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Abstract. Randomness extraction involves the processing of purely classical information and
is therefore usually studied with in the framework of classical probability theory. However, such
a classical treatment is generally too restrictive for applications where side information about the
values taken by classical random variables may be represented by the state of a quantum system.
This is particularly relevant in the context of cryptography, where an adversary may make use of
quantum devices. Here, we show that the well-known construction paradigm for extractors proposed
by Trevisan is sound in the presence of quantum side information. We exploit the modularity of
this paradigm to give several concrete extractor constructions, which, e.g., extract all the conditional
(smooth) min-entropy of the source using a seed of length polylogarithmic in the input, or only
require the seed to be weakly random.

Key words. randomness extractors, quantum information, quantum cryptography, smooth
min-entropy
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1. Introduction. Randomness extraction is the art of generating (almost) uni-
form randomness from any weakly random source X . More precisely, a randomness
extractor (or, simply extractor) is a function Ext that takes as input X together with
a uniformly distributed (and usually short) string Y , called the seed, and outputs
a string Z. One then requires Z to be almost uniformly distributed whenever the
min-entropy of X is larger than some threshold k, i.e.,

Hmin(X) ≥ k =⇒ Z := Ext(X,Y ) statistically close to uniform.(1.1)

The min-entropy of a random variable X is directly related to the probability of
correctly guessing the value ofX using an optimal strategy: 2−Hmin(X) = maxx PX(x).
Hence criterion (1.1) can be interpreted operationally: if the maximum probability of
successfully guessing the input of the extractor, X , is sufficiently low, then its output
is statistically close to uniform.
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916 A. DE, C. PORTMANN, T. VIDICK, AND R. RENNER

The randomness of a value X always depends on the information one has about
it; this is called side information in what follows. In cryptography, for instance,
a key is supposed to be uniformly random from the point of view of an adversary,
who may have access to messages exchanged by the honest parties, which we would
therefore consider as side information. Here, extractors are typically used for privacy
amplification [4, 3], i.e., to turn a partially secure raw key (about which the adversary
may have nontrivial information) into a perfectly secure key. We thus demand that the
extractor output be uniform with respect to the side information held by the adversary.
Another example is randomness recycling in a computation, which can be done using
extractors [10]. The aim is that the recycled randomness be independent of the
outputs of previous computations, which are therefore considered as side information.

In the following, we make side information explicit and denote it by E. The
notions of randomness that we are going to use, such as the guessing probability, min-
entropy, or the uniformity of a random variable, must then be defined with respect
to E. We can naturally reformulate criterion (1.1) as

Hmin(X |E) ≥ k =⇒ Z := Ext(X,Y ) statistically close to uniform(1.2)

conditioned on E,

where Hmin(X |E) is the conditional min-entropy, formally defined in section 2.2. This
conditioning naturally extends the operational interpretation of the min-entropy to
scenarios with explicit side information; i.e., 2−Hmin(X|E) is the maximum probability
of correctly guessing X , given access to side information E [13].

Interestingly, the relationship between the two criteria (1.1) and (1.2) depends
on the physical nature of the side information E, i.e., whether E is represented by
the state of a classical or a quantum system. In the case of purely classical side
information, E may be modeled as a random variable, and it is known that the two
criteria are essentially equivalent (see Lemma 3.3 for a precise statement). But in
the general case where E is a quantum system, criterion (1.2) is strictly stronger
than (1.1): it was shown in [6] that there exist extractors that fulfill (1.1) but for
which (1.2) fails (see also [12] for a discussion).

Since our world is inherently nonclassical, it is of particular importance that (1.2)
rather than the weaker criterion (1.1) be taken as the relevant criterion for the def-
inition of extractors. In cryptography, for instance, there is generally nothing that
prevents an adversary from holding quantum side information. In fact, even if a cryp-
tographic scheme is purely classical, an adversary may acquire information using a
nonclassical attack strategy. Hence, when using extractors for privacy amplification,
(1.1) does not generally imply security. A similar situation may arise in the context of
randomness recycling. If we run a (simulation of) a quantum system E using random-
ness X , approximately Hmin(X |E) bits of X can be reused. If we now, in an attempt
to recycle the randomness, apply a function Ext which fulfills (1.1) but not (1.2), the
output Z may still be correlated to the system E.

It is known that the conditional min-entropy accurately characterizes the max-
imum amount of uniform randomness that can be extracted from X while being
independent from E. (More precisely, the smooth conditional min-entropy, an en-
tropy measure derived from Hmin(X |E) by maximizing the latter over all states in an
ε-neighborhood, is an upper bound on the amount of uniform randomness that can
be extracted; see section 2.2 and [22] for details.) In other words, the characterization
of extractors in terms of Hmin(X |E) is essentially optimal, and one may thus argue
that criterion (1.2) is indeed the correct definition for randomness extraction (see
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TREVISAN’S EXTRACTOR WITH QUANTUM SIDE INFORMATION 917

also [22, 12, 14]). In this work, we follow this line of argument and call an extractor
quantum-proof if it satisfies (1.2) (see section 3.1).

We note that there have been alternative proposals in the literature for defining
extractors in the context of quantum side information, which, however, do not satisfy
the above optimality condition. One prominent example is the bounded storage model
(see section 5.3), where the (quantum) side information E is characterized by the
number of qubits, H0(E), required to store it. In this model, the entropy Hmin(X |E)
of a source X conditioned on E is lower-bounded by Hmin(X) − H0(E). However,
this characterization of side information is strictly weaker than that using Hmin(X |E):
there are sources X and nontrivial side information E such that Hmin(X)−H0(E) �
Hmin(X |E).1 In particular, even if an extractor can provably extractHmin(X)−H0(E)
bits of uniform (with respect to E) randomness from a source X , we do not know
whether the same extractor can attain the optimal Hmin(X |E) bits. Note also that
the same considerations apply to the purely classical case. In fact, no recent work
defines classical extractors for randomness sources with side information stored in
bounded classical memories.2

Finally, we remark that the increased generality attained by the notion of quan-
tum-proof extractors used here is crucial for applications. For example, in quantum
key distribution, where extractors are used for privacy amplification [22], it is generally
impossible to bound the adversary’s memory size.

1.1. Related results. In the standard literature on randomness extraction, con-
structions of extractors are usually shown to fulfill criterion (1.1) for certain values
of the threshold k (see [38] as well as [23] for an overview). However, only a few
constructions have been shown to fulfill (1.2) with arbitrary quantum side informa-
tion E. Among them is two-universal hashing [22, 32], constructions based on the
sample-and-hash approach [12], as well as all extractors with one-bit output [14].

Recently, Ta-Shma [28] studied Trevisan’s construction of extractors [33] in the
bounded quantum storage model. The result was a breakthrough, implying, for the
first time, the existence of quantum-proof extractors requiring only short seeds (loga-
rithmic in the input length). Unfortunately, Ta-Shma’s result is proved in the bounded
quantum storage model. More precisely, he requires the output length to be much
smaller than the min-entropy of the original data: it scales as (Hmin(X)/H0(E))1/c,
where c > 1 is a constant.

Subsequent to this work, Ben-Aroya and Ta-Shma [2] showed how two versions
of Trevisan’s extractor, shown to be quantum-proof in this paper, can be combined
to extract a constant fraction of the min-entropy of an n-bit source with a seed of
length O(log n), when Hmin(X |E) > n/2. This is better than the straightforward
application of Trevisan’s extractor analyzed here, which requires O(log2 n) bits of
seed for the same output size (but works for any Hmin(X |E)).

1.2. Our contribution. In this work, we show that the performance of Tre-
visan’s extractor does not suffer in the presence of quantum side information. This

1This can easily be seen by considering the following example. Let X be uniformly distributed on
{0, 1}n, and let E be X with each bit flipped with constant probability ε < 1/2. Then Hmin(X|E) =
Θ(n), but Hmin(X) −H0(E) = 0.

2Restricting the class of randomness sources further by bounding their min-entropy can have
advantages. For example, if we consider only bit-fixing sources, or sources generated by a random
walk on a Markov chain, then the extractor can be deterministic. (See [23] for a brief overview of
restricted families of sources studied in the literature.) There is, however, no known advantage (e.g.,
in terms of seed length) in considering only input sources with side information stored in a memory
of bounded size, whether it is classical or quantum.
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918 A. DE, C. PORTMANN, T. VIDICK, AND R. RENNER

Table 1.1

Plugging various weak designs and one-bit extractors into Trevisan’s construction, we obtain
these concrete extractors. Here n is the input length, α and γ are arbitrary constants such that
0 < γ < α ≤ 1, and 1

2
< β < 1 is a specific constant. For succinctness we take the error to be

ε = poly(1/n) and give the output length m up to a term in O(logn). We refer to the corresponding
corollaries in section 5 for the exact seed and output lengths.

Min-entropy Output length Seed length Note

Corollary 5.2 Any k m = k d = O(log3 n) Optimized output length

Corollary 5.3 k = nα m = nα−γ d = O(logn) Optimized seed length

Corollary 5.4 k = αn m = (α − γ)n d = O(log2 n) Local extractor

Corollary 5.5 k = nα m = nα−γ d = O(logn) Seed with min-entropy βd

improves on the best previously known result [28] in two major ways. First, we prove
our results in the most general model, where the min-entropy of the source is mea-
sured relative to quantum side information (criterion (1.2)). Second, we show that
the output length of the extractor can be close to the optimal conditional min-entropy
Hmin(X |E) (see Corollary 5.2 for the exact parameters).3 This provides the first proof
of soundness for an extractor with polylogarithmic seed meeting (1.2) in the presence
of arbitrary quantum side information.

More generally, we show that a whole class of extractors is quantum-proof. It
has been observed, by, e.g., Lu [15] and Vadhan [34], that Trevisan’s extractor [33]
(and variations of it, such as [21]) can be seen as a concatenation of the outputs of a
one-bit extractor with different pseudorandom seeds. Since the proof of the extractor
property is independent of the type of the underlying one-bit extractor (and to some
extent the construction of the pseudorandom seeds), our result is valid for a generic
scheme (defined in section 4.1, Definition 4.2). We find that the performance of this
generic scheme in the context of quantum side information (section 4.2.1, Theorem
4.6) is roughly equivalent to the (known) case of purely classical side information [21].

In practical situations where quantum-proof extractors are used, e.g., privacy
amplification in quantum key distribution [22], the players do not necessarily have
access to a uniform source of randomness. We therefore separately analyze the sit-
uation where the seed is only weakly random and show that Trevisan’s extractor is
quantum-proof in that setting as well (section 4.2.2, Theorem 4.7).

By “plugging” various one-bit extractors and pseudorandom seeds into the gener-
ic scheme, we obtain different final constructions, optimized for different needs, e.g.,
maximizing the output length, minimizing the seed, or using a nonuniform seed. In
Table 1.1 we give a brief overview of the final constructions proposed.

1.3. Proof technique. The proof proceeds by contradiction. We first assume
that a player holding the side information E can distinguish the output from uniform
with probability greater than ε. We then show that such a player can reconstruct
the input X with high probability, which means that X must have low min-entropy
(Hmin(X |E) < k). Taking the contrapositive proves that the extractor is sound.

Trevisan [33] originally proved the soundness of his extractor this way. His con-
struction starts by encoding the source X using a list-decodable code C. The output
of the extractor then consists of certain bits of C(X), which are specified by the seed
and a construction called a (weak) design [17, 21]. (See section 4.1 for a precise de-

3In the conference version of this paper [5], the authors showed that a similar result could be
obtained in the more restricted bounded-storage model.
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scription of Trevisan’s extractor.) His proof can then be broken down into two steps.
He first shows that a player who can distinguish the output from uniform can guess a
random bit of C(X). In the second step, he shows that such a player can reconstruct
X .

Proving the soundness of Trevisan’s extractor in the quantum min-entropy frame-
work requires some important changes. In order to better explain these new elements,
it will be useful to first give a brief overview of the main steps that go into Ta-Shma’s
proof [28]. For the sake of contradiction, assume that there is a test T which performs
a measurement on the side information E in order to distinguish the output from uni-
form with advantage ε. Using a standard hybrid argument along with properties of
the (weak) design, one can then construct a new test T ′ (using a little extra classical
advice about X), which predicts a random bit of C(X) with probability 1

2 +
ε
m , where

m is the number of output bits. Further, T ′ makes exactly one query to T .
The proof in [28] proceeds by showing how from such a test one can construct

another test T ′′ which predicts any bit of X with probability 0.99 and queries T ′ at
most q = (m/ε)c times (c = 15 for the code in [28]). This gives a random access code
(RAC) [1] for X ; however, since it requires q queries to the side information E, the
no-cloning theorem forces us to see it as querying a single system of length qH0(E)
(recall that Ta-Shma’s result was proved in the bounded storage model, where one
bounds the information provided by E by its number of qubits H0(E)). Finally, using
a new bound on the dimension of RACs [28], one finds that Hmin(X) � mcH0(E);
hence m � (Hmin(X)/H0(E))1/c, where for simplicity we have taken the error ε to
be a constant.

Our proof improves upon Ta-Shma’s through two major changes. First, we model
the side information E explicitly, instead of viewing it as an oracle which one queries.
Indeed, the measurement performed by the test T ′ to predict the bits of C(X) will be
different from the measurement performed by T ′′ to reconstruct X , and this cannot
be captured by the “oracle side-information” model of Ta-Shma. We thus show (in
section 4.2, Proposition 4.4) that if the output of the extractor can be distinguished
from uniform with probability 1

2 + ε by a player holding the side information E, then
the bits of C(X) can be guessed with probability 1

2 + ε
m by a player holding E and

some extra small classical information G.
Second, we depart from the reconstruction paradigm at the heart of the second

half of the proof of both Trevisan’s and Ta-Shma’s results. Instead of explicitly
defining the measurement and computation necessary to reconstruct X , we use the
fact that for any list-decodable code C : {0, 1}n → {0, 1}n̄ the function

C′ : {0, 1}n × [n̄] → {0, 1},
(x, i) �→ C(x)i

is a one-bit extractor according to (1.1) (see Appendix D for more details). It was,
however, proved by König and Terhal [14] that in the one-bit setting the more general
criterion (1.2) is essentially equivalent to the usual criterion (1.1). This result lets us
conclude directly that the input X must have low min-entropy relative to the quantum
side information E.

This proof structure results in a very modular extractor construction paradigm,
which allows arbitrary one-bit extractors and pseudorandom seeds to be plugged in,
producing many different final constructions, some of which are given in Table 1.1
and detailed in section 5.
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1.4. Organization of the paper. We first define the necessary technical tools
in section 2, in particular the conditional min-entropy. In section 3 we give formal
definitions of extractors and discuss how much randomness can be extracted from a
given source. Section 4 contains the description of Trevisan’s extractor construction
paradigm and our main result: a proof that this construction paradigm is sound in
the presence of quantum side information in the cases of both uniform and weakly
random seeds. Then in section 5 we plug into Trevisan’s construction various one-
bit extractors and pseudorandom seed constructions, resulting in various different
extractors. For example, section 5.1 contains a construction which is nearly optimal
in the amount of randomness extracted (which is identical to the best known bound
in the classical case [21] for Trevisan’s extractor), and section 5.4 gives an extractor
which is still sound if there is a small linear entropy loss in the seed. Finally, in section
6, we give a brief outlook on further work. In particular, we mention a few classical
results which modify and improve Trevisan’s extractor, but for which the soundness
in the presence of quantum side information does not seem to follow immediately from
this work.

The appendix contains many technical sections and lemmas which are not essen-
tial for understanding Trevisan’s extractor but are nonetheless an important part of
the construction and proof. Appendix A develops a bit more the general theory of ex-
tractors: it contains two subsections which, respectively, define extractors for weakly
random seeds and show how to compose extractors to obtain more randomness from
the same source. In Appendix B we state several technical lemmas: min-entropy chain
rules and the details of the reduction from Trevisan’s construction to the underlying
one-bit extractor. Appendix C contains previously known constructions for one-bit
extractors and weak designs which we use in this work and plug into Trevisan’s par-
adigm. Finally, in Appendix D we give a proof that list-decodable codes are one-bit
extractors.

2. Technical preliminaries.

2.1. Notation. We write [N ] for the set of integers {1, . . . , N}. If x ∈ {0, 1}n is
a string of length n, i ∈ [n] an integer, and S ⊆ [n] a set of integers, we write xi for
the ith bit of x, and xS for the string formed by the bits of x at the positions given
by the elements of S.

H always denotes a finite-dimensional Hilbert space. We denote by P(H) the set
of positive semidefinite operators on H. We define the set of normalized quantum
states S(H) := {ρ ∈ P(H) : tr ρ = 1} and the set of subnormalized quantum states
S≤(H) := {ρ ∈ P(H) : tr ρ ≤ 1}.

We write HAB = HA ⊗HB for a bipartite quantum system, and ρAB ∈ P(HAB)
for a bipartite quantum state. ρA = trB(ρAB) and ρB = trA(ρAB) denote the corre-
sponding reduced density operators.

If a classical random variable X takes the value x ∈ X with probability px, it can
be represented by the state ρX =

∑
x∈X px|x〉〈x|, where {|x〉}x∈X is an orthonormal

basis of a Hilbert space HX . If the classical system X is part of a composite system
XB, any state of that composite system can be written as ρXB =

∑
x∈X px|x〉〈x|⊗ρxB.

‖ · ‖tr denotes the trace norm and is defined by ‖A‖tr := tr
√
A†A.

2.2. Min-entropy. To measure how much randomness a source contains and
can be extracted, we need to use the smooth conditional min-entropy. This entropy
measure was first defined by Renner [22] and represents the optimal measure for
randomness extraction in the sense that it is always possible to extract that amount
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of almost-uniform randomness from a source, but never more. Before defining this
notion, we first state a nonsmooth version.

Definition 2.1 (conditional min-entropy [22]). Let ρAB ∈ S≤(HAB). The min-
entropy of A conditioned on B is defined as

Hmin(A|B)ρ := max{λ ∈ R : ∃σB ∈ S(HB) s.t. 2
−λ1A ⊗ σB ≥ ρAB}.

We will often drop the subscript ρ when there is no doubt about what underlying
state is meant.

This definition has a simple operational interpretation when the first system is
classical, which is the case we consider. König, Renner, and Schaffner [13] showed
that for a state ρXB =

∑
x∈X px|x〉〈x| ⊗ ρxB classical on X ,

(2.1) Hmin(X |B)ρ = − log pguess(X |B)ρ,

where pguess(X |B) is the maximum probability of guessing X given B, namely,

pguess(X |B)ρ := max
{Ex

B}x∈X

(∑
x∈X

px tr(E
x
Bρ

x
B)

)
,

where the maximum is taken over all positive operator-valued measure (POVMs)
{Ex

B}x∈X on B. If the system B is empty, then the min-entropy of X reduces to
the Renyi entropy of order infinity, Hmin(X) = − logmaxx∈X px (sometimes written
H∞(X)). In this case the connection to the guessing probability is particularly obvi-
ous: when no side information is available, the best guess we can make is simply the
value x ∈ X with highest probability.

The smooth min-entropy then consists of maximizing the min-entropy over all
subnormalized states ε-close to the actual state ρXB of the system considered. Thus
by introducing an extra error ε, we have a state with potentially much more entropy.
(See section 3.2 for more details.)

Definition 2.2 (smooth min-entropy [22, 31]). Let ε ≥ 0 and ρAB ∈ S≤(HAB);
then the ε-smooth min-entropy of A conditioned on B is defined as

Hε
min(A|B)ρ := max

ρ̃AB∈Bε(ρAB)
Hmin(A|B)ρ̃,

where Bε(ρAB) ⊆ S≤(HAB) is a ball of subnormalized states of radius ε around ρAB.
4

3. Extractors.

3.1. Extractors, side information, and privacy amplification. An extrac-
tor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a function which takes a weak source of
randomness X and a uniformly random short seed Y , and produces some output
Ext(X,Y ) which is almost uniform. The extractor is said to be strong if the output
is approximately independent of the seed.

Definition 3.1 (strong extractor [18]). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-strong extractor with uniform seed if for all distributions X with

4The distance measure used in this definition is the purified distance [31], P (ρ, σ) :=√
1− F (ρ, σ)2, where F (·, ·) is the fidelity. The only property of the purified distance that we

need in this work is that it upper-bounds the trace distance, i.e., P (ρ, σ) ≥ 1
2
‖ρ− σ‖tr. We refer the

reader to [31] for a formal definition of the purified distance (and fidelity) on subnormalized states
and a discussion of its advantages.
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922 A. DE, C. PORTMANN, T. VIDICK, AND R. RENNER

min-entropy Hmin(X) ≥ k and a uniform seed Y we have5

1

2
‖ρExt(X,Y )Y − ρUm ⊗ ρY ‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.
Using the connection between min-entropy and guessing probability ((2.1)), a

(k, ε)-strong extractor can be seen as a function which guarantees that if the guessing
probability of X is not too high (pguess(X) ≤ 2−k), then it produces a random variable
which is approximately uniform and independent from the seed Y .

As discussed in the introduction, we consider here a more general situation in-
volving side information, denoted by E, which may be represented by the state of
a quantum system. A function Ext is then an extractor if, when the probability of
guessing X given E is not too high, Ext can produce a random variable Ext(X,Y )
which is approximately uniform and independent from the seed Y and the side in-
formation E. Equivalently, one may think of a privacy amplification scenario [4, 3],
where E is the information available to an adversary and where the goal is to turn
weakly secret data X into a secret key Ext(X,Y ), where the seed Y is assumed to
be public. (In typical key agreement protocols, the seed is chosen by the legitimate
parties and exchanged over public channels.)

The following definition covers the general situation where the side information
E may be represented quantum-mechanically. The case of purely classical side infor-
mation is then formulated as a restriction on the nature of E.

Definition 3.2 (quantum-proof strong extractor [12, section 2.6]). A func-
tion Ext : {0, 1}n × {0, 1}d → {0, 1}m is a quantum-proof (or simply quantum)
(k, ε)-strong extractor with uniform seed if, for all states ρXE classical on X with
Hmin(X |E)ρ ≥ k and for a uniform seed Y , we have6

(3.1)
1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.
The function Ext is a classical-proof (k, ε)-strong extractor with uniform seed if

the same holds with the system E restricted to classical states.
It turns out that if the system E is restricted to classical information about X ,

then this definition is essentially equivalent to the conventional Definition 3.1.
Lemma 3.3 (see [12, section 2.5] and [14, Proposition 1]). Any (k, ε)-strong

extractor is a classical-proof (k + log 1/ε, 2ε)-strong extractor.
However, if the system E is quantum, this does not necessarily hold. Gavinsky et

al. [6] give an example of a (k, ε)-strong extractor that breaks down in the presence
of quantum side information, even when Hmin(X |E) is significantly larger than k.

Remark 3.4. In this section we defined extractors with a uniform seed, as this is
the most common way of defining them. Instead one could use a seed which is only
weakly random, but require it to have a min-entropy larger than a given threshold,

5A more standard classical notation would be 1
2
‖Ext(X, Y ) ◦ Y − Um ◦ Y ‖ ≤ ε, where the dis-

tance metric is the variational distance. However, since classical random variables can be represented
by quantum states diagonal in the computational basis, and the trace distance reduces to the varia-
tional distance, we use the quantum notation for compatibility with the rest of this work.

6The authors of [32] substitute ∃σY E s.t. 1
2
‖ρExt(X,Y )Y E − ρUm ⊗ σY E‖tr ≤ ε for (3.1). This

results in a weaker definition which does not offer the same composability guarantees. In particular,
Lemma A.4 does not hold with the same parameters when extractors are defined as in [32].
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Hmin(Y ) ≥ s. The seed must still be independent from the input and the side infor-
mation. Since having access to a uniform seed is often an unrealistic assumption, it
is much more useful for practical applications to define and prove the soundness of
extractors with a weakly random seed. We redefine extractors formally this way in
Appendix A.1, and show in section 4.2.2 that Trevisan’s extractor is still quantum-
proof in this setting.

All the considerations of this section, in particular Lemma 3.3 and the gap be-
tween classical and quantum side-information, also apply if the seed is only weakly
random. In the following, when we talk about a strong extractor without specifying
the nature of the seed, we are referring to both uniform seeded and weakly random
seeded extractors.

3.2. Extracting more randomness. Radhakrishnan and Ta-Shma [19] have
shown that a (k, ε)-strong extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m will necessarily
have

(3.2) m ≤ k − 2 log 1/ε+O(1).

However, in some situations we can extract much more randomness than the min-
entropy. For example, let X be distributed on {0, 1}n with Pr[X = x0] = 1/n,
and for all x �= x0, Pr[X = x] = n−1

n(2n−1) . We have Hmin(X) = log n, so using a

(logn, 1/n)-strong extractor, we could obtain at most logn bits of randomness. But
X is already 1/n-close to uniform, since 1

2‖ρX−ρUn‖tr ≤ 1
n . So we already have n bits

of nearly uniform randomness, exponentially more than the min-entropy suggests.
In the case of quantum extractors, similar examples can be found, e.g., in [31, Re-

mark 22]. However, an upper bound on the extractable randomness can be obtained
by replacing the min-entropy by the smooth min-entropy (Definition 2.2). More pre-
cisely, the total number of ε-uniform bits that can be extracted in the presence of side
information E can never exceed Hε

min(X |E) [22, section 5.6].
Conversely, the next lemma implies that an extractor which is known to extract

m bits from any source such that Hmin(X |E) ≥ k can in fact extract the same
number of bits, albeit with a slightly larger error, from sources which satisfy only
Hε′

min(X |E) ≥ k, a much weaker requirement in some cases.
Lemma 3.5. If Ext : {0, 1}n×{0, 1}d → {0, 1}m is a quantum-proof (k, ε)-strong

extractor, then for any state ρXE and any ε′ > 0 with Hε′
min(X |E)ρ ≥ k,

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε+ 2ε′.

Proof. Let ρ̃XE be the state ε′-close to ρXE for which Hmin(X |E)ρ̃ reaches its
maximum. Then

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr

≤ 1

2
‖ρExt(X,Y )Y E − ρ̃Ext(X,Y )Y E‖tr + 1

2
‖ρ̃Ext(X,Y )Y E − ρUm ⊗ ρY ⊗ ρ̃E‖tr

+
1

2
‖ρUm ⊗ ρY ⊗ ρ̃E − ρUm ⊗ ρY ⊗ ρE‖tr

≤ 1

2
‖ρ̃Ext(X,Y )Y E − ρUm ⊗ ρY ⊗ ρ̃E‖tr + ‖ρXE − ρ̃XE‖tr

≤ ε+ 2ε′.
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In the second inequality above we twice used the fact that a trace-preserving quantum
operation can only decrease the trace distance. And in the last line we used the fact
that the purified distance—used in the smooth min-entropy definition (Definition
2.2)—upper-bounds the trace distance.

Remark 3.6. Since a (k, ε)-strong extractor can be applied to any source with
smooth min-entropyHε′

min(X |E) ≥ k, we can measure the entropy loss of the extractor
—namely, how much entropy was not extracted—with

Δ := k −m,

where m is the size of the output. From (3.2) we know that an extractor has optimal
entropy loss if Δ = 2 log 1/ε+O(1).

4. Constructing m-bit extractors from one-bit extractors and weak
designs. In this section we prove our main result: we show that Trevisan’s extractor
paradigm [33]—which shows how to construct an m-bit extractor from any (classical)
one-bit strong extractor—is sound in the presence of quantum side information.

This construction paradigm can be seen as a derandomization of the simple con-
catenation of the outputs of a one-bit extractor applied m times to the same input
with different (independent) seeds. The construction with independent seeds needs a
total seed of length d = mt, where t is the length of the seed of the one-bit extractor.
Trevisan [33] shows how to do this using only d = poly(t, logm) bits of seed and
proves that it is sound when no side information is present.7 We combine a combi-
natorial construction called weak designs by Raz, Reingold, and Vadhan [21], which
they use to improve Trevisan’s extractor, and a previous observation by two of the
authors [5] that, since one-bit extractors were shown to be quantum-proof by König
and Terhal [14], Trevisan’s extractor is also quantum-proof.

This results in a generic scheme, which can be based on any weak design and
one-bit strong extractor. We define it in section 4.1, and then prove bounds on the
min-entropy and error in section 4.2.

4.1. Description of Trevisan’s construction. In order to shorten the seed
while still outputting m bits, in Trevisan’s extractor construction paradigm the seed
is treated as a string of length d < mt, which is then split into m overlapping blocks
of t bits, each of which is used as a (different) seed for the one-bit extractor. Let
y ∈ {0, 1}d be the total seed. To specify the seeds for each application of the one-bit
extractor we need m sets S1, . . . , Sm ⊂ [d] of size |Si| = t for all i. The seeds for the
different runs of the one-bit extractor are then given by ySi , namely the bits of y at
the positions specified by the elements of Si.

The seeds for the different outputs of the one-bit extractor must, however, be
nearly independent. To achieve this, Nisan and Wigderson [17] proposed minimizing
the overlap |Si ∩ Sj | between the sets, and Trevisan used this idea in his original
work [33]. Raz, Reingold, and Vadhan [21] improved this, showing that it is sufficient
for these sets to meet the conditions of a weak design.8

Definition 4.1 (weak design [21, Definition 5]). A family of sets S1, . . . , Sm ⊂
[d] is a weak (t, r)-design if the following hold:

7Trevisan’s original paper does not explicitly define his extractor as a pseudorandom concatena-
tion of a one-bit extractor. It has, however, been noted in, e.g., [15, 34], that this is basically what
Trevisan’s extractor does.

8The second condition of the weak design was originally defined as
∑i−1

j=1 2
|Sj∩Si| ≤ r(m − 1).

We prefer to use the version of [8], since it simplifies the notation without changing the design
constructions.
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1. For all i, |Si| = t.

2. For all i,
∑i−1

j=1 2
|Sj∩Si| ≤ rm.

We can now describe Trevisan’s generic extractor construction.
Definition 4.2 (Trevisan’s extractor [33]). For a one-bit extractor C : {0, 1}n×

{0, 1}t → {0, 1}, which uses a (not necessarily uniform) seed of length t, and for a weak
(t, r)-design S1, . . . , Sm ⊂ [d], we define the m-bit extractor ExtC : {0, 1}n×{0, 1}d →
{0, 1}m as

ExtC(x, y) := C(x, yS1) · · ·C(x, ySm).

Remark 4.3. The length of the seed of the extractor ExtC is d, one of the
parameters of the weak design, which in turn depends on t, the size of the seed of the
one-bit extractor C. In section 5 we will give concrete instantiations of weak designs
and one-bit extractors, achieving various entropy losses and seed sizes. The size of
the seed will always be d = poly(log n) if the error is ε = poly(1/n). For example,
to achieve a near-optimal entropy loss (section 5.1), we need d = O(t2 logm) and
t = O(log n); hence d = O(log3 n).

4.2. Analysis. We now prove that the extractor defined in the previous section
is a quantum-proof strong extractor. The first step follows the structure of the clas-
sical proof [33, 21]. We show that a player holding the side information and who
can distinguish the output of the extractor ExtC from uniform can—given a little
extra information—distinguish the output of the underlying one-bit extractor C from
uniform. This is summed up in the following proposition.

Proposition 4.4. Let X be a classical random variable correlated to some quan-
tum system E; let Y be a (not necessarily uniform) seed, independent from XE; and
let

(4.1) ‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > ε,

where ExtC is the extractor from Definition 4.2. Then there exists a fixed partition
of the seed Y into two substrings, V and W , and a classical random variable G such
that G has size H0(G) ≤ rm, where r is one of the parameters of the weak design
(Definition 4.1), V ↔ W ↔ G form a Markov chain,9 and

(4.2) ‖ρC(X,V )VWGE − ρU1 ⊗ ρV WGE‖tr > ε

m
.

We provide a proof of Proposition 4.4 in Appendix B.2, where it is restated as
Proposition B.5.10

For readers familiar with Trevisan’s scheme [33, 21], we briefly sketch the corre-
spondence between the variables of Proposition 4.4 and quantities analyzed in Tre-
visan’s construction. Trevisan’s proof proceeds by assuming by contradiction that
there exists a player, holding E, who can distinguish between the output of the extrac-
tor and the uniform distribution (4.1). Part of the seed is then fixed (this corresponds
to W in the above statement), and some classical advice is taken (this corresponds

9Three random variables are said to form a Markov chain X ↔ Y ↔ Z if for all x, y, z we have
PZ|Y X(z|y, x) = PZ|Y (z|y) or equivalently PZX|Y (z, x|y) = PZ|Y (z|y)PX|Y (x|y).

10Note that Ta-Shma [28] has already implicitly proved that this proposition must hold in the
presence of quantum side information, by arguing that the side information can be viewed as an
oracle. The present statement is a strict generalization of that reasoning, which allows conditional
min-entropy as well as nonuniform seeds to be used.
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to G in the above statement) to construct another player who can distinguish a spe-
cific bit of the output from uniform. But since a specific bit of Trevisan’s extractor
is just the underlying one-bit extractor applied to a substring of the seed (V in the
above statement), this new player (who holds WGE) can distinguish the output of
the one-bit extractor from uniform (see (4.2)).

In the classical case Proposition 4.4 would be sufficient to prove the soundness
of Trevisan’s scheme, since it shows that if a player can distinguish ExtC from uni-
form, then he can distinguish C from uniform given a few extra advice bits, which
contradicts the assumption that C is an extractor.11 But since our assumption is that
the underlying one-bit extractor is only classical-proof, we still need to show that the
quantum player who can distinguish C(X,V ) from uniform is not more powerful than
a classical player, and so if he can distinguish the output of C from uniform, so can
a classical player. This has already been done by König and Terhal [14], who show
that one-bit extractors are quantum-proof.

Theorem 4.5 (see [14, Theorem III.1]). Let C : {0, 1}n × {0, 1}t → {0, 1}
be a (k, ε)-strong extractor. Then C is a quantum-proof (k + log 1/ε, 3

√
ε)-strong

extractor.12

We now need to put Proposition 4.4 and Theorem 4.5 together to prove that
Trevisan’s extractor is quantum-proof. The cases of uniform and weak random seeds
differ somewhat in the details. We therefore give two separate proofs for these two
cases in sections 4.2.1 and 4.2.2.

4.2.1. Uniform seed. We show that Trevisan’s extractor is a quantum-proof
strong extractor with uniform seed with the following parameters.

Theorem 4.6. Let C : {0, 1}n × {0, 1}t → {0, 1} be a (k, ε)-strong extractor
with uniform seed and let S1, . . . , Sm ⊂ [d] be a weak (t, r)-design. Then the extractor
given in Definition 4.2, ExtC : {0, 1}n × {0, 1}d → {0, 1}m, is a quantum-proof (k +
rm+ log 1/ε, 3m

√
ε)-strong extractor.

Proof. In Proposition 4.4, if the seed Y is uniform, then V is independent from
W and hence, by the Markov chain property, from G as well, so (4.2) can be rewritten
as

‖ρC(X,V )VWGE − ρU1 ⊗ ρV ⊗ ρWGE‖tr > ε

m
,

which corresponds to the exact criterion of the definition of a quantum-proof extractor.
Let C be a (k, ε)-strong extractor with uniform seed, and assume that a player

holds a system E such that

‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > 3m
√
ε.

Then by Proposition 4.4 and because Y is uniform, we know that there exists a
classical system G with H0(G) ≤ rm, and a partition of Y in V and W , such that

(4.3) ‖ρC(X,V )V WGE − ρU1 ⊗ ρV ⊗ ρWGE‖tr > 3
√
ε.

Since C is a (k, ε)-strong extractor, we know from Theorem 4.5 that we must have
Hmin(X |WGE) < k + log 1/ε for (4.3) to hold. Hence by Lemma B.3, Hmin(X |E) =
Hmin(X |WE) ≤ Hmin(X |WGE) +H0(G) < k + rm+ log 1/ε.

11In the classical case, [33, 21] still show that a player who can distinguish C(X, V ) from uniform
can reconstruct X with high probability. But this is nothing other than proving that C is an extractor.

12This result holds whether the seed is uniform or not.
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4.2.2. Weak random seed. We show with the following parameters that Tre-
visan’s extractor is a quantum-proof strong extractor with weak random seed.

Theorem 4.7. Let C : {0, 1}n×{0, 1}t → {0, 1} be a (k, ε)-strong extractor with
an s-bit seed—i.e., the seed needs at least s bits of min-entropy—and S1, . . . , Sm ⊂ [d]
a weak (t, r)-design. Then the extractor given in Definition 4.2, ExtC : {0, 1}n ×
{0, 1}d → {0, 1}m, is a quantum-proof (k + rm + log 1/ε, 6m

√
ε)-strong extractor for

any seed with min-entropy d− (t− s− log 1
3
√
ε
).

The main difference between this proof and that of Theorem 4.6 is that, since
the seed Y is not uniform in Proposition 4.4, the substring W of the seed not used
by the one-bit extractor C is correlated to the seed V of C and acts as classical
side information about the seed. To handle this, we show in Lemma A.3 that with
probability 1− ε over the values of W , V still contains a lot of min-entropy, roughly
s′ − d′, where d′ is the length of W and s′ is the min-entropy of Y . And hence a
player holding WGE can distinguish the output of C from uniform, even though the
seed has enough min-entropy.

Proof. Let C be a (k, ε)-strong extractor with s bits of min-entropy in the seed,
and assume that a player holds a system E such that

‖ρExtC(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr > 6m
√
ε.

Then by Proposition 4.4 we have

(4.4) ‖ρC(X,V )VWGE − ρU1 ⊗ ρVWGE‖tr > 6
√
ε.

Since this player has classical side information W about the seed V , we need an
extra step to handle it. Lemma A.3 tells us that from (4.4) and because, by Theorem
4.5, C is a quantum (k+log 1/ε, 3

√
ε)-strong extractor, we must have either, for some

w, Hmin(X |GEW = w) < k + log 1/ε, and hence

Hmin(X |E) = Hmin(X |EW = w)

≤ Hmin(X |GEW = w) +H0(G) < k + rm+ log
1

ε
,

or Hmin(V |W ) < s+ log 1
3
√
ε
, from which we obtain, using Lemma B.1,

Hmin(Y ) ≤ Hmin(V |W ) +H0(W ) < s+ log
1

3
√
ε
+ d− t.

5. Concrete constructions. Depending on what goal has been set—e.g., max-
imize the output, minimize the seed length—different one-bit extractors and weak
designs will be needed. In this section we give a few examples of what can be done,
by taking various classical extractors and designs, and plugging them into Theorem 4.6
(or Theorem 4.7), to obtain bounds on the seed size and entropy loss in the presence
of quantum side information.

The results are usually given using the O-notation. This is always meant with
respect to all the free variables; e.g., O(1) is a constant independent of the input
length n, the output length m, and the error ε. Likewise, o(1) goes to 0 for both n
and m large.

We first consider the problem of extracting all the min-entropy of the source in
section 5.1. This was achieved in the classical case by Raz, Reingold, and Vadhan
[21], so we use the same one-bit extractor and weak design as they used.
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In section 5.2 we give a scheme which uses a seed of length d = O(log n) but can
extract only part of the entropy. This is also based on [21] in the classical case.

In section 5.3 we combine an extractor and design which are locally computable
(from Vadhan [34] and Hartman and Raz [8], respectively) to produce a quantum
m-bit extractor such that each bit of the output depends on only O(log(m/ε)) bits of
the input.

And finally in section 5.4 we use a one-bit extractor from Raz [20], which requires
only a weakly random seed, resulting in a quantum m-bit extractor, which also works
with a weakly random seed.

These constructions are summarized in Table 1.1.

5.1. Near-optimal entropy loss. To achieve a near-optimal entropy loss we
need to combine a one-bit extractor with near-optimal entropy loss and a weak (t, 1)-
design. We use the same extractor and design as Raz, Reingold, and Vadhan [21] to
do so, namely Lemma C.1 for the design and Proposition C.5 for the one-bit extractor.
Plugging this into Theorem 4.6, we get a quantum extractor with parameters similar
to those of [21].

Corollary 5.1. Let C be the extractor from Proposition C.5 with error ε′ = ε2

9m2 ,
and let us use the weak design from Lemma C.1. Then Trevisan’s extractor ExtC :
{0, 1}n×{0, 1}d → {0, 1}m is a quantum-proof (m+8 logm+8 log 1/ε+O(1), ε)-strong
extractor with uniform seed, with d = O(log2(n/ε) logm).

For ε = poly(1/n) the seed has length d = O(log3 n). The entropy loss is Δ =
8 logm+8 log 1/ε+O(1), which means that the input still has that much randomness
left in it (conditioned on the output). We can extract a bit more by now applying a
second extractor to the input. For this we will use the extractor by Tomamichel et
al. [32], which is a quantum (k′, ε′)-strong extractor13 with seed length d′ = O(m′ +
logn′+log 1/ε′) and entropy loss Δ′ = 4 log 1/ε′+O(1), where n′ and m′ are the input
and output string lengths. Since we will use it for m′ = 8 logm + 4 log 1/ε′ + O(1),
we immediately get the following corollary from Lemma A.4.

Corollary 5.2. By applying the extractors from Corollary 5.1 and [32, Theorem
10] in succession, we get a new function, Ext : {0, 1}n × {0, 1}d → {0, 1}m, which is
a quantum-proof (m+4 log 1/ε+O(1), ε)-strong extractor with uniform seed of length
d = O(log2(n/ε) logm).

For ε = poly(1/n) the seed has length d = O(log3 n).
The entropy loss is Δ = 4 log 1/ε+O(1), which is only a factor 2 times larger than

the optimal entropy loss. By Lemma 3.5 this extractor can producem = Hε′
min(X |E)−

4 log 1/ε−O(1) bits of randomness with an error ε+ 2ε′.

5.2. Seed of logarithmic size. The weak design used in section 5.1 requires
the seed to be of size d = Θ(t2 logm), where t is the size of the seed of the one-bit
extractor. Since t cannot be less than Ω(logn) [19], a scheme using this design will
always have d = Ω(log2 n logm). If we want to use a seed of size d = O(log n), we need
a different weak design, e.g., Lemma C.2, at the cost of extracting less randomness
from the source.

For the one-bit extractor we use the same one in the previous section, Proposition
C.5. Plugging this into Theorem 4.6, we get a quantum extractor with logarithmic
seed length.

13The authors of [32] define quantum-proof extractors a little differently than we do (see footnote
6), but it is not hard to see that their result holds with the same parameters, as the differences are
absorbed in the O-notation.
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Corollary 5.3. If for any constant 0 < α ≤ 1 the source has min-entropy
Hmin(X |E) = nα, and the desired error is ε = poly(1/n), then using the extractor C

from Proposition C.5 with error ε′ = ε2

9m2 and the weak design from Lemma C.2 with
r = nγ for any 0 < γ < α, we have that Trevisan’s extractor ExtC : {0, 1}n×{0, 1}d →
{0, 1}m is a quantum-proof (nγm+8 logm+8 log 1/ε+O(1), ε)-strong extractor with
uniform seed, with d = O

(
1
γ logn

)
.

Choosing γ to be a constant results in a seed of length d = O(log n). The output
length is m = nα−γ − o(1) = Hmin(X |E)1−

γ
α − o(1). By Lemma 3.5 this can be

increased to m = Hε′
min(X |E)1−

γ
α − o(1) with an error of ε+ 2ε′.

5.3. Locally computable extractor. Another interesting feature of extractors
is locality; that is, the m-bit output depends on only a small subset of the n input
bits. This is useful in, e.g., the bounded storage model (see [16, 15, 34] for the case
of a classical adversary, and [12] for a general quantum treatment), where we assume
that a huge source of random bits, say n, are available, and the adversary’s storage is
bounded by αn for some constant α < 1. Legitimate parties are also assumed to have
bounded workspace for computation. In particular, for the model to be meaningful,
the bound is stricter than that on the adversary. So to extract a secret key from
the large source of randomness, they need an extractor which reads only � � n bits.
An extractor with such a property is called �-local. We will use a construction of an
�-local extractor by Vadhan [34], stated in Lemma C.7.

Since we assume that the available memory is limited, we also want the construc-
tion of the weak design to be particularly efficient. For this we can use a construction
by Hartman and Raz [8], given in Lemma C.3. Plugging this into Theorem 4.6, we
get a quantum local extractor.

Corollary 5.4. If for any constant 0 < α ≤ 1 the source has min-entropy
Hmin(X |E) = αn, then using the weak design from Lemma C.3 for any constant

r > 1, and the extractor C from Lemma C.7 with error ε′ = ε2

9m2 and any constant
γ < α, we have that Trevisan’s extractor ExtC : {0, 1}n × {0, 1}d → {0, 1}m is a
quantum-proof �-local (γn + rm + 2 logm + 2 log 1/ε+ O(1), ε)-strong extractor with
uniform seed, with d = O(log2(n/ε)) and � = O(m log(m/ε)). Furthermore, each bit
of the output depends on only O(log(m/ε)) bits of the input.

With these parameters the extractor can produce up to m = (α − γ)n/r −
O(log 1/ε) = (Hmin(X |E) − γn)/r − O(log 1/ε) bits of randomness, with an error
of ε = poly(1/n). By Lemma 3.5 this can be increased to m = (Hε′

min(X |E)−γn)/r−
O(log 1/ε) with an error of ε+ 2ε′.

5.4. Weak random seed. Extractors with weak random seeds typically re-
quire the seed to have a min-entropy linear in its length. Theorem 4.7 says that the
difference between the length and the min-entropy of the seed needed in Trevisan’s
extractor is roughly the same as the difference between the length and min-entropy
of the seed of the underlying one-bit extractor. So we will describe in detail how to
modify the construction from section 5.2 to use a weakly random seed. As that ex-
tractor uses a seed of length O(log n), this new construction allows us to preserve the
linear loss in the min-entropy of the seed. Any other version of Trevisan’s extractor
can be modified in the same way to use a weakly random seed, albeit with weaker
parameters.

For this we need a one-bit extractor which uses a weakly random seed. We will
use a result by Raz [20] (Lemma C.8), which allows us to construct the extractor from
Corollary C.9. Plugging this and the weak design from Lemma C.2 into Theorem 4.7,
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we get the following extractor with weak random seed.
Corollary 5.5. Let α > 0 be a constant such that the source has min-entropy

Hmin(X |E) = nα and the desired error is ε = poly(1/n). Using the extractor C from

Corollary C.9 with error ε′ = ε2

9m2 and the weak design from Lemma C.2 with r = nγ

for any 0 < γ < α, we have that Trevisan’s extractor ExtC : {0, 1}n × {0, 1}d →
{0, 1}m is a quantum-proof (nγm+8 logm+8 log 1/ε+O(1), ε)-strong extractor with
an s-bit weak random seed, where the seed has length d = O

(
1

β2γ logn
)
and min-

entropy s =
(
1− 1/2−β

c

)
d for some constant c.14

Choosing β and γ to be constants results in a seed of length d = O(log n) with
a possible entropy loss linear in d. The output length is the same as in section 5.2,
m = nα−γ − o(1) = Hmin(X |E)1−

γ
α − o(1).

If we are interested in extracting all the min-entropy of the source, we can combine
Lemma C.8 with the extractor from section 5.1. This results in a new extractor with
seed length d = O(log3 n) and seed min-entropy s = d−O( 3

√
d).

6. Outlook. There exist many results modifying and improving Trevisan’s ex-
tractor. We briefly describe a few of them here, and refer the reader to [23] for a more
extensive review.

Some of these constructions still follow the “design and one-bit extractor” pattern
—hence our work implies that they are immediately quantum-proof with roughly the
same parameters—e.g., the work of Raz, Reingold, and Vadham [21] and Lu [15],
which were mentioned in section 5 and correspond to modifications of the design
and one-bit extractor, respectively. Other results such as [21, 30, 24] replace the
binary list-decoding codes with multivariate codes over a field F . Raz, Reingold, and
Vadham [21] use this technique to reduce the dependence of the seed on the error
from O(log2 1/ε) to O(log 1/ε). Ta-Shma, Zuckerman, and Safra [30] and Shaltiel
and Umans [24] reduce the size of the seed to d ≤ 2 logn in several constructions with
different parameters for the min-entropy. In these constructions the connection to
one-bit extractors is not clear anymore, and it is therefore not guaranteed that these
extractors are quantum-proof.

Raz, Reingold, and Vadham [21] extract a little more randomness than we do in
section 5.1. They achieve this by composing (in the sense described in Appendix A.2)
the scheme of Corollary 5.1 with an extractor by Srinivasan and Zuckerman [26], which
has an optimal entropy loss of Δ = 2 log 1/ε+O(1). In the presence of quantum side
information this extractor has been proven to have an entropy loss of Δ = 4 log 1/ε+
O(1) in [32]; hence our slightly weaker result in Corollary 5.2, which can possibly be
improved.

Impagliazzo, Shaltiel, and Wigderson [9] and then Ta-Shma, Umans, and Zuck-
erman [29] modify Trevisan’s extractor to work for a subpolynomial entropy source,
still using a seed of size d = O(log n). The latter group [29] achieves a construction
which can extract all the min-entropy k of the source with such a seed length for some
k = o(n). While it is unclear whether these modifications preserve the “design and
one-bit extractor” structure, it is an interesting open problem to analyze them in the
context of quantum side information.

Another research direction consists of making these constructions practically im-
plementable. Whether the extractor is used for privacy amplification [4, 3], random-
ness recycling [10], or for generating true randomness [36], the extractor has to have
a running time which makes it useful. This does not seem to be the case of Trevisan’s

14If we work out the exact constant, we find that c ≈ d/t ≈ 8(1+4a)
βγ ln 2

for ε = n−a.
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construction [25]. An important open problem is thus to find variations which are
practical to execute.

It is also of great interest to study quantum-proof two-source extractors, that
is, extractors which can be applied to two independent sources, each of which is
correlated to independent quantum side information. This has so far been studied
only by Kasher and Kempe [11], and we refer to their work for more details and open
problems.

Appendix A. More on extractors.

A.1. Weak random seed. In section 3.1 we defined extractors as functions
which take a uniformly random seed. This is the most common way of defining them,
but not a necessary condition. Instead we can consider extractors which use a seed
which is only weakly random, but with bounded min-entropy. We extend Definition
3.1 this way.

Definition A.1 (strong extractor with weak random seed [20]). A function
Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong extractor with an s-bit seed if,
for all distributions X with Hmin(X) ≥ k and any seed Y independent from X with
Hmin(Y ) ≥ s, we have

1

2
‖ρExt(X,Y )Y − ρUm ⊗ ρY ‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.
If quantum side information about the input is present in a system E, then,

as before, we require the seed and the output to be independent from that side-
information.

Definition A.2 (quantum-proof strong extractor with weak random seed). A
function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a quantum-proof (k, ε)-strong extractor
with an s-bit seed if for all states ρXE classical on X with Hmin(X |E)ρ ≥ k, and for
any seed Y independent from XE with Hmin(Y ) ≥ s, we have

1

2
‖ρExt(X,Y )Y E − ρUm ⊗ ρY ⊗ ρE‖tr ≤ ε,

where ρUm is the fully mixed state on a system of dimension 2m.
Lemma 3.3 says that any extractor will work with roughly the same parameters

when classical side information about the input X is present. The same holds in the
case of classical side information Z about the seed Y .

Lemma A.3. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a quantum-proof (k, ε)-
strong extractor with an s-bit seed. Then for any classical X, Y , and Z, and quantum
E, such that XE and Y are independent, Y ↔ Z ↔ E form a Markov chain,15

Hmin(Y |Z) ≥ s+ log 1/ε, and for all z ∈ Z, Hmin(X |EZ = z) ≥ k, we have

1

2
‖ρExt(X,Y )Y ZE − ρU ⊗ ρY ZE‖tr ≤ 2ε.

Proof. For any two classical systems Y and Z, we have

2−Hmin(Y |Z) = E
z←Z

[
2−Hmin(Y |Z=z)

]
,

15A state ρXY E , where X and Y ae classical systems, forms a Markov chain X ↔ Y ↔ E if it
can be expressed as ρXYE =

∑
x,y PXY (x, y)|x, y〉〈x, y| ⊗ ρyE .
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so by Markov’s inequality,

Pr
z←Z

[Hmin(Y |Z = z) ≤ Hmin(Y |Z)− log 1/ε] ≤ ε.

And since Y ↔ Z ↔ E form a Markov chain, we have for all z ∈ Z
ρY E|Z=z = ρY |Z=z ⊗ ρE|Z=z.

Hence

1

2
‖ρExt(X,Y )Y EZ − ρU ⊗ ρY EZ‖tr

=
1

2

∑
z∈Z

PZ(z)‖ρExt(X,Y )Y E|Z=z − ρU ⊗ ρY E|Z=z‖tr

=
1

2

∑
z∈Z

PZ(z)‖ρExt(X,Y )Y E|Z=z − ρU ⊗ ρY |Z=z ⊗ ρE|Z=z‖tr ≤ 2ε.

The case of quantum side information correlated to both the input and the seed
is beyond the scope of this work.

A.2. Composing extractors. If an extractor does not have optimal entropy
loss, a useful approach to extracting more entropy is to apply a second extractor to
the original input, to extract the randomness that remains when the output of the
first extractor is known. This was first proposed in the classical case by Wigderson
and Zuckerman [35] and improved by Raz, Reingold, and Vadham [21]. König and
Terhal [14] gave the first quantum version for composing m times quantum one-
bit extractors. We slightly generalize the result of König and Terhal [14] to the
composition of arbitrary quantum extractors.

Lemma A.4. Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 and Ext2 : {0, 1}n ×
{0, 1}d2 → {0, 1}m2 be quantum-proof (k, ε1)- and (k−m1, ε2)-strong extractors. Then
the composition of the two, namely

Ext3 :{0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m1 × {0, 1}m2,

(x, y1, y2) �→ (Ext1(x, y1),Ext2(x, y2)),

is a quantum-proof (k, ε1 + ε2)-strong extractor.
Proof. We need to show that for any state ρXE with Hmin(X |E) ≥ k,

(A.1)
1

2
‖ρExt1(X,Y1) Ext2(X,Y2)Y1Y2E − ρU1 ⊗ ρU2 ⊗ ρY1 ⊗ ρY2 ⊗ ρE‖tr ≤ ε1 + ε2.

The left-hand side of (A.1) can be upper-bounded by

(A.2)
1

2
‖ρExt1(X,Y1)Y1E ⊗ ρU2 ⊗ ρY2 − ρU1 ⊗ ρY1 ⊗ ρE ⊗ ρU2 ⊗ ρY2‖tr

+
1

2
‖ρExt2(X,Y2)Y2 Ext1(X,Y1)Y1E − ρU2 ⊗ ρY2 ⊗ ρExt1(X,Y1)Y1E‖tr.

By the definition of Ext1 the first term in (A.2) is upper-bounded by ε1. For the
second term we use Lemma B.3 and get

Hmin(X |Ext1(X,Y1)Y1E) ≥ Hmin(X |Y1E)−H0(Ext1(X,Y1))

= Hmin(X |E)−H0(Ext1(X,Y1)) ≥ k −m1.

By the definition of Ext2 the second term in (A.2) can then be upper-bounded by
ε2.

D
ow

nl
oa

de
d 

03
/1

3/
13

 to
 1

8.
51

.1
.2

28
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TREVISAN’S EXTRACTOR WITH QUANTUM SIDE INFORMATION 933

Appendix B. Technical lemmas.

B.1. Min-entropy chain rules. We use the following “chain-rule-type” state-
ments about the min-entropy. The proofs for the first two can be found in [22].

Lemma B.1 (see [22, Lemma 3.1.10]). For any state ρABC ,

Hmin(A|BC) ≥ Hmin(AC|B)−H0(C),

where H0(C) = log rank ρC .
Lemma B.2 (see [22, Lemma 3.1.9]). For any state ρABZ classical on Z,

Hmin(AZ|B) ≥ Hmin(A|B).

Lemma B.3. For any state ρABZ classical on Z,

Hmin(A|BZ) ≥ Hmin(A|B) −H0(Z),

where H0(Z) = log rankρZ .
Proof. The proof is immediate by combining Lemmas B.1 and B.2.

B.2. Reduction step. To show that a player who can distinguish the output
of ExtC (defined in Definition 4.2) from uniform can also guess the output of the
extractor C, we first show that such a player can guess one of the bits of the output
of ExtC , given some extra classical information. This is a quantum version of a result
by Yao [37].

Lemma B.4. Let ρZB be a cq-state, where Z is a random variable on m-bit
strings. If ‖ρZB − ρUm ⊗ ρB‖tr > ε, then there exists an i ∈ [m] such that

(B.1)

∥∥∥∥∥∥∥
∑
z∈Z
zi=0

pz|z[i−1]〉〈z[i−1]| ⊗ ρzB −
∑
z∈Z
zi=1

pz|z[i−1]〉〈z[i−1]| ⊗ ρzB

∥∥∥∥∥∥∥
tr

>
ε

m
.

Using the fact that, for any binary random variable X and quantum system Q
with ρXQ =

∑
i=0,1 pi|i〉〈i| ⊗ ρiQ, the equality ‖ρXQ − ρU1 ⊗ ρQ‖tr = ‖p0ρ0Q − p1ρ

1
Q‖tr

holds, (B.1) can be rewritten as ‖ρZi[i−1]B − ρU1 ⊗ ρZ[i−1]B‖tr > ε
m . Lemma B.4 can

thus be interpreted as saying that if a player holding B can distinguish Z from uniform
with probability greater than ε, then there exists a bit i ∈ [m] such that when given
the previous i − 1 bits of Z, he can distinguish the ith bit of Z from uniform with
probability greater than ε

m .
Proof. The proof uses a hybrid argument. Let

σi =
∑
z∈Z

r∈{0,1}m

pz
2m

|z[i], r{i+1,...,m}〉〈z[i], r{i+1,...,m}| ⊗ ρzB.

Then

ε < ‖ρZB − ρUm ⊗ ρB‖tr
= ‖σm − σ0‖tr

≤
m∑
i=1

‖σi − σi−1‖tr

≤ mmax
i

‖σi − σi−1‖tr.
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By rearranging ‖σi − σi−1‖tr, we get the left-hand side of (B.1).
We now need to bound the size of this extra information, the “previous i − 1

bits,” and show that when averaging over all the seeds of ExtC , we average over all
the seeds of C, which means that guessing a bit of the output of ExtC corresponds
to distinguishing the output of C from uniform. For the reader’s convenience we now
restate Proposition 4.4 and give its proof.

Proposition B.5 (restatement of Proposition 4.4). Let X be a classical random
variable correlated to some quantum system E; let Y be a (not necessarily uniform)
seed, independent from XE; and let

(B.2) ‖ρExtC(X,Y )E − ρUm ⊗ ρY ⊗ ρE‖tr > ε,

where ExtC is the extractor from Definition 4.2. Then there exists a fixed partition
of the seed Y into two substrings V and W , and a classical random variable G, such
that G has size H0(G) ≤ rm, where r is one of the parameters of the weak design
(Definition 4.1), V ↔ W ↔ G form a Markov chain, and

(B.3) ‖ρC(X,V )VWGE − ρU1 ⊗ ρV WGE‖tr > ε

m
.

Proof. We apply Lemma B.4 to (B.2) and get that there exists an i ∈ [m] such
that

(B.4)∥∥∥∥∥
∑
x,y

C(x,ySi
)=0

pxqy|C(x, yS1) · · ·C(x, ySi−1), y〉〈C(x, yS1) · · ·C(x, ySi−1), y| ⊗ ρx

−
∑
x,y

C(x,ySi
)=1

pxqy|C(x, yS1) · · ·C(x, ySi−1), y〉〈C(x, yS1) · · ·C(x, ySi−1), y| ⊗ ρx

∥∥∥∥∥
tr

>
ε

m
,

where {px}x∈X and {qy}y∈Y are the probability distributions ofX and Y , respectively.
We split y ∈ {0, 1}d into two strings of t = |Si| and d− t bits, and write v := ySi

and w := y[d]\Si
. To simplify the notation, we set g(w, x, j, v) := C(x, ySj ). Fix w, x,

and j, and consider the function g(w, x, j, ·) : {0, 1}t → {0, 1}. This function depends
only on |Sj ∩ Si| bits of v. So to describe this function we need a string of at most
2|Sj∩Si| bits. And to describe gw,x(·) := g(w, x, 1, ·) · · · g(w, x, i − 1, ·), which is the
concatenation of the bits of g(w, x, j, ·) for 1 ≤ j ≤ i− 1, we need a string of length at

most
∑i−1

j=1 2
|Sj∩Si|. So a system G containing a description of gw,x has size at most

H0(G) ≤∑i−1
j=1 2

|Sj∩Si|. We now rewrite (B.4) as

∥∥∥∥∥∥∥
∑
x,v,w

C(x,v)=0

pxqv,w|gw,x(v), v, w〉〈gw,x(v), v, w| ⊗ ρx

−
∑
x,v,w

C(x,v)=1

pxqv,w|gw,x(v), v, w〉〈gw,x(v), v, w| ⊗ ρx

∥∥∥∥∥∥∥
tr

>
ε

m
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By providing a complete description of gw,x instead of its value at the point v,
we can only increase the trace distance; hence

∥∥∥∥∥∥∥
∑
x,v,w

C(x,v)=0

pxqv,w|gw,x, v, w〉〈gw,x, v, w| ⊗ ρx

−
∑
x,v,w

C(x,v)=1

pxqv,w|gw,x, v, w〉〈gw,x, v, w| ⊗ ρx

∥∥∥∥∥∥∥
tr

>
ε

m
.

By rearranging this a little more, we finally get

‖ρC(X,V )VWGE − ρU1 ⊗ ρV WGE‖tr > ε

m
,

where G is a classical system of size H0(G) ≤ ∑i−1
j=1 2

|Sj∩Si| and V ↔ W ↔ G
form a Markov chain. By the definition of weak designs, we have, for all i ∈ [m],∑i−1

j=1 2
|Sj∩Si| ≤ rm for some r ≥ 1. So H0(G) ≤ rm.

Appendix C. Known extractors and designs. In this section we list the
known constructions for weak designs and one-bit extractors, which we plug into
Trevisan’s extractor in section 5.

C.1. Weak designs. The following weak design allows nearly all the min-entro-
py of the source to be extracted, but it requires a rather large seed (typically O(log3 n)
for an optimal one-bit extractor).

Lemma C.1 (see [21, Lemma 17]16). For every t,m ∈ N there exists a weak
(t, 1)-design S1, . . . , Sm ⊂ [d] such that d = t

⌈
t

ln 2

⌉ �log 4m� = O(t2 logm). Moreover,
such a design can be found in time poly(m, d) and space poly(m).

If we wish to minimize the length of the seed, we can use the following weak
design with log r = Θ(t). We then get a seed of length O(log n) (for an optimal one-
bit extractor), but extract only a sublinear amount of min-entropy from the source.

Lemma C.2 (see [21, Lemma 15]). For every t,m ∈ N and r > 1 there exists a
weak (t, r)-design S1, . . . , Sm ⊂ [d] such that d = t �t/ ln r� = O

(
t2/ log r

)
. Moreover,

such a design can be found in time poly(m, d) and space poly(m).
The following weak design construction is much more efficient than the two pre-

vious ones and ideal for a local extractor. It uses a seed of size O(log2 n) and can
extract a constant fraction of the min-entropy (for an optimal one-bit extractor).

Lemma C.3 (see [8, Theorem 3]). For every m, t ∈ N such that m = Ω(tlog t), and
constant r > 1, there exists an explicit weak (t, r)-design S1, . . . , Sm ⊂ [d], where d =
O(t2). Such a design can be found in time poly(logm, t) and space poly(logm+log t).

Remark C.4. For the extractor from Lemma C.7 and an error ε = poly(1/n),
this design requires m = Ω

(
(logn)log logn

)
. If we are interested in a smaller m, say

m = poly(logn), then we can use the weak design from Lemma C.2 with r = nγ . This
construction would require time and space poly(log n) = poly(log 1/ε). The resulting
seed would have length only O(log n) instead of O(log2 n).

16Hartman and Raz [8] give a more efficient construction of this lemma, namely in time
poly(logm, t) and space poly(logm+ log t), with the extra minor restriction that m > tlog t.
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C.2. One-bit extractors. As a one-bit extractor, Raz, Reingold, and Vadhan
[21] (as well as Trevisan [33]) used the bits of a list-decodable code. We give the
parameters here as Proposition C.5 and refer to Appendix D for details on the con-
struction and proof.

Proposition C.5. For any ε > 0 and n ∈ N there exists a (k, ε)-strong extractor
with uniform seed Extn,ε : {0, 1}n × {0, 1}t → {0, 1} with t = O(log(n/ε)) and k =
3 log 1/ε.

Local extractor. Local extractors are defined as follows.
Definition C.6 (�-local extractor [34]). An extractor Ext : {0, 1}n × {0, 1}d →

{0, 1}m is �-locally computable (or �-local) if, for every r ∈ {0, 1}d, the function
x �→ Ext(x, r) depends on only � bits of its input, where the bit locations are determined
by r.

Lu [15] modified Trevisan’s scheme [33, 21] to use a local list-decodable code as
a one-bit extractor. Vadhan [34] proposes another construction for local extractors,
which is optimal up to constant factors. Both these constructions have similar pa-
rameters in the case of one-bit extractors.17 We state the parameters of Vadhan’s
construction here and refer the interested reader to [15] for Lu’s constructions.

Lemma C.7 (see [34, Theorem 8.5]). For any ε > exp(−n/2O(log∗ n)), n ∈ N,
and constant 0 < γ < 1 there exists an explicit �-local (k, ε)-strong extractor with
uniform seed Extn,ε,γ : {0, 1}n × {0, 1}t → {0, 1} with t = O(log(n/ε)), k = γn, and
� = O(log 1/ε).

Weak random seed. Raz [20] shows how to transform any extractor which needs
a uniform seed into one which can work with a weakly random seed.

Lemma C.8 (see [20, Theorem 4]). For any (k, ε)-strong extractor Ext : {0, 1}n×
{0, 1}t → {0, 1}m with uniform seed, there exists a (k, 2ε)-strong extractor Ext :
{0, 1}n × {0, 1}t′ → {0, 1}m requiring only a seed with min-entropy Hmin(Y ) ≥(
1
2 + β

)
t′, where t′ = 8t/β.

By applying this lemma to the one-bit extractor given in Proposition C.5, we
obtain the following one-bit extractor.

Corollary C.9. For any ε > 0 and n ∈ N there exists a (k, ε)-strong extractor
Extn,ε : {0, 1}n × {0, 1}t → {0, 1} requiring a seed with min-entropy

(
1
2 + β

)
d, where

t = O( 1β log(n/ε)) and k = 3 log 1/ε+ 3.

Appendix D. List-decodable codes are one-bit extractors. A standard
error-correcting code guarantees that if the error is small, any string can be uniquely
decoded. A list-decodable code guarantees that, for a larger (but bounded) error, any
string can be decoded to a list of possible messages.

Definition D.1 (list-decodable code [27]). A code C : {0, 1}n → {0, 1}n̄ is said
to be (ε, L)-list-decodable if every Hamming ball of relative radius 1/2 − ε in {0, 1}n̄
contains at most L codewords.

Neither [33] nor [21] states it explicitly, but both papers contain an implicit proof
that if C : {0, 1}n → {0, 1}n̄ is a (ε, L)-list-decodable code, then

Ext : {0, 1}n × [n̄] → {0, 1},
(x, y) �→ C(x)y

is a (logL + log 1/2ε, 2ε)-strong extractor (according to Definition 3.1). We have

17If the extractor is used to extract m bits, then Vadhan’s scheme reads fewer input bits and uses
a shorter seed than does Lu’s.
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rewritten their proof as Theorem D.3 for completeness.18

There exist list-decodable codes with the following parameters.
Lemma D.2. For every n ∈ N and δ > 0 there is a code Cn,δ : {0, 1}n → {0, 1}n̄,

which is (δ, 1/δ2)-list-decodable, with n̄ = poly(n, 1/δ). Furthermore, Cn,δ can be
evaluated in time poly(n, 1/δ), and n̄ can be assumed to be a power of 2.

For example, Guruswami et al. [7] combine a Reed–Solomon code with a Hada-
mard code, obtaining such a list-decodable code with n̄ = O(n/δ4).

Such codes require all bits of the input x to be read to compute any single bit C(x)i
of the output. If we are interested in so-called local codes, we can use a construction
by Lu [15, Corollary 1].

Theorem D.3. Let C : {0, 1}n → {0, 1}n̄ be an (ε, L)-list-decodable code. Then
the function

C′ : {0, 1}n × [n̄] → {0, 1},
(x, y) �→ C(x)y

is a (logL+ log 1/2ε, 2ε)-strong extractor.19

To prove this theorem we first show that a player who can distinguish the bit of
C′(X,Y ) from uniform can construct a string α which is close to C(X) on average
(overX). Then, using the error correcting properties of the code C, he can reconstruct
X . Hence a player who can break the extractor must have low min-entropy about X .

Lemma D.4. Let X and Y be two independent random variables with alphabets
{0, 1}n and [n], respectively. Let Y be uniformly distributed, and let X be distributed
such that 1

2 |XY ◦ Y −U1 ◦ Y | > δ, where U1 is uniformly distributed, on {0, 1}. Then
there exists a string α ∈ {0, 1}n with

Pr

[
d(X,α) ≤ 1

2
− δ

2

]
> δ,

where d(·, ·) is the relative Hamming distance.
Proof. Define α ∈ {0, 1}n to be the concatenation of the most probable bits of

X , i.e., αy := argmaxb PXy (b), where

PXy (b) =
∑

x∈{0,1}n
xy=b

PX(x).

The average relative Hamming distance between X and α is

∑
x∈{0,1}n

PX(x)d(x, α) =
1

n

∑
x∈{0,1}n

PX(x)

n∑
y=1

|xy − αy|

=
1

n

∑
x,y

xy �=αy

PX(x) = 1− 1

n

n∑
y=1

PX(αy).

18A slightly more general proof, stating that approximate list-decodable codes are one-bit extrac-
tors, can be found in [5, Claim 3.7].

19This theorem still holds in the presence of classical side information with exactly the same
parameters.
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And since 1
2 |XY ◦Y −U1 ◦Y | > δ is equivalent to 1

n

∑n
y=1maxb∈{0,1} PXy (b) >

1
2 + δ,

we have

(D.1)
∑

x∈{0,1}n
PX(x)d(x, α) <

1

2
− δ.

We now wish to lower-bound the probability that the relative Hamming distance is
less than 1

2− δ
2 . Let B := {x : d(x, α) ≤ 1

2− δ
2} be the set of values x ∈ {0, 1}n meeting

this requirement. Then the weight of B, w(B) :=
∑

x∈B PX(x), is the quantity we
wish to lower-bound. It is at its minimum if all x ∈ B have Hamming distance
d(x, α) = 0, in which case the average Hamming distance is

(D.2)
∑

x∈{0,1}n
PX(x)d (x, α) > (1− w(B))

(
1

2
− δ

2

)
.

Combining (D.1) and (D.2), we get

w(B) >
δ

1− δ
≥ δ.

We are now ready to prove Theorem D.3.
Proof of Theorem D.3. We will show that if it is possible to distinguish C′(X,Y )

from uniform with probability at least 2ε, then X must have min-entropy Hmin(X) <
logL+ log 1/2ε.

If 1
2 |C′(X,Y ) ◦ Y − U1 ◦ Y | > 2ε, then by Lemma D.4 we know that there exists

an α ∈ {0, 1}n̄ such that

Pr

[
d (C(X), α) ≤ 1

2
− ε

]
> 2ε,

where d(·, ·) is the relative Hamming distance.
This means that with probability at least 2ε, X takes values x such that the

relative Hamming distance is d(C(x), α) ≤ 1
2−ε. So for these values ofX , if we choose

one of the codewords in the Hamming ball of relative radius 1
2 −ε around α uniformly

at random as our guess for x, we will have chosen correctly with probability at least
1/L, since the Hamming ball contains at most L code words. The total probability
of guessing X is then at least 2ε/L.

Hence by (2.1), Hmin(X) < logL+ log 1/2ε.
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