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Abstract

Background: Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an
information theoretic implementation of Wiener’s principle of observational causality. It offers an approach to the
detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to
analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed
interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox
TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the
obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the
performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials
(LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal
one-way connection is likely present.

Results: In simulated data TE detected information flow in the simulated direction reliably with false positives not
exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the
retina to the tectum, despite the complicated signal transformations between these stages. No false positive
interactions in the reverse directions were detected.

Conclusions: TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to
support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB
toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly
integrates with the popular FieldTrip toolbox.

Background
Making predictions is the essence of science. We sum

up our experimental observations in hypotheses about

causal interactions. To this end, causality has been con-

ceptualized in the experimental sciences by making use

of manipulations and predictions: If we manipulate the

state of a part of the system in various ways (e.g. using

stimuli or direct intervention) and can predict the out-

come of each manipulation for another other part of the

system (e.g. the neurophysiological responses) in the

form of probabilities we say that the manipulation was

causal to the outcome (see [1,2] for a more formal

account). Despite the successful use of this concept in

neuroscience, the self-generated activity of the brain

poses a fundamental challenge. Due to this activity, we

frequently observe a rather large variability of responses

despite constant stimuli [3]. In addition, it is difficult to

infer causality for the case of completely internally gen-

erated dynamics where there is no controlled experi-

mental manipulation, e.g. when investigating the

dynamics of the resting state. A deliberate manipulation

of self generated activity is extremely difficult by defini-

tion. Hence, we have to loosen our requirements for

ascribing causality to be able to also investigate directed

interactions in systems with self generated dynamics.

One popular way of augmenting the concept of causality

was introduced by Norbert Wiener [4]. In Wiener’s defi-

nition an improvement of the prediction of the future of

a time series X from its own past by the incorporation
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of information from the past of a second time series Y is

seen as an indication of a causal interaction from Y to

X. Despite Wiener’s use of the word causality in this

context, this concept is today more often referred to

either as predictive information flow [5] or Wiener-

Akaike-Granger-Schweder influence [6], reflecting the

progress made in the rigorous formulation of causal

dependencies [1,2]. Here, we will use the term ‘directed

interaction’ when referring to a property of the system

under investigation - the ‘ground truth’, and we will use

‘predictive information flow’ in the context of metrics

that indicate such directed interactions.

So far most implementations of Wiener’s principle

used model based approaches1. The earliest practical

realization by Granger for example modeled the inter-

acting parts of a system as autoregressive and their cou-

pling as linear [7]. However, in a complex system - such

as the brain - nonlinear behavior of its parts and non-

linear interactions between them have to be expected.

In fact nonlinear phase-to-amplitude and amplitude-to-

amplitude interactions between frequencies are reported

frequently [8-10]. Non-linear interactions can take an

unlimited number of different forms (e.g. quadratic, sig-

moidal or step functions,..) - in contrast to linear ones.

Hence, the type of interaction will usually be unknown

and we cannot construct a suitable model of the interac-

tion. To exhaustively cover all the possible types of non-

linear interactions in the brain, and thereby to fully map

the neural networks of interest, it would be useful to

implement Wiener’s principle in a way that is free of a

model of the interaction (also see [11]).

Indeed, it is possible to reformulate Wiener’s princi-

ple based on information theoretic quantities to reach

the desired model-freeness. The resulting measure was

originally formulated by Schreiber [12] and termed

transfer entropy (TE). Shortly after its publication TE

found first applications to neurophysiological data [13].

However, it was not until the introduction of new,

data efficient estimators [14,15] that TE has experi-

enced a rapid surge of interest [10,11,16-26]. Applica-

tions of TE in neuroscience comprise recordings in

cultured neuronal populations [18], invasive electro-

physiological recordings [26], magneto- and electroen-

cephalography (MEG/EEG) [11,27], functional mag-

netic resonance imaging (fMRI) [21] and interactions

between electrophysiological and fMRI signals [23].

Despite widespread interest in the method, no publicly

available toolbox for neural data exists2 that guides the

user through the difficulties of this powerful, yet

admittedly complex, technique.

TRENTOOL (the TRansfer ENtropy TOOLbox (Addi-

tional File 1)) fills this gap for the neurosciences by

bundling data efficient estimation algorithms with the

necessary parameter estimation routines and

nonparametric statistical testing procedures for compari-

son between experimental conditions or groups of

subjects.

The remainder of this manuscript is organized as fol-

lows. We first describe the toolbox and its use. Next, we

give a detailed description of the definition and compu-

tation of TE as it is implemented in the toolbox. Two

further sections demonstrate the performance of the

toolbox for simulated data and a neurophysiological test

case. We close by discussing merits and potential pitfalls

of TE analysis and highlight the differences between

TRENTOOL and other toolboxes for TE estimation.

Implementation
This section describes the TRENTOOL toolbox first

from the user’s perspective - with a subsection explain-

ing the use of TRENTOOL with different analysis stra-

tegies in mind. These different analysis strategies

motivate several auxiliary routines that TRENTOOL

provides to make TE estimation and statistical testing

easier. These routines are then explained in depth in the

second subsection, together with a definition of TE and

a detailed description of its computation.

Using TRENTOOL

TRENTOOL provides the core TE estimation routines

and algorithms to estimate the necessary parameters

from the data - both will be described in detail in the

subsection on computational aspects, below. To enable

the use of the TE metric in search of directed interac-

tions the metric is embedded in a framework of statisti-

cal tests that detect presence and modulations of

interactions according to one of three possible analysis

strategies (Figure 1):

1. A comparison of TE values from the original data

with those of surrogate data in order to detect a

directed interaction.

2. A comparison of TE values over trials between

two conditions in a single unit of observation (e.g. a

single subject) to detect a modulation of directed

interaction strength.

3. A comparison of TE values either between two

groups of subjects (e.g. patients versus healthy con-

trols) for one condition or between two conditions

within a group of subjects, again to detect modula-

tions in the strength of directed interactions.

In the following we describe input data and analysis

configuration formats. Then we explain the use of the

preparatory function that estimates analysis parameters

from the data and that is common to all analyses in

TRENTOOL. In this context we also provide details on

the set of core functions of TRENTOOL that the user
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Figure 1 TRENTOOL workflow. Structure of main analysis strategies in TRENTOOL. Top left - data preparation; bottom left - comparison to

surrogate data; bottom center - comparison of two conditions in one unit of observation; right column - analysis suite for group comparison.

Function names for user interaction on the left of each box. Subroutines names at the bottom of shaded areas for parameter estimation (green),
TE calculation (blue), shift testing (orange) and general permutation testing (yellow). Arrows indicate the passing of datasets. For details see text.
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interacts with to follow one of the three analysis strate-

gies above. Last we provide a detailed description of the

flow of data in TRENTOOL, aimed at users who want

to adapt the toolbox to their own needs. This descrip-

tion (see Architecture and detailed description, below)

may be safely skipped if the reader is not interested in

the architecture of TRENTOOL.

Input data and configuration parameters

The input data format is a MATLAB structure containing

the fields trial, time, label, and fsample. The fields trial

and time have to be cell arrays with the length of the num-

ber of trials. Each cell of the field trial contains the data

matrix (number of channels × number of samples) for

each trial, and each cell of the field time includes a vector

(1 × number of samples) with the time indices (in seconds)

for each trial. The cell array label stores the channel

names (label strings) and fsample contains the scalar value

of the sampling rate (in Hertz). At the moment this is

identical to the FieldTrip raw data format (version 2010-

10-25, [28]) and it is planned to keep this compatibility.

Most TRENTOOL functions also require the defini-

tion of a set of input parameters. These parameters are

passed to the function within the fields of a single

MATLAB structure typically called cfg (for configura-

tion). Some of the parameters in cfg have default values

which are used in case the field is not defined by the

user (see Tables 1, 2, 3, 4).

Workflow and core functions

As a first step, the input data are prepared for TE analysis

using the function TEprepare.m. This function checks

the data and the input parameters, selects suitable trials

and channels, and optimizes the embedding parameters

(for details see section on computational aspects). The

results of this function are then added to the input data

as a substructure (named data.TEprepare). The func-

tion TEprepare.m needs input parameters specifying

the time range of interest and the channels to be ana-

lyzed, the trial selection, the optimization method for the

embedding parameters, the parameters associated with

that optimization method, and parameters needed for the

calculation of TE. Table 1 contains a list of all possible

parameters of TEprepare.m, their default values and a

more detailed description.

After preparing the data the user can select between

three analysis strategies, as explained above:

• For a comparison of TE values from the original data

with those of surrogate data, TEsurrogatestats.m

creates surrogate data, calculates the TE values, per-

forms a test to detect linear mixing such as volume

conduction and performs a permutation test between

the TE values of the data and the surrogates. The con-

figuration for this function must specify parameters for

these two tests and the method of correcting for

multiple comparisons (see table 2 for all parameters,

default values and descriptions). In addition, the type

of surrogate data has to be specified (see [11] for a dis-

cussion of surrogate types for different scenarios).

• For a comparison of TE values over trials between

two conditions TEconditionsstatssingle.m is

used. This function needs two input datasets to be

tested against each other - one for each condition.

For both datasets the function TEconditions-

statssingle.m calculates the TE values and per-

forms a shift test. Afterwards this function performs

a permutation test between the TE values for the

trials of the two datasets.

The configuration parameters for TEcondition-

statssingle.m are almost identical to those of

TEsurrogatestats.m, above. However, a specifi-

cation of surrogate data is not necessary.

• The comparison of TE values either between two

groups of subjects (e.g. patients versus healthy con-

trols) or between two conditions within a group of

subjects makes use of the functions TEgroup_pre-

pare.m, TEgroup_calculate.m, and TEgroup_-

stats.m. Together, these three connected functions

serve to analyze data from one or two groups of

data. The first function TEgroup_prepare.m

checks the input data for a consistent prior usage of

TEprepare.m and finds the common optimal

embedding parameters for all datasets and prepares

the datasets for the function TEgroup_calcu-

late.m. TEgroup_calculate.m calculates the

TE values and the shift test for each dataset sepa-

rately. These computations can be performed by

running multiple instances in parallel on different

PCs or server nodes at the same time. However,

these computations must be started manually (or via

a shell script) on all PCs or nodes. The last function

- TEgroup_stats.m - checks if the datasets are

all from the same TEgroup_prepare.m process

and performs the permutation test between the TE

values of the two groups of data given as input.

Only two of the three functions in group analysis

expect an input configuration - TEgroup_pre-

pare.m and TEgroup_stats. For TEgroup_-

prepare.m the options of the shift test (see table

3) have to be specified; for TEgroup_stats the

assignment of the individual preprocessed input data

files to the statistical design (e.g. experimental condi-

tions) and the settings for the statistical test between

groups have to be specified (see table 4).

A typical analysis script is shown in Figure 2. Exten-

sive help on how to call each function and on the possi-

ble input parameters is provided by the standard

MATLAB help function.
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Output

The functions TEsurrogatestats.m and TEcondi-

tionsstatssingle.m both create two output files:

(1) one with the suffix ‘ TE output’ containing TE and

mutual information (MI) values3 and (2) one with the

suffix ‘_TEpermtest output’ containing the results of the

permutation test. For a group comparison, TEgroup_-

calculate.m and TEgroup_stats create the corre-

sponding files containing TE/MI, and the statistical

output, respectively.

Architecture and detailed description

Figure 1 provides a detailed graphical overview of the flow

of data in the three analysis strategies, and the correspond-

ing user accessible functions (white boxes) and

subroutines (colored areas) : Input data pass through func-

tion TEprepare.m (top left box) which checks the data

and optimizes the embedding parameters (cao.mex or

TEragwitz.m, green shading). With the function

TEsurrogatstats.m (box bottom left) it is possible to

test single subject data against surrogates. To this end sur-

rogate data are generated, the TE values are calculated

(TEvalue.m, blue), shift tests (a combination of TEva-

lue.m and TEperm.m with special input configuration,

orange) are performed to find volume conduction and at

the end the data and the surrogates are compared with a

permutation test (TEperm.m yellow). To test two condi-

tions against each other in a single subject, the function

TEconditionstatssingle.m (bottom center box)

Table 1 The parameters of the function TEprepare.m

field name of cfg. default input description

sgncmb strings Nx2 cell array of specific channel pairs to analyze

channel strings cell array of channel names, all combinations will be tested

Path2TSTOOL string path to the folder including the required TSTOOL package

toi vector first and last time point of the time range of interest (in seconds)

predictiontime_u integer number estimated prediction time (in milliseconds)

optimizemethod string Method to optimize parameters: ‘ragwitz’ or ‘cao’

ragdim 1 to
10

vector In case of optimizemethod = ‘ragwitz’: range of embedding dimensions to scan

ragtaurange vector In case of optimizemethod = ‘ragwitz’: 1 × 2 vector of min and max embedding delays (in
units of ACT)

ragtausteps 10 integer number In case of optimizemethod = ‘ragwitz’: number of equidistant steps in ragtaurange
(minimum 5)

flagNei string In case of optimizemethod = ‘ragwitz’: ‘Range’ or ‘Mass’ type of neighbor search

sizeNei integer number In case of optimizemethod = ‘ragwitz’: Radius or mass for the neighbor search according to
flagNei

repPred integer number In case of optimizemethod = ‘ragwitz’: repPred represents the number of sample points
for which the prediction is performed (it has to be smaller than length(timeSeries) - (d - 1) * tau
* ACT - u)

caodim 1 to
10

integer number In case of optimizemethod = ‘cao’: indicates the range of embedding dimensions d that is
scanned using the Cao criterion to find the optimal dimension

caokth_neighbors 4 integer number In case of optimizemethod = ‘cao’: number of neighbors for fixed mass search for cao
(controls balance of bias/statistical errors)

tau 1.5 number In case of optimizemethod = ‘cao’: embedding delay (in units of ACT)

kth_neighbors 4 integer number number of neighbors for fixed mass search in TE calculation (controls balance of bias/statistical
errors). In case of using optimizemethod = ‘cao’: kth_neighbors =
caokth_neighbors

TheilerT ’ACT’ integer number
or ‘ACT’

number of temporal neighbors excluded to avoid serial correla-tions in TE calculation (Theiler
correction)

trialselect ’ACT’ string selecting trials: ‘no’ = use all trials, ‘range’ = use range of trial numbers, ‘ACT’ use trials with ACT
lower than threshold

actthrvalue integer number in case of trialselect=’ACT’ maximum threshold of the ACT for trial selection

trial_from integer number first trial in case of range selection of trials

trial_to integer number last trial in case of range selection of trials

maxlag 1000 integer
number

the range of lags for computing the ACT: from -MAXLAG to MAXLAG (in samples)

This table contains all possible parameters for the configuration structure cfg of the function TEprepare.m (TRENTOOL Version 1.0)

For integer numbers no type casting has to be performed!
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Table 2 The parameters for single dataset analysis

field name of cfg. default value input description

surrogatetype (only in
TEsurrogatestats.m)

’trialshuffling’ string surrogate data for trial(n) will be created by replacing trial n of one channel:
’trialshuffling’: trial(n+1)
’trialreverse’: reverse of trial(n)
’blockresampling’: cuts trial(n) at random point and resamples the trial
’blockreverse1’: reverse after blockresampling
’blockreverse2’: reverse first block after blockresam-pling
’blockreverse3’: reverse second block after blockre-sampling

shifttest ’yes’ string perform shift test to identify instantaneous mixing between the signal pairs.
Values: ‘yes’ or ‘no’

shifttesttype ’TE > TEshift’ string The shift test can be calculated for the direction TE value of original data
greater than the TE values of shifted data (value = ‘TE > TEshift’) or vice versa
(value = ‘TEshift > TE’). In this case the alpha level for the shift test is set to
0.1.

shifttype ’predicttime’ string time shift used in shift test: ‘onesample’ - shift by one sample into the past;
‘predicttime’ - shift by the time specified in cfg.predicttime_u in
TEprepare.m

permstatstype ’indepsamplesT’ string ’mean’ to use the distribution of the mean differences and ‘depsamplesT’ or
‘indepsamplesT’ for distribution of the t-values.

numpermutation 190100 integer
number

number of permutations in the permutation test

tail 2 integer
number

1 or 2 tailed test of significance in the permutation test

alpha .05 number significance level for the permutation test

correctm ’FDR’ string correction method used for correction of the multiple comparison problem -
false discovery rate ‘FDR’ or Bonferroni correction ‘BONF’

fileidout string the first part of the output filename

dim optimal embedding
dimension found in
TEprepare

integer
number

number of embedding dimensions; if not specified, the optimal dimension
found in TEprepare will be used (recommended option!)

Both single subject analyses functions of TRENTOOL TEsurrogatestats.m and TEconditionstatssingle.m require the same input parameters for the

input structure cfg. This table contains all possible parameters for the configuration structure cfg of these two functions (TRENTOOL Version 1.0)

For integer numbers no type casting has to be performed!

Table 3 The parameters for the group analysis function TEgroup_prepare.m.

field name of
cfg.

default value input description

shifttest ’yes’ string perform shift test to identify instantaneous mixing between the signal
pairs. Values: ‘yes’ or ‘no’

shifttesttype ’TE > TEshift’ string The shift test can be calculated for the direction TE value of original data
greater than the TE values of shifted data (value = ‘TE > TEshift’) or vice
versa (value = ‘TEshift > TE’). In this case the alpha level for the shift test
is set to 0.1

shifttype ’predicttime’ string time shift used in shift test: ‘onesample’ - shift by one sample into the
past; ‘predicttime’ -shift by the time specified in predicttime_u in
TEprepare.m

dim optimal embedding dimension found in
TEprepare (recom-mended option)

integer
number

Number of embedding dimensions. If not specified, the optimal
dimension found in TEprepare will be used, which is the recommended
option!

tau (see description) number embedding delay in units of ACT
If not specified (recommended option), the tau is used as followed:
In case of optimizemethod in TEprepare:
’ragwitz’ = optimal tau found via ragwitz criterion
’cao’ = cfg.tau given by user in TEprepare

This table contains all possible parameters needed for the function TEgroup_prepare.m (TRENTOOL Version 1.0) specified in the input structure cfg

For integer numbers no type casting has to be performed!
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computes the TE values (TEvalue.m, blue) and the shift

tests (orange) separately for both input datasets, and then

the TE values of the two datasets are compared with a per-

mutation test (TEperm.m yellow).

The three functions TEgroup_prepare.m,

TEgroup_calculate.m, and TEgroup_stats.m

(left box) are used for group analyses. The first function

TEgroup_prepare.m, checks the input data for uni-

form usage of TEprepare.m, finds the common

embedding parameters for all datasets and prepares the

datasets for passing to the following functions. The next

function TEgroup_calculate.m calculates TE values

(TEvalue.m, blue) and performs the shift test (orange)

for each dataset separately. All the datasets from

TEgroup_calculate.m serve then as input to

TEgroup_stats.m; this function checks if the datasets

are all from the same TEgroup_prepare.m process

and performs the permutation test (TEperm.m yellow).

Definition and computational aspects of transfer entropy

After explaining the use of TRENTOOL and the differ-

ent possible analysis strategies we will now describe in

detail how TE is defined, and how TE estimation, the

necessary parameter identification steps, and the statisti-

cal testing are implemented in TRENTOOL.

Transfer entropy indicates the presence of directed

interactions by measuring predictive, directed informa-

tion flow from a source X to a target Y [29], i.e. it quan-

tifies how much the past of a process X conditions the

transition probabilities of another process Y. Thus, -

Table 4 The parameters for cfg for the group analysis TEgroup_stats.m.

field name of
cfg.

default value input description

design integer
number

matrix containing a row with unit of observation (subject) number and a row with
independent variable representing the order of the data input. example for five subjects
two conditions:
1234512345
1111122222

uvar integer
number

row in cfg.design which contains the number of the unit of observation (e.g. subject)
(in the example: 1)

ivar integer
number

row in cfg.design which contains the independent variable (in the example: 2)

permstatstype ’indepsamplesT’ string ’mean’ - use the distribution of the mean differences; ‘depsamplesT’ (for dependent
samples) or ‘indepsamplesT’ (for independent samples) - use the distribution of the t-
values.

numpermutation 190100 integer
number

number of permutations in the permutation test

tail 2 integer
number

1 or 2 tailed test of significance in the permutation test

alpha .05 number significance level for statistical permutation test and correction for multiple comparison

correctm ’FDR’ string correction method used for correction of the multiple comparison problem - False
discovery rate ‘FDR’ or Bonferroni correction ‘BONF’

fileidout string the first part of the output filename

This table contains all parameters that can be specified in the input structure cfg for the function TEgroup_stats (TRENTOOL Version 1.0)

For integer numbers no type casting has to be performed!

cfg                  = [];
cfg.toi              = [0 2.999];
cfg.sgncmb           = {'X' , 'Y';'Y' , 'X'};
cfg.predicttime_u    = 21;
cfg.optimizemethod   = 'cao';
cfg.caodim           = 1:6;
cfg.caokth_neighbors = 4;
cfg.trialselect      = 'ACT';
cfg.actthrvalue      = 120;
cfg.minnrtrials      = 30;
cfg.Path2TSTOOL      = '<your_path>';

Data_prepared = TEprepare(cfg,Data)

cfg                = [];
cfg.surrogatetype  = 'trialshuffling';
cfg.shifttesttype  = 'TEshift>TE';
cfg.fileidout      = '<your_file_prefix>';

TEsurrogatestats(cfg,Data_prepared)

A

B

Example script for TEprepare

Example script for TEsurrogatestats

Figure 2 Example scripts. Example scripts for using TEprepare and

TEsurrogatestats. A: In the upper script the minimum number of
parameters of the configuration structure cfg for the use of

TEprepare are defined. The last line of this script represents the call

of the function TEprepare. B: The lower script includes the definition
of the minimum number of parameters for TEsurrogatestats which

we used for the analysis of the simulated data.
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assuming that the two associated time series X = xt and

Y = yt can be approximated by Markov processes - we

are interested in the deviation from the following gener-

alized Markov condition:

p(yt+1|y
n
t , xm

t ) = p(yt+1|y
n
t ), (1)

where x
m
t = (xt, ..., xt−m+1), y

n
t = (yt, ..., yt−n+1), while m

and n are the orders (memory) of the Markov processes

X and Y, respectively. When the transition probabilities

or dynamics of Y are independent of the past of X, Eq.

1 is fully satisfied, and we infer an absence of directed

interaction from X to Y. To measure the departure from

this condition (i.e. the presence of directed interactions),

Schreiber [12] used the expected Kullback-Leibler diver-

gence between the two probability distributions at each

side of Eq. 1 and defined the TE from X to Y as

TE(X → Y) =
∑

yt+1,yn
t ,xm

t

p(yt+1, yn
t , xm

t )

log

(

p(yt+1, yn
t , xm

t

p(yt+1|y
n
t )

)

.

(2)

For a graphical representation of the quantities

involved please refer to Figure 3. Note that under very

general conditions transfer entropy is equivalent to a

conditional mutual information formulation indepen-

dently introduced by Paluš [30].

Note that in the original formulation a prediction is

generated for one sample ahead. As interactions in gen-

eral may have long interaction delays well above the

time covered by x
m
t = (xt, ..., xt−m+1), y

n
t = (yt, ..., yt−n+1),

we generalized the above definition of TE for two

observed time series xt and yt by including a general

prediction time u:

TE(X → Y) =
∑

yt+u,y
dy
t ,xdx

t

p
(

yt+u, y
dy

t , x
dx
t

)

log
p
(

yt+u|y
dy

t , x
dx
t

)

p
(

yt+u|y
dy

t

) ,

(3)

where t is a discrete valued time-index and u denotes

the prediction time, a discrete valued time-interval. y
dy

t

and x
dx
t
are dx- and dy-dimensional delay vectors as

detailed in the next section.

Transfer entropy naturally incorporates directional

and dynamical information, because it is inherently

asymmetric and based on transition probabilities. Trans-

fer entropy is only well defined if all the marginal and

joint probability distributions are non-singular, e.g. not

delta-distributed. This excludes situations where time

series are related by fully deterministic functions, i.e

when one-to-one mapping exists between the states of

the two systems. No causal relation can be inferred in

those cases and this is reflected by a breakdown of the

definition of TE.

Computation of transfer entropy

In this subsection we detail how to obtain a data-effi-

cient estimation of equation 3 from the raw signals.

Prior to estimating TE it is necessary to reconstruct

the state space of the raw data. In this work, we use

Takens’ delay embedding [31] to map our scalar time

series into trajectories in a state space of possibly high

dimension. The mapping uses delay-coordinates to cre-

ate a set of vectors or points in a higher dimensional

space according to

xd
t =(x(t), x(t − τ ), x(t − 2τ ), ...,

x(t − (d − 1)τ )).
(4)

This procedure depends on two parameters, the dimen-

sion d and the delay τ of the embedding. For deterministic

systems and data of infinite length all choices of τ are

equivalent and the correct dimension d can be estimated.

For real data containing stochastic driving forces and

noise, only approximate algorithms for the determination

of d and τ exist. For a causality analysis according to

Wiener’s principle, however, it is not necessary to recover

the true dynamics of the systems under investigation

(their ‘attractors’), but to obtain an optimal prediction of

the future of each signal from its past, so that the predic-

tion to be improved upon is not artificially imprecise4.

With this in mind we may use approximate criteria to

determine d and τ, as they have been proposed by Cao

[32] and Ragwitz and Schreiber [12]. In Cao’s criterion τ is

chosen ad hoc - a popular option is to take the embedding

delay τ as the first zero of autocorrelation function of the

signal or the first minimum (if any) of the auto-informa-

tion - and d is determined based on a false neighbor criter-

ion; in Ragwitz’ criterion d and τ are jointly optimized to

minimize the prediction error of a local predictor. Both

algorithms are described in more detail below.

After having reconstructed the state spaces of any pair

of time series, we are now in a position to estimate the

TE between their underlying systems. We proceed by

first rewriting Eq. 3 as sum of four Shannon entropies

according to

TE(X → Y) =S
(

y
dy

t , x
dx
t

)

− S
(

yt+u, y
dy

t , x
dx
t

)

+ S
(

yt+u, y
dy

t

)

− S
(

y
dy

t

)

.
(5)

Thus, the problem amounts to computing this combi-

nation of different joint and marginal differential entro-

pies. Here, we used a data efficient approach to

compute TE that is based on nearest neighbors
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Figure 3 Graphical visualization of TE. (A) Coupled systems X ® Y. To test directed interaction X ® Y we predict a future Y(t + u) (star) once

from past values (circles) of Y alone: Y
(Y)
est (t + u) = F(Y(t), Y(t − τ ), Y(t − 2τ )), once from past values of Y and X:

Y
(X,Y)
est (t + u) = F(Y(t − τ ), Y(t − 2τ ), X(t − τ ), X(t − 2τ )). d - embedding dimension, τ - embedding lag. (B) Embedding. Y(t + u), Y(t), X

(t) - coordinates in the embedding space, repetition of embedding for all t gives an estimate of the probability p(Y(t + u), Y(t),X(t)) (part C,

embedding dimensions limited to 1).(C) p(Y(t + u)|Y(t),X(t)) - probability to observe Y(t+u) after Y(t) and X(t) were observed. This probability can

be used for a prediction of the future of Y from the past of X and Y. Here, p(Y(t + u)|Y(t), X(t)) is obtained by a binning approach. We compute p

(Y(t + u) ± ∆, Y(t) ± ∆,X(t) ± ∆), let ∆ ® 0 and normalize by p(Y(t),X(t))). TRENTOOL computes these densities via a Kernel-estimator. (D) p(Y(t + u)|
Y(i)) predicts Y(t + u) from Y(t), without knowing about X(t). It predicts the future of Y from the past of Y alone. (E) If the past of X is irrelevant for

prediction, the conditional distributions p(Y(t + u)|Y(t), X(t)), should be all equal to p(Y(t + u)|Y(t)). Differences indicate directed interaction from X

to Y. Their weighted sum is transfer entropy.
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techniques and the Kraskov-Stögbauer-Grassberger esti-

mator, and is a variation of the approaches described in

(Gomez-Herrero G, Vicente R, Wu W, Pipa G, Egiazar-

ian K: Assessing causal relationships from an ensemble

of multivariate time series, submitted. and [11,14]).

Nearest-neighbor techniques estimate Shannon differ-

ential entropies from the statistics of distances between

neighboring data points once embedded in a given

space. They have the advantage of being as local as pos-

sible given the available data, and to offer a good data-

efficiency, which is necessary to estimate entropies in

high-dimensional spaces from limited real data [15,33].

The assumption behind nearest-neighbor estimators is

only a certain smoothness of the underlying probability

distribution. Nearest-neighbor estimators can therefore

be considered as non-parametric techniques.

Unfortunately, it is problematic to estimate TE by sim-

ply applying a nearest-neighbor estimator (e.g. Koza-

chenko-Leonenko estimator) separately to each of the

terms appearing in Eq. 5. The reason is that the dimen-

sionality of the spaces involved Eq. 5 can differ largely

across terms. Thus, fixing a given number of neighbors

for the search will set very different spatial scales (range

of distances) for each term. Since the error bias of each

term is dependent on these scales, the errors would not

cancel each other but accumulate. We therefore used the

Kraskov-Grassberger-Stögbauer estimator which handles

this problem by only fixing the number of neighbors in

the highest dimensional space and by projecting the

resulting distances to the lower dimensional spaces as the

range to look for neighbors there [14]. After adapting this

technique to the TE formula (Gomez-Herrero G, Vicente

R, Wu W, Pipa G, Egiazarian K: Assessing causal rela-

tionships from an ensemble of multivariate time series,

submitted.), the estimator we use can be written as

TE(X → Y) = ψ(k) +
〈

ψ

(

n
y

dy
t

+ 1
)

− ψ

(

n
yt+uy

dy
t

+ 1
)

−ψ

(

n
dy

yt
x

dx
t

)〉

t,

(6)

where the distances to the k-th nearest neighbor in

the highest dimensional space (spanned by yt+u, y
dy

t , x
dx
t
)

define the radius of the spheres for the counting of

points nZ in all the marginal spaces Z involved. ψ

denotes the digamma function, while the angle brackets

(〈·〉t) indicate an averaging over different time points.

The use of equation 6 implies that the state spaces of

the signals have been reconstructed. Choosing a value

for the embedding dimension d is a crucial decision in

this respect that is far from trivial. For instance, if the

value of d is chosen too low, it can be insufficient to

unfold the state space of a system leading to incorrect

results in the neighbor search and consequently degrade

the meaning of any TE measure. On the other hand,

when using an embedding dimension which is higher

than necessary, samples in the high dimensional space

get too sparse to estimate the probability density cor-

rectly. This will make the estimates less accurate and

enlarges the computation time.

Two different optimization algorithms to find the

optimal embedding dimension for the data are available

in TRENTOOL. For deterministic (chaotic) systems the

Cao criterion offers an algorithm based on the computa-

tion of false neighbors [32]. For stochastically driven

systems the Ragwitz criterion provides parameters that

allow for an optimal prediction of future states [34].

Both optimization criteria are explained in more detail

in the next two paragraphs.

Cao criterion The Cao criterion described in [32] is a

method to determine the minimum embedding dimen-

sion of deterministic time series by analyzing neighbor-

hood relations in various dimensions. In the Cao

criterion the relative increase in distance between near-

est neighbors in d-dimensions that is brought about by

incrementing the dimension d by 1 is defined as

a(t, d) =
||xd+1

t − xd+1
t′(t,d)||

||xd
t − xd

t′(t,d)||
. (7)

where t = 1, 2,..., N - dτ and ||·|| is some measure of

Euclidean distance in d and d + 1 dimensions. The vec-

tor xd
t and its nearest neighbor xd

t′(t,d) are nearest neigh-

bors in the d-dimensional space. Their distance is also

evaluated in d + 1 dimensions in the numerator of the

formula (7).

A neighbor is called a true neighbor if two points are

close both in the d-dimensional reconstructed space and

in the (d + 1)-dimensional reconstructed space. Other-

wise, these neighbors are called false neighbors. For an

optimal embedding we would like to increase the

embedding dimension d just up to the point where no

false neighbors are found. Unfortunately, the classifica-

tion into true and false neighbors depends on choosing

a threshold value for a(t, d) and it is impossible to

define a threshold value that works independent of the

dimension d and of the time points t. Hence, Cao [32]

proposed to use the following quantity to define the

minimum embedding dimension:

E(d) =
1

N − dτ

N−dτ
∑

t=1

a(t, d). (8)

E(d) is the mean value of all N instances of a(t, d) and

is dependent only on the dimension d and the time lag

τ. The variation E1(d) from d to d + 1 is defined as

Lindner et al. BMC Neuroscience 2011, 12:119
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E1(d) =
E(d + 1)

E(d)
. (9)

With increasing d E1(d) stops changing at some point

[32]. The d of this transition is used as embedding

dimension and therefore the Cao criterion is only

dependent on the embedding delay τ as a free para-

meter. A popular ad hoc choice for τ is the first zero of

the autocorrelation function or the first minimum (if

any) of the auto-information.

In TEprepare.m the optimal embedding dimension

is found by minimizing

E1(d − 1) + E1(d + 1) − 2 ∗ E1(d) (10)

This optimal embedding dimension d from the Cao

criterion and the τ which was defined in advance are

then used for the calculation of the TE values in the

downstream functions of the toolbox.

Ragwitz criterion In most of the cases real data and

especially neuroscience data are not purely determinis-

tic - as it is implied in Cao’s algorithm. Hence, in

TRENTOOL we implemented a method which opti-

mizes the embedding dimension d and the embedding

delay τ for deterministic and stochastic data from Mar-

kovian processes. Optimality of the embedding here

refers to a minimal prediction error for future samples

of the time series. The Ragwitz criterion, described in

[34], predicts a future value ofthe signal based on esti-

mates of the probability densities of future values of its

nearest neighbors after embedding. The actual predic-

tion is based on some suitable parameter of the esti-

mated probability distributions, e.g. their mean. This

case corresponds to a minimization of the mean

squared prediction error and results in the local con-

stant predictor [35,36]. In TRENTOOL we aim to

minimize exactly this mean squared prediction error -

as this is implicitly required by Wiener’s principle.

Hence, we use the local constant predictor, where an

estimate of the unobserved future xt+u of the signal x
dx
t

is obtained from the mean of the futures xt’+u of its

neighbors x
dx

t′
:

x̂t+u =
1

|Ut′ |

∑

Ut′

xt′+u, (11)

where Ut’ is the set of vectors x
dx

t′
which are within a

volume with radius e around x
dx
t
:

Ut′ = {x
dx

t′ : ||x
dx

t′ − x
dx
t || ≤ ε} (12)

We then optimize parameters for d and τ such that we

minimize the mean squared prediction error:

e2 =
∑

t

(xt+u − x̂t+u)2
(13)

Using the Ragwitz criterion in TRENTOOL means to

scan different embedding dimensions d and embedding

delays τ which are given as parameters of the input

configuration.

Statistical Testing

Information theoretic estimators often come with a bias

for finite datasets (see e.g. [37]) and TE is no exception

[38]. Therefore, absolute TE values have limited mean-

ing and TRENTOOL uses TE only as a metric in a sta-

tistical test of the null hypothesis of independence. As

the distribution of the test statistic under the null

hypothesis is unknown, these tests have to be performed

non-parametrically, e.g. via permutation testing (see e.g.

[39]).

Permutation Testing A permutation test is a non-para-

metrical statistical significance test, which is used to test

whether two (or more) groups ofdata are exchangeable

[39]. The basic approach is the following: Decide on a

metric to measure the effect in question (e.g. raw TE

values, t-statistics, differences of means, etc). Then cal-

culate that test statistic on the data (tobt). Afterwards

pool the data and repeat the following n times: shuffle

the data, split the data in two (or more) groups, calcu-

late the test statistic ti* for the reshuffled data. This

gives the distribution of the test statistic under the null

hypothesis of exchangeability. The null hypothesis can

now be rejected or retained by comparing the actual

test statistic tobt to this distribution of ti*.

The main advantages of permutation tests are that

they exist for any test statistic, regardless of whether its

distribution is known or not.

In TRENTOOL permutation tests are implemented in

the internal function TEperm.m for the statistical com-

parison in three different contexts:

1. for a comparison of data with a shifted version of

the data to find instantaneous mixing in the data (e.

g. volume conduction, shared noise) - this procedure

is called shift-testing and explained below -,

2. for a comparison of the data with surrogate data,

3. and for a comparison of (groups of) datasets to

find significant differences in TE between them.

Shift-Testing Real data typically contain not only the

signal of interest but are contaminated by noise. More-

over, this noise contribution may not be independent

for two signals that are evaluated for directed interac-

tions using TE. Typical examples are shared 50 Hz sig-

nals, the effect of volume conduction in

Electroencephalography and field spread effects in
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Magnetoencephalography. Shared noise with a non- zero

autocorrelation can have various effects on measures

based on Wiener’s definition of causality. As a general

rule, false positive detection of a causal interaction

from the less noisy to the noisier signal is likely to

occur [11,40]. In order to avoid false positive detection

of a causal interaction due to instantaneously shared

noise we devised a so called shift test [11,27]. In this

test, TE from a signal X(t) to a signal Y(t) with a pre-

diction time u is computed twice - once for the origi-

nal signals and once by replacing X(t) by a time-shifted

version X’(t) = X(t + u). The effect of this time shift on

X is that samples now occur u time steps earlier in the

shifted signal than in the original one. Since we expect

a time delay δ > 0 for the coupling from X to Y, the

new set of values for X’ cannot be causally related to Y

(given a correct choice for the prediction time u

approximately equal to the interaction delay (δ)

between the signals, and given no instantaneous mix-

ing). Hence, if we were dealing with a truly causal

interaction, we effectively loose useful samples that

served to predict the future of Y and replace them by

acausal ones. Therefore TE values should drop, i.e. TE

(X ® Y) >TE(X’ ® Y). In contrast, if we observed a

causal interaction because of an instantaneous com-

mon noise contribution, this noise signal now appears

u samples earlier in the shifted signal X’, and allows

perfectly to predict its own appearance in Y u samples

later. In this case, we will see an increase in TE values,

indicating instantaneously shared signal or noise.

In TRENTOOL we formalized this argument in the

following way: For each trial i we compute both, TEi(X

® Y) and TEi(X’ ® Y). Then we compare the two dis-

tributions of TE values for the original and the shifted

signal pair by means of a permutation test. If TE values

for the shifted signal pair are significantly larger than

for the original one then we discard the hypothesis that

there is a directed interaction5. Note, that this result

should not be interpreted as the proof of absence of

directed interaction but rather means that under these

circumstances we cannot make any statement about a

true interaction due to the presence of instantaneously

shared noise.

Results
Validation for simulated data

We tested our implementation of Transfer Entropy with

a representative set of simulated data which mimic elec-

trophysiological recordings and where we have control

over all parameters such as coupling direction, delay

and strength6.

For each simulation, 100 datasets were generated with

40 trials, each 3000 samples long. All signals X and Y,

or X
ε
and Y

ε
in case of linear mixing, were evaluated

with first TEprepare and then with TEsurrogate-

stats using the default parameters for the functions as

listed in table 1 and 2, and using the free parameters

exactly as shown in the example scripts in Figure 2 (A)

for TEprepare and (B) for TEsurrogatestats if not

specified otherwise. The following paragraphs we

describe motivation, simulation setup and results.

Sensitivity analysis - impact of embedding parameters

The sensitivity of the TE metric mostly depends on two

parameters - the prediction time u that quantifies the

expected interaction delay between the two systems and

which has to be set by the user and the combination of

embedding dimension d and delay τ, which is estimated

by either the Cao (only d) or the Ragwitz criterion (d

and τ). The following two simulations demonstrate the

impact of u and d on sensitivity.

Impact of correct prediction time u To investigate the

influence of the choice of the prediction time u on TE

analysis results, we simulated two unidirectionally quad-

ratically coupled autoregressive processes with order

10 (AR(10))

X(t + 1) =

9
∑

i−0

αiX(t − i) + 0.1ηx(t) (14)

Y(t + 1) =

9
∑

i=0

αiY(t − i) + 0.1ηy(t)

+ γ X(t + 1 − δ)2

(15)

where all h are Gaussian white noise processes with

unit variance, the coupling constant g was chosen such

that the coupling term contributes 50% of the variance

of the final source signal Y, and δ is the coupling delay

and was set to 21 samples. For the evaluation of this

dataset, we scanned u from 1 to 40 samples.

Results The rate of correct detections of an interaction

peaked at u = 21, which is equal to the simulated cou-

pling delay (Figure 4A). At this optimal prediction time

of u = 21 we also found the highest TE values (Figure

4B). This result held irrespective of the coupling type

simulated (linear, quadratic, threshold; data not shown).

Beyond this peak, detection rates first dropped with

increasing u and then showed a second broad peak,

however, without reaching the maximal level again. This

latter result was specific to the data analyzed.

At the optimal prediction time u = 21, X ® Y was

detected for all 100 datasets. The mean p-value over all

100 datasets for u = 21 was: X ® Y = 0.0000050; Y ®

X = 0.1316. This mean p-value at u = 21 for X ® Y was

significant after a post hoc Bonferroni correction for the

multiple prediction times scanned.

The shift test was applied to detect instantaneous mix-

ing. As no instantaneous mixing was implemented in
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this dataset, results here serve to evaluate its false posi-

tive rate. As expected, the shift test did not detect

instantaneous mixing above chance level (0.1) for any u

(Figure 4A, lower panel) for the analysis of X ® Y. For

the reverse direction, Y ® X we observed a detection

rate of instantaneous mixing slightly higher than chance

level. This was expected because for certain combina-

tions of δ and large prediction times u -the shifting

effectively reverses the coupling delay and thus increases

TE for the shifted data compared to the original ones.

This does not decrease overall sensitivity, however, as

no coupling in this direction would have been observed

anyway.

The corresponding raw TE values are plotted in Fig-

ure 4B. The maximum value was obtained for X ® Y at

u = 21 which is in agreement with equation 15 and the

results above.

Impact of optimal embedding dimension d To investi-

gate the influence of the embedding dimension d we

used the same kind of simulated data as in the preced-

ing paragraph. Here, we scanned d from 3 to 8, and

additionally added a varying amount of noise to the data

from 20% to 200% in steps of 20% of the original var-

iance of the data.

Results For all noise levels, the optimal embedding

dimension was estimated by the Cao criterion to be d =

4 (Figure 5). For all tested embedding dimensions, the

coupling X ® Y was detected robustly for noise levels

smaller than 80% of the variance of the original signals

(Figure 5, left panel). At higher noise levels, the detec-

tion rate decreased for dimensions larger than the opti-

mal embedding dimension obtained from Cao’s criterion

(4).The mean p-values (permutation test, FDR q < 0.05)

for the optimal embedding dimension 4 over all 100

datasets and noise levels were X ® Y = 0.005, and Y ®

X = 0.302. The shift test was at or below chance level

for almost all d for the direction X ® Y, as desired. For

the reverse direction Y ® X the rates of positive shift

tests were at chance level on average but exhibited some

fluctuations.

Specificity analysis

While we are interested in a measure that is sensitive

enough to detect directed interactions, we must be con-

cerned with its robustness, i.e. we want to have a mea-

sure that delivers false positive results at a specified rate

only. The measure should exhibit this low false positive

rate even under unfavorable conditions. Common exam-

ples of such unfavorable conditions are shared noise, e.

g. due to line noise, and instantaneous linear signal mix-

ing as it arises due to volume conduction or field spread

in EEG or MEG, respectively.
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Figure 4 Influence of prediction time on TE . Results for

quadratically coupled AR(10) processes with a coupling delay δ of

21 samples (X to Y). (A) Upper panel - Detection rates versus

prediction time u. Open circles: detection of coupling from X to Y

(correct detections); Cross: detection of coupling from Y to X (false

positives). Interactions can be detected best, if the prediction time u

is set to the coupling delay (u = δ = 21). Lower panel: Shift test
detection rates (B) TE values versus prediction time u. Solid line: TE

values of the generated data. Dotted line: TE values for trial-shuffled

surrogate data. The difference between the TE values of the data

and the surrogates is largest when the prediction time u is set to
the coupling delay.
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Robustness against linear mixing This part of the

study was aimed at demonstrating the applicability of

TE analysis in case of linear signal mixing. For these

cases we demonstrate the robustness against false posi-

tive detection of directed interactions that is provided

by the shift-test described above. To this end, we simu-

lated five test cases in the following way:

(A) As an example of no interaction, two uncoupled

Gaussian white noise processes X, Y were generated.

X(t) = ηx(t) (16)

Y(t) = ηy(t) (17)

where hx and hy are Gaussian white noise processes

with unit variance.

(B) To simulate volume conduction effects, one Gaus-

sian white noise process Z(t) was generated and mixed

onto two noisy sensors X
ε
and Y

ε
.

Z(t) = ηx(t) (18)

Xε(t) = εZ(t) + ηsx(t) (19)

Yε(t) = (1 − ε)Z(t) + ηsy(t) (20)

with ε Î {0.05 0.1 0.2 0.3 0.4 0.5} and where hx is

Gaussian white noise of unit variance representing the
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innovation of the AR process. hsx and hsy are Gaussian

white noise sources that contribute 25% variance to the

final signals and represent sensor (observation) noise.

The mixing is parametrized by ε with ε = 0.5 leading to

identical signals apart from sensor noise.

(C) To investigate linear mixing in a two-source sce-

nario without coupling, two independent Gaussian white

noise processes X, Y were generated as in case (A) and

linearly mixed similar to case (B):

X(t) = ηx(t) (21)

Y(t) = ηy(t) (22)

Xε(t) = (1 − ε)X(t) + εY(t) + ηsx(t) (23)

Xε(t) = (1 − ε)X(t) + εY(t) + ηsy(t) (24)

with ε Î {0.05 0.1 0.2 0.3 0.4 0.5} and where hsx and

hsy are Gaussian white noise sources representing sensor

noise that contribute 25% variance to the final signals. A

mixing parameter ࿐ of 0.5 results in identical signals

apart from the noise differences.

(D) To investigate the interplay between linear mixing

and true coupling, two stable AR(10) processes with

unidirectional quadratic coupling were mixed onto two

noisy channels via the same symmetric linear mixing

system as in case (C).

X(t + 1) =

9
∑

i=0

αix(t − i) + 0.1ηx(t) (25)

Y(t + 1) =

9
∑

i=0

αiy(t − i) + γ X(t + 1 − δ)2 + 0.1ηy(t) (26)

Xε(t) = (1 − ε)X(t) + εY(t) + ηsx(t) (27)

Xε(t) = (1 − ε)Y(t) + εX(t) + ηsy(t) (28)

Where ε Î {0.05 0.1 0.2 0.3 0.4 0.5}. All h are Gaus-

sian white noise processes, the coupling constant g was

chosen such that the coupling term contributes 50% of

the variance of the final signal Y before adding sensor

noise. δ represents the coupling delay and was set to 21

samples. This test case has a true delayed coupling and

also different levels of linear mixing ε. It serves to inves-

tigate up to which level of linear mixing the delayed

coupling can still be detected.

(E) - Influence of 50 Hz noise. To investigate the

influence of 50 Hz noise on TE analysis, we generated

two unidirectionally quadratically coupled AR(10) pro-

cesses in the same way as in the previous case (D) but

without the linear mixing. To the original data X(t) and

Y(t) we (1) added 50 Hz noise and (2) filtered the data

with a 4th order two-pass Butterworth IIR bandstop fil-

ter for 49-51 Hz, to also simulate both the effect of line

noise contamination as well as the effect of filtering for

line noise removal. TE analyses were performed for all

three data sets, original, 50 Hz noise added, and filtered.

Results In the first case (A) of two independent Gaus-

sian white noise processes the detection rate of directed

interactions and of volume conduction was at chance

level (Figure 6 A).

In the second case (B) of only one Gaussian white

noise process mixed onto two noisy sensors, no directed

interactions were present. In this case, coupling was

detected at rates at or below chance level for all ε (Fig-

ure 6 B). For ε = 0 the shift test was expected to be

non-significant, because no instantaneous mixing was

present. For ε > 0, the shift test did robustly detect the

instantaneous mixing in 100% of simulated cases.

In the third case (C) of two independent Gaussian

white noise processes mixed onto two noisy sensors,

directed interactions were found at chance level for ε =

0. For larger e directed interactions were not found at

all (Figure 6C). This is because TRENTOOL eliminates

positive results when the shift returns a positive result

(see below). In both directions (X ® Y and Y ® X)

instantaneous mixing was not detected by the shift test

for ε = 0.0 - which is the correct result. For weak

instantaneous mixing (ε = 0.05), the detection rate was

about 50%. For stronger mixing (ε > 0.1) the volume

conduction was detected robustly.

In the fourth case (D) of two unidirectionally quadra-

tically coupled AR(10) processes that where mixed onto

two noisy sensors the directed interaction was detected

for small instantaneous mixing levels ε < 0.3, while

instantaneous mixing was found instead for the larger

mixing levels (Figure 6D). Note, that either instanta-

neous mixing or directed interactions can be detected

by construction of the algorithm. The output of the

algorithm thus indicates whether the influence of inter-

action or mixing dominates the dependencies between

signals. As in the third case (compare Figure 6 C), the

instantaneous mixing for Y ® X was detected robustly

for ε > 0.05. For the fourth case (E), the detection of the

directed interaction X ® Y was neither impaired by the

50 Hz noise nor by the filtering (Figure 7). The opposite

direction Y ® X did show false positives only at chance

rate (Figure 7). The shift test was not significant in the

direction of coupling X ® Y, but did robustly detect

instantaneous mixing for the opposite direction Y ® X

if 50 Hz was present and also at a rate of 68% when the

signal had been filtered, indicating that filtering does

not remove all effects of the common noise.
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Application to group data To demonstrate the use of

TRENTOOL for the analysis of group data, we simu-

lated data sets for 15 subjects and two conditions. Each

of the 30 datasets contained 4 simulated channels with

40 trials, each 3000 samples long. We assigned the

simulated channels to four channels labeled F3, F4, T7

and T8. All channels contained AR(10) time series as

described in equation 25. The first conditions had a uni-

directional quadratic coupling from F3 to T8 as

described in equation 26, whereas the second condition

was implemented with a unidirectional quadratic cou-

pling from T7 to F4. Group data analysis was performed

with TEprepare as specified before, TEgroup_pre-

pare and TEgroup_stats using the default para-

meters listed in table 3 and 4, and using the following

custom parameters:

for the function TEgroup_prepare we

used:

cfg.shifttesttype = ‘TEshift > TE’;

for the function TEgroup_stats we used:

% Design for statistical testing

% in cfg.design below

% first line (up to ;)

% - subjects for each dataset

% second line - corresponding

% condition for each dataset

%

% this is a dependend samples design

cfg.design =

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,

15,...

1,2,3,4,5,6,7,8,9,10,11,12,13,14,

15;...

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2];

% units of observation (subjects)

% are specified in line 1 of the design

cfg.uvar = 1;

% the value of the independent variable

% is specified in line 2

cfg.ivar = 2;

% Permutations within subjects,

% metric: t-value

cfg.permstatstype = ‘depsamplesT’;

% two-tailed testing

cfg.tail = 2;

Results The simulated differences in directed interac-

tions between both conditions were detected (FDR q <

0.05): F3 ® T8 for condition 1 (p-value << 0.001; t-

value = 107.0160) and T7 ® F4 for condition 2 (p-value

<< 0.001; t-value = -114.9804) (Figure 8).

Validation for neuronal data with known connectivity

When analyzing directed interactions in neural data,

there is a plausible post-hoc explanation for any graph

obtained because by far the largest part of neuronal con-

nectivity is bi-directional in its anatomical structure. To

circumvent this problem we chose a scenario where

connectivity is known to be unidirectional. We recorded

neuronal activity from the retina and the tectum of the

turtle (Pseudemys scripta elegans), this way exploiting

the fact the connectivity between the retina and the tec-

tum is known to be unidirectional [41]. A second uni-

directional connection in an information theoretic sense

exists between the stimulating light source and the

retina. A third, indirect one, exists between light source

and tectum. All three of these connections are strictly

unidirectional and together form an ideal test scenario

for our purpose. For the sake of completeness we note

that there are also backprojections from the brain to the

retina in turtles. These retinopetal projections, however,

are extremely sparse (some ten neurons) and do not ori-

ginate in the tectum [42].

Preparation

Experiments were approved by the German local autho-

rities (Regierungspraesidium, Hessen, Darmstadt). One

turtle (Pseudemys scripta elegans) was anesthetized with

15 mg Ketamine, and 2 mg Medetomidinhydrochloride

and decapitated. The entire brain with the eyes attached

was removed as described in [43]. The brain was placed

in a petri dish and superfused with oxygenated ringer.
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The ringer consisted of (in mM) 96.5 NaCl, 2.6 KCl, 2.0

MgCl2, 31.5 NaHCO3, 20 D-glucose, 4 CaCl2 at pH 7.4

and was administered at room temperature (22°C).

Electrophysiological recordings

The electroretinogram was recorded with a chlorided

silver wire in a Vaseline well that was built around the

right eye. The tectal signal was recorded in a superficial

layer at the center of the left tectum with a quartz/plati-

num-tungsten electrode (Thomas Recordings, Giessen,

Germany) with impedance 1 MΩ at 1 kHz. Data were

amplified and filtered (1 Hz to 6 kHz) before being digi-

tized at 32 kHz. For the analysis, data were low-pass fil-

tered with 240 Hz, down sampled to 500 Hz and cut

into 60 trials with 50 s each.

Visual stimulation

A sequence of red LED light pulses with random dura-

tion (uniform distribution between 1 ms and 2 s) and

random inter pulse interval (uniform distribution

between 1 ms and 5 s) was triggered via the parallel

port using MATLAB and the Psychophysics Toolbox

extension [44-46]. A light guide projected the full field

flashes onto the retina.

Analysis settings

For the data preparation, we used TEprepare with its

default values and the following specific parameters:

cfg.actthrvalue = 1000;

cfg.minnrtrials = 13;

cfg.maxlag = 15000;

cfg.predicttime_u = 16;

cfg.optimizemethod = ‘cao’;

and for the statistics we used TEsurrogatestats

with its default values and the following specific

parameters:

cfg.shifttesttype = ‘TEshift > TE’;

cfg.permstatstype = ‘mean’;

Results

We found coupling from the ERG to the optic tectum

(p < 10-5), but not for the opposite direction (Figure 9).

We also found coupling from the light source time

course to the ERG and to the optic tectum (p < 10-5),

but not in the opposite directions (Figure 9) - in line

with our expectations.

Discussion
In this study we described the TE metric, its use in tests

for the presence of directed interactions, and its imple-

mentation in TRENTOOL. Furthermore, we validated

our implementation using simulated and real LFP data.

From these simulations some important lessons can be

learned that will be detailed in the following paragraphs.

The results of the first simulation (equations 14,15)

demonstrate that the choice of the prediction time u 7

plays an important role for the detection of nonlinear

interactions. In general, this necessitates a scan of

potential values for the prediction time u, unless the

interaction delay is known a priori. This scan is best

performed on an independent set of pilot data. In this

respect it is also important to note that both the false

positive rate and the positive rate of the shift test were

independent of our choice of u (see Figure 4A, Y ® X),

such that the scanning procedure is not biased by false

positives or false negatives due to shift-testing.

We also demonstrated the usefulness of the shift test

for cases where instantaneous mixing is expected (equa-

tions 21-24, 25-28). These cases comprise, for example,

EEG and MEG analyses at the sensor and the source

level. In addition, scenarios where common noise poten-

tially contaminates the measured signals also fall in this

category because any kind of instantaneously shared sig-

nal or noise can increase false positive rates of measures

based on Wiener’s definition of causality [11,27,40].

Based on this, the shift test is recommended and per-

formed by default in TRENTOOL.

Comparison to other methods and toolboxes

A researcher interested in the estimation of directed

interactions in neural data is faced with a decision to

use either model based tools or a model free analysis

based on the TE metric proposed here. Model-based

tools comprise Dynamic Causal Modeling (DCM)

[47-49], based on neural mass models, or Granger caus-

ality tools [50,51] based on linear signal and interaction

models 8. TE analysis and DCM complement each other

significant differences in directed interactions for

          cond 1 > 2                   cond 2 > 1 

n = 15

F4

T8T7

F3

Figure 8 Example of group data analysis. Application example of
group data analysis. In condition 1 a directed interaction from T3 to

F4 and in condition 2 from F3 to T4 were simulated (for details see

text). Solid arrow: condition 1 > condition 2; Dotted line: condition

2 > condition 1.
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as the first serves an exploratory purpose while the lat-

ter is used to validate a model by comparing it to alter-

natives [52]. In contrast, the relationship between TE

and linear Granger causality sometimes caused confu-

sion. Indeed, both approaches are equivalent for Gaus-

sian data [16]. However, neural data are often non-

Gaussian as demonstrated by the validity of independent

components extracted from neural data based on their

non-Gaussianity (see for example [53]). Furthermore,

non-Gaussian independent components from EEG data

correlate well with those extracted independently with

fMRI-constrained source modeling [54]. Thus, a restric-

tion to Gaussian data models alone is suboptimal if the

exploration of a model space as large as possible is the

goal of the analysis.

To our knowledge there exist three other publicly

available toolboxes or libraries for computing TE: NTE

(http://chelly.us/lab/transfer_entropy), the MATLAB TE

toolbox (current version 0.2; http://code.google.com/p/

transfer-entropy-toolbox/), and TIM (http://www.cs.tut.

fi/~timhome/tim/tim.htm). In contrast to TRENTOOL,

the former two toolboxes target the computation of TE

from sparse binary time-series, instead of analog signals.

TIM and TRENTOOL indeed share the goal of estimat-

ing TE from analog time series, TIM however, does not

provide a complete statistical framework for significance

testing in neural data, and to our knowledge no equiva-

lent of a shift test. Another important benefit of

TRENTOOL compared to other TE estimation tools is

the inclusion of various optimization routines for the

choice of the embedding parameters, i.e. the embedding

dimension d and the embedding delay τ [32,34]. The

choice of the correct or best values for these parameters

is not obvious and trivial, but has far reaching conse-

quences - as detailed in the implementation section.

Here, we demonstrated these consequences by a dimen-

sion scan, where the best results were found with the

optimal embedding parameters estimated by the para-

meter optimization algorithms (Figure 5). With these

optimal embedding parameters, TRENTOOL was able

to find the information flow between two signals even

in the presence of a high level of noise (white noise of

up to 200% of the original signals’ variance).

Although TE is a powerful tool for exploratory data

analysis it has some practical limitations, most of which

are generic to connectivity analysis (see [11,27] for a

detailed discussion). Perhaps the most important limita-

tion of TRENTOOL - but not of TE in general - is its

current limitation to bivariate analyses. This fact must

be taken into consideration when interpreting results,

and can be mitigated by subsequent confirmatory,

model based analyses that allow for nonlinearities - such

as DCM. As described below, several approximative

techniques to provide a multivariate estimation from

limited data are investigated at the moment to overcome

these problems.
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User-friendliness and open source concept

Although TRENTOOL does not provide a graphical user

interface, TRENTOOL aims to be user-friendly and make

the computational methods available for experimental stu-

dies. Since TRENTOOL analyses are based on MATLAB

scripts, documentation of all relevant analysis parameters

is straightforward and the interaction between students

and supervisors can be based on this documentation.

TRENTOOL analysis scripts typically comprise just two or

three high level functions and the specification of a hand-

ful of analysis parameters. Therefore the required pro-

gramming skills of a potential TRENTOOL user are not

much different from the basic building blocks needed for

one of the established EEG and MEG (or other brain ima-

ging techniques) analysis toolkits (e.g., shell scripting for

AFNI and FSL command line tools, or MATLAB-scripting

of FieldTrip or SPM functions). Despite the simple usage,

the open source nature of the toolbox allows the

researcher interested in understanding and extending the

method to examine the implementation in detail.

From a programmers point of view TRENTOOL is

closely related to FieldTrip [28]. For the use with neural

data like MEG, EEG and LFP data, TRENTOOL seam-

lessly integrates with this popular toolbox by sharing a

common data format.

Application scenarios

Despite its integration with FieldTrip, TRENTOOL is

not limited to neural data. Anywhere where two inter-

acting time series can be measured, it is possible to use

TRENTOOL to analyze them (e.g. dynamics of the

stock market, wave motion in oceanography and audio-

graphy). We designed TRENTOOL as an open source

toolbox, because this gives maximum control to users

and developers. Everyone can see the code, learn from it

or change it to accommodate their individual needs,

spawning new applications.

Future perspective

As the limitation to bivariate analysis is the most impor-

tant limitation of TRENTOOL we are working on multi-

variate extensions, using either multivariate TE

formulations (see e.g. [29]) or techniques based on the

identification of interaction delays. Further releases of

TRENTOOL will also extent the currently available

functionality. Some features that will be included in

future releases are the application to fMRI data, and an

extended range of accepted input formats. Another goal

of development is the inclusion of TRENTOOL in the

FieldTrip distribution in the near future

Conclusion
Transfer entropy is an information theoretic implementa-

tion of Wiener’s principle of causality. It offers an approach

to the detection of neuronal interactions that is free of an

explicit model of the interactions. Hence, it offers the

power to analyze linear and nonlinear interactions alike.

This allows the comprehensive analysis of directed interac-

tions in neural networks at various levels of description.

Here we present the open-source MATLAB toolbox

TRENTOOL that allows the user to handle the consider-

able complexity of this measure and to validate the

obtained results using non-parametrical statistical testing.

Notes
1 Notable exceptions within Wiener’s framework are

the work of Freiwald and colleagues who used a non-

linear approach [55] and of Leistritz and colleagues who

further relaxed modeling assumptions by using self-

exciting autoregressive threshold models and allowing

state dependence of the modeling parameters [56].

Model free nonlinear prediction schemes were also used

by Terry and Breakspear in their analysis of EEG data

[57], based on earlier work by Pecora [58].
2 See discussion section for toolboxes or libraries that

provide general TE estimation.
3 Numerical TE values in the output may be negative,

due to bias - see [38] for more details.
4 There are two ways in which a suboptimal choice for

τ may compromise predictions: If τ is too large, the

embedding vector might include successive independent

elements and therefore create a too homogeneous distri-

bution in the reconstructed state space. If τ is too small

the embedding vectors will include highly correlated ele-

ments and produce clusters around the diagonal in the

state space. In either case a meaningful neighborhood

cannot be found.
5 An even more conservative test would be to demand

positive evidence against volume conduction, i.e. values

for TEi(X ® Y) that are significantly larger than for TEi
(X’ ® Y). This behavior is also implemented in TREN-

TOOL and can be switched via input configurations.
6 Users can find tools for their own simulation on the

TRENTOOL Homepage at http://www.trentool.de/

ARSimTool.zip
7 The prediction time u is not an embedding para-

meter but a parameter of our specific estimator, see

equation 5.
8 Wiener’s formalism of increased predictability is not

limited to linear implementations - see for example [6].

Availability and requirements
• Project name: TRENTOOL (TRansfer ENtropy

TOOLbox)

• Project home page: http://www.trentool.de

• Operating system: Platform independent

• Programming language: MATLAB (toolbox tested

on R2008b and successive releases) and C
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• Other requirements: The following software is

necessary to run TRENTOOL: MATLAB 7.4 or

higher with statistic toolbox (http://www.mathworks.

com/), TSTOOL (http://www.dpi.physik.uni-goettin-

gen.de/tstool/), FieldTrip ([28], http://www.ru.nl/

neuroimaging/fieldtrip)

• License: GNU GPL v3

• Restrictions: There are no restrictions on academic

or commercial use of GPL v3 software as long as the

restrictions of the GPL v3 license are respected. For

academic use we would appreciate a citation of the

current publication.
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Additional file 1: This article comes with a zip archive of the most

recent version of TRENTOOL at publishing of this article. It is
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releases and updated documentation.
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