guinard. An extensible discovery
service for smart things. In Proceedings of the Second
International Workshop on Web of Things, page 7.
ACM, 2011.

[9] G. Oikonomou and I. Phillips. Experiences from
porting the contiki operating system to a popular
hardware platform. In Proc. 2011 International
Conference on Distributed Computing in Sensor
Systems and Workshops (DCOSS), Barcelona, Spain,
June 2011. IEEE.

[10] M. Raza, S. Yoo, K. Kim, S. Joo, and W. Jeong.
Design and implementation of an architectural
framework for web portals in a ubiquitous pervasive
environment. Sensors, 9(7):5201-5223, 2009.

[11] Z. Shelby. Embedded web services. Wireless
Communications, IEEE, 17(6):52-57, 2010.

[12] D. Zeng, S. Guo, and Z. Cheng. The web of things: A
survey. Journal of Commaunications, 6(6):424-438, 2011.

[13] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level simulation in cooja. In European
Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session, Delft, The Netherlands, JAN
2007.

[2

[3

7

