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Abstract
Generalizing the decomposition of a connected planar graph into a tree and a dual
tree, we prove a combinatorial analog of the classic Helmholtz–Hodge decomposition
of a smooth vector field. Specifically, we show that for every polyhedral complex, K ,
and every dimension, p, there is a partition of the set of p-cells into a maximal p-tree,
a maximal p-cotree, and a collection of p-cells whose cardinality is the p-th reduced
Betti number of K . Given an ordering of the p-cells, this tri-partition is unique, and it
can be computed by a matrix reduction algorithm that also constructs canonical bases
of cycle and boundary groups.

Keywords Polyhedral complexes · Homology and cohomology · Trees and cotrees ·
Matrix reduction · Tri-partitions · Bases
1 Introduction

Given a connected graph embedded on the sphere, it is well known that we can split
the graph into a spanning tree and a dual tree whose nodes are the faces. This is
best visualized by rotating each edge that is not in the spanning tree, thus connecting
the two points chosen to represent the incident faces. This split is similar in spirit to
the Helmholtz decomposition of a smooth vector field on the sphere into a rotation-
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free component and a divergence-free component [12]. If the graph is embedded
on a surface with non-zero genus, then the split does not exhaust all edges and the
unused ones correspond to the third, harmonic component of the Helmholtz–Hodge
decomposition on this surface [13].

Thinking of this split as a theorem about the edges of a connected planar graph, we
are interested in its generalization to complexes and to cells of any dimension. Such a
generalization promises a geometric interpretation of algebraic concepts in homology
and their relations. Beyond this theoretical interest in the structure of complexes, we
are motivated by geometric modeling tasks in which holes are of central importance.
An example are cell membrane proteins with functional channels for ion transport.
We believe that our structural results can be helpful in discovering and manipulating
hole systems, but this is the topic of future work.

1.1 Two Examples

Our results are combinatorial and algorithmic. To get a first impression, consider the
planar graph forming a wheel of n0 = 17 vertices and n1 = 32 edges drawn in the
left panel of Fig. 1. Every spanning tree consists of n0 − 1 = 16 edges, and if we
interpret this tree as a barrier between the n2 = 17, 2-dimensional regions defined
by the embedding of the graph, then each non-tree edge splits the regions into two
connected collections. In other words, the regions form a dual tree, drawn with blue
edges crossing the dotted non-tree edges.

As already noted in [1,18], the bi-partition of the edges is best generalized to a
tri-partition if the graph is embedded on a closed surface with positive genus. To
further free ourselves from the implicit definition of regions, we consider complexes
in which the 2-dimensional cells are explicitly specified, so it no longer matters where

Fig. 1 Left panel a graph of solid and dotted black edges embedded in the plane. The solid edges form a
spanning tree of the graph, and the dotted edges intersect the dual blue edges, which form a spanning tree of
the dual graph. Right panel an annulus decomposed into eight quadrangles. Besides a solid black spanning
tree and a dotted cotree, we show the two dashed edges of a cocycle. To get a maximal cotree, we add one
of the dashed edges to the cotree, while the other represents the cyclic structure of the annulus
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the complex is embedded. An example is the complex of n0 = 16 vertices, n1 = 24
edges, and n2 = 8 quadrangles drawn in the right panel of Fig. 1. An unpleasant
consequence is that the dual is no longer necessarily closed as it may have edges
with missing endpoints. The appropriate formalism is therefore cohomology, where
we worry about edges and their incident regions rather than their incident vertices.
In this formalism, a cocycle is a set of edges such that every region in the complex
is incident to an even number of edges in this set, and a cotree is a set of edges that
contains no non-empty cocycle. Returning to the annulus in Fig. 1, we notice that
the spanning tree cannot go completely around the ‘hole’, so we get a cocycle that
connects the outer boundary with the inner boundary. In other words, the complement
of the spanning tree is a cotree-with-a-single-cocycle. Alternatively, we could add one
edge of the cocycle to the tree to get a tree-with-a-single-cycle whose complement is
a genuine cotree. Better yet, we partition the edges into a maximal tree, a maximal
cotree, and one leftover edge. In the general case, there can be more leftover edges,
namely one for each ‘hole’.

1.2 Results and PriorWork

The partition of the edge set has been studied for connected graphs embedded on ori-
entable closed surfaces. Biggs proved in 1971 that such a graph splits into a spanning
tree and a complementary subgraph of the dual that contains a spanning tree of the
dual [1]. Rosenstiehl and Read sharpened the result in 1978 by observing that the
complementary subgraph of the dual splits into a (dual) spanning tree and 2g addi-
tional edges, in which g is the genus of the surface [18]. The first result of this paper
generalizes this split to complexes and to cells beyond edges. Specifically, we prove
that for every polyhedral complex, K , and for every dimension, p, the set of p-cells
can be partitioned into a maximal p-tree, a maximal p-cotree, and a set of leftover
p-cells whose cardinality is the p-th reduced Betti number of K . An algebraic analog
of this decomposition was introduced by Eckmann in 1945, namely that the p-th chain
group satisfies Cp � Bp ⊕ Bp ⊕ H̃p [6], but see also [5,10].

The tools for establishing the tri-partition are thematrix reduction algorithms devel-
oped in the context of persistent homology [7], the theorem on the invariance of
birth–death pairs proved in [3], and the duality between homology and relative coho-
mology noted in [19]. Importantly, the tri-partition implies canonical bases of the
cycle, boundary, and homology groups as well as of their counterparts in cohomology.
More specifically, for each monotonic ordering of a polyhedral complex, there is a
unique tri-partition and a unique collection of bases.

1.3 Outline

Section 2 provides background from algebraic topology, including algorithms for the
ranks of homology and cohomology groups. Section 3 introduces the tri-partition of a
polyhedral complex. Section 4 describes the related bases in homology and cohomol-
ogy and proves their properties. Section 5 concludes the paper. Appendix A proves
that the tri-partitions form matroids.
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2 Background

We will make frequent use of homology and cohomology groups; see [11,16] for
general background on these topics. To keep the discussion elementary, we use Z/2Z
coefficients so that cycles and cocycles can be treated as sets. This choice of coeffi-
cients simplifies the arguments throughout, but it should be pointed out that some of
our definitions and results depend on it. For example, the triangles of a triangulated
projective plane form a 2-tree in modulo-3 arithmetic but not in modulo-2 arithmetic.
For integer coefficients, there is torsion, which represents a major challenge to the
generalization of our results.

2.1 Polyhedral Complexes

A p-cell, σ , is a p-dimensional convex polytope, and we write dim σ = p for its
dimension. A hyperplane supports σ if it has a non-empty intersection with the poly-
tope and the polytope is contained in a closed half-space bounded by the hyperplane.
A face of σ is the intersection with a supporting hyperplane; it is a convex polytope
of dimension at most p. We call σ a coface of its faces. A polyhedral complex, K , is
a collection of cells that is closed under taking faces such that the intersection of any
two cells is a face of both. By convention, we require that the empty cell is part of K ;
its dimension is −1 and it is a face of every cell. A cell is maximal if it has no proper
coface in K . The dimension of K is the maximum dimension of any of its cells. The
p-skeleton contains all cells of dimension p or less and is denoted K (p). We write
K p = K (p)\K (p−1) for the set of p-cells in K , and n p = # K p for its cardinality,
noting that n p = 0 for p smaller than −1 and larger than dim K . The Euler charac-
teristic is the alternating sum of cell numbers, and since the empty cell is included,
we decorate it with a tilde: χ̃ = ∑

p(−1)pn p. The Euler–Poincaré Formula asserts
that the Euler characteristic is the alternating sum of Betti numbers and therefore a
topological invariant. We formally state the result now and provide the definition of
the Betti numbers later.

Proposition 2.1 (Euler–Poincaré)Everypolyhedral complex satisfies χ̃=∑
p(−1)pβ̃p.

To represent a polyhedral complex in the computer, it is common to order the cells—
arbitrarily or otherwise—and to store the face relation in a matrix form. Letting
σ0, σ1, . . . , σm be the ordering, the boundary matrix, ∂[0 . . .m, 0 . . .m], is defined
by

∂[i, j] =
{
1 if σi ⊆ σ j and dim σi = dim σ j − 1,

0 otherwise.
(1)

In words: column j of ∂ stores the codimension 1 faces of σ j and row i stores the codi-
mension 1 cofaces of σi . Throughout this paper, we usemonotonic orderings in which
every cell is preceded by its faces. The boundary matrix of a monotonically ordered
polyhedral complex is upper-triangular. A filtration of K is a nested sequence of sub-
complexes that ends with K . An example are the prefixes of a monotonic ordering:
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K� = {σ0, σ1, . . . , σ�} is a complex, for every 0 ≤ � ≤ m, and K0 ⊆ K1 ⊆ · · · ⊆ Km

is a filtration of K .

2.2 Homology

Since we use Z/2Z coefficients, we define a p-chain as a subset of the p-cells, cp ⊆
K p. Accordingly, the sum of two p-chains is their symmetric difference, and this
operation defines a group, denoted Cp(K ). The boundary of a p-chain is the (p − 1)-
chain, ∂cp, that consists of all (p − 1)-cells shared by an odd number of p-cells in
cp. A p-cycle is a p-chain with empty boundary, and a p-boundary is the boundary
of a (p + 1)-chain. Since we include the empty cell, the boundary of a vertex is this
empty cell and therefore not empty. In contrast to conventional homology theory, a
single vertex is therefore not a 0-cycle, but a pair of vertices is. The p-boundaries and
p-cycles form subgroups of Cp, and because taking the boundary twice always gives
the empty set, the former is a subgroup of the latter: Bp(K ) ⊆ Zp(K ) ⊆ Cp(K ). A p-
cycle in Bp(K ) is sometimes referred to as trivial, and two p-cycles are homologous if
they differ by a p-boundary. The p-th (reduced) homology group consists of all classes
of homologous p-cycles: H̃p(K ) = Zp(K )/Bp(K ). The p-th (reduced) Betti number
is the rank of the p-th homology group. Since we use modulo-2 arithmetic, this rank
is the binary logarithm of the cardinality, and we write β̃p = β̃p(K ) = rank H̃p(K ) =
log2 # H̃p(K ). We call K acyclic if all Betti numbers vanish. The smallest non-empty
polyhedral complex is K = {∅}, with β̃−1 = 1 and all other Betti numbers zero. The
smallest non-empty acyclic polyhedral complex consists of a vertex and the empty
cell.

2.3 Cohomology

While we collect information about the complex using homology, we collect informa-
tion about the complement using relative cohomology; see also [19]. We begin with
the definitions for cohomology. A p-cochain is a subset of the p-cells, cp ⊆ K p. Its
coboundary, δcp, consists of all (p+1)-cells that have an odd number of faces in cp. A
p-cocycle is a p-cochain with empty coboundary, and a p-coboundary is the cobound-
ary of a (p− 1)-cochain. Again we get groups, Bp(K ) ⊆ Zp(K ) ⊆ Cp(K ), which we
distinguish from the boundary, cycle, and chain groups by writing the dimension as
superscript. The p-th (reduced) cohomology group consists of all classes of cohomolo-
gous p-cocycles: H̃p(K ) = Zp(K )/Bp(K ). We write β̃ p = β̃ p(K ) = rank H̃p(K ) =
log2 # H̃

p(K ). For example, if K = {∅}, then β̃−1 = 1 and β̃ p = 0 for all p ≥ 0. We
will see shortly that β̃ p = β̃p for all p, so K is acyclic iff β̃ p = 0 for all dimensions
p. As a general intuition, β̃ p is the number of cuts needed to remove all non-trivial
p-th cohomology.

Relative cohomology is similar but defined for a pair, (K , L), in which L is a
subcomplex of K . The relative p-cochains are the p-cochains in K \ L , and we notice
that their coboundaries are also in K \ L . We therefore define the relative p-cocycles
as the p-cocycles in K \ L , and the relative p-coboundaries as the p-coboundaries
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in K \ L . Note that this is a subtle difference to homology, where the boundary of a
p-chain in K \ L is not necessarily in K \ L . As before, we get three nested groups,
Bp(K , L) ⊆ Zp(K , L) ⊆ Cp(K , L). The p-th (reduced) relative cohomology group
is H̃p(K , L) = Zp(K , L)/Bp(K , L). For example, if L = ∅, then H̃p(K , L) =
H̃p(K ), and if L = {∅}, then H̃p(K , L) is isomorphic to the conventional cohomology
group in which K does not contain the empty cell. For relative cohomology, we write
β̃ p(K , L) = rank H̃p(K , L) = log2 # H̃

p(K , L).

2.4 Matrix Reduction

The classic algorithm for homology and cohomology reduces the boundary matrix to
the Smith normal form; see [16, §11]. For modulo-2 arithmetic, this simplifies to the
Gaussian elimination. We introduce special versions of this algorithm that are easy
to relate to the pertinent algebraic information, including the ranks of the groups. To
compute homology, we initialize R = ∂ and U = Id and reduce R using left-to-right
column additions while maintaining the relation R = ∂U . Write low( j) for the row
index of the lowest non-zero item in column j of R, and set low( j) = −∞ if the
column is zero.

Exhaustive column reduction algorithm:
for j = 0 to m do

while ∃� < j with low(�) > −∞ and R[low(�), j] 
= 0 do
R[ . , j] = R[ . , j] + R[ . , �]; U [ . , j] = U [ . , j] +U [ . , �].

We call this algorithm exhaustive because it attempts to remove non-zero entries in
column j even after the lowest such entry has been established. While this strategy
has also been used in [9], it is different from the standard reduction algorithm used in
persistent homology, which proceeds to column j+1 as soon as low( j) is established.
An important difference is that for the exhaustive reduction algorithm, the produced
matrices R and U can be uniquely defined in terms of their algebraic structure, so
they do not depend on the choices of columns made by the algorithm. In contrast, the
standard reduction algorithm returns matrices R and U that are generally not unique
and depend on the choices of columns.

To relate the algorithm to the homology group of K , we interpret the reduction
of column j as adding σ j to the complex. Since we assume a monotonic ordering,
we have a polyhedral complex after every addition. There are two possible outcomes
when we add σ j with dim σ j = p:

• column j is reduced to zero, in which case β̃p increases by 1;
• column j remains non-zero, in which case β̃p−1 decreases by 1;

see [4]. In the first case, we say σ j gives birth to a p-cycle, and in the second case,
we say σ j gives death to a (p − 1)-cycle, namely the one given birth to by σi with
i = low( j); see [7, Chapter VII]. At completion, β̃p is the number of p-cells, σ j , such
that column j of R is zero and j 
= low(�) for all �. Writing n◦

p for the number of
p-cells that give birth and n•

p for the number that give death, we have n p = n◦
p + n•

p

and β̃p = n◦
p − n•

p+1. We can therefore express n◦
p and n

•
p in terms of the nq and β̃q ,
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and since the Betti numbers are topological invariants, we conclude that the n◦
p and n

•
p

neither depend on the particular reduction algorithm nor on the ordering of the cells.
To compute cohomology, we initialize Q = ∂ and V = Id and reduce Q using

bottom-to-top row operations while maintaining the relation Q = V ∂ . Write left(i)
for the column index of the leftmost non-zero entry in row i of Q, and set left(i) = ∞
if the row is zero.

Exhaustive row reduction algorithm:
for i = m downto 0 do

while ∃� > i with left(�) < ∞ and Q[i, left(�)] 
= 0 do
Q[i, . ] = Q[i, . ] + Q[�, . ]; V [i, . ] = V [i, . ] + V [�, . ].

Similarly as before, we distinguish between two possible outcomes: that a row is
reduced to zero and that it remains non-zero. To relate the algorithm to cohomology,
we interpret the state of Q after reducing σi as the relative cohomology of the pair,
(K , L), in which L ⊆ K consists of the cells σ0 to σi−1. The reduction of a row is
therefore akin tomoving a cell from L to K \L . The two possible outcomes correspond
again to births and deaths, this time of relative cocycles. Writing np◦ and n p• for the
numbers of p-cells of the two types, we have n p = n p◦ + n p• and β̃ p = n p◦ − n p−1• ,
and as before these numbers neither depend on the particular reduction algorithm nor
on the ordering of the cells.

2.5 Duality

The births and deaths recorded in R and in Q are not the same but they are closely
related. This is not surprising since a classic result in algebraic topology asserts that the
ranks of the homology and cohomology groups coincide; see e.g. [11,16].We formally
state this result for later reference. To relate it to the above reduction algorithms, we
first prove a direct consequence of the Pairing Uniqueness Lemma in [3].

Lemma 2.2 (Pivots) Let R and Q be thematrices obtained from ∂ by exhaustive column
and exhaustive row reduction, respectively. Then i = low( j) in R iff j = left(i) in Q.

Proof Write ∂
j
i = ∂[i . . .m, 0 . . . j] and define

r∂ (i, j) = rank ∂
j
i − rank ∂

j
i+1 + rank ∂

j−1
i+1 − rank ∂

j−1
i . (2)

As proved in [3], we have i = low( j) in R iff r∂ (i, j) = 1. Note that this implies
that i = low( j) depends on ∂ but not on R. Reflecting ∂ across its minor diagonal,
and exchanging the two indices, we get j = left(i) in Q iff r∂ (i, j) = 1. The claimed
equivalence follows. �

We use Lemma 2.2 to give a short proof of the classic relation between homology
and cohomology for Z/2Z coefficients.

Proposition 2.3 (Duality) Every polyhedral complex satisfies β̃p = β̃ p, for all dimen-
sions p.
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Proof We compare the ranks, which we read off the reduced boundary matrices, R
and Q. Call (σi , σ j ) a birth–death pair if i = low( j) in R, which by Lemma 2.2 is
equivalent to j = left(i) in Q. The number of such pairs with dim σi = dim σ j − 1 =
p − 1 is n•

p = n p−1• . The p-th reduced Betti number is β̃p = n◦
p − n•

p+1 = n p −
n•
p −n•

p+1, and the rank of the p-th reduced cohomology group is β̃ p = n p◦ −n p−1• =
n p − n p• − n p−1• , which we can now see are equal. �

3 Tri-partition

This section presents the first result of this paper: the tri-partition of a polyhedral
complex in which the three sets represent unique aspects of the complex’ topology.
We begin with the introduction of the sets.

3.1 Trees, cotrees, and others

Letting K be a polyhedral complex, we recall that a p-chain is a subset of its p-cells. A
p-tree is a p-chain, Ap ⊆ K p, that does not contain any non-empty p-cycle; compare
with the definition of a generalized tree in [14]. Sometimes these generalized trees are
referred to as acycles [20], whichmotivates our notation. A p-tree ismaximal if it is not
properly contained in another p-tree. Similarly, a p-cotree is a p-cochain, Ap ⊆ K p,
that does not contain any non-empty p-cocycle, and it is maximal if it is not properly
contained in another p-cotree. As examples consider the complexes in Fig. 1. Adding
the triangles, quadrangles, and the outer face to the graph in the left panel, we get a
2-dimensional complex with 32 edges. Half the edges form a maximal 1-tree, with
the other half forming a maximal 1-cotree. Moving from the left to the right panel,
we get the annulus by removing the center vertex together with the incident edges and
triangles as well as the outer region. The remaining 24 edges contain a maximal 1-tree
of size 15 and a maximal 1-cotree of size 8, leaving one edge unused.

Our sole requirement for the third set of p-cells, Ep, is that its cardinality be # Ep =
β̃p. Since we talk about partitions, we have Ap ∩ Ap = ∅ and Ep = K p \ Ap \ Ap,
which we will see implies the existence of β̃p, p-cycles that generate H̃p and of β̃ p,
p-cocycles that generate H̃p such that each p-cell in Ep belongs to exactly one of
these cycles and to exactly one of these cocycles; see Sect. 4 for details.

3.2 Statement and Proof

We give a constructive proof that K p admits a tri-partition as described. More specif-
ically, we construct such a tri-partition for every ordering of the p-cells. The ordering
of the other cells is not important as long as the overall ordering of K is monotonic.

Theorem 3.1 (Tri-partition) Let K be a polyhedral complex. Then there exist tri-
partitions Ap  Ap  Ep = K p, for every dimension p, such that Ap is a maximal
p-tree, Ap is a maximal p-cotree, and Ep = K p \ Ap \ Ap with # Ep = β̃p.
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It is possible to argue the existence of the tri-partition in terms of column- and row-
spaces of the boundary matrix. Our proof is along the same lines but more specific and
designed to reveal additional properties which will be exploited in the construction of
bases in Sect. 4.

Proof We get the tri-partition in three steps: assuming a fixed monotonic ordering of
K , we first construct Ap, we second construct Ap, andwe let Ep contain the remaining
p-cells.

To get started, we sort the rows and columns of the boundary matrix according
to the monotonic ordering of K . For the first step, we use the exhaustive column
reduction algorithm formally stated in Sect. 2. Proceeding from left to right, column
j is either a combination of preceding columns, in which case it gets reduced to
zero, or it is independent of the preceding columns, in which case it remains non-
zero. In the latter case, we add the j-th cell to Ap, in which p is the dimension
of this cell. At termination, Ap is a maximal p-tree and # Ap = n•

p by construc-
tion.

For the second step, we use the exhaustive row reduction algorithm also formally
stated in Sect. 2. Proceeding from bottom to top, row i is either a combina-
tion of succeeding (lower) rows, in which case it gets reduced to zero, or it is
independent of the succeeding rows, in which case it remains non-zero. In the
latter case, we add the i-th cell to Ap, in which p is the dimension of this
cell. At termination, Ap is a maximal p-cotree and # Ap = n p• by construc-
tion.

It remains to prove that Ap ∩ Ap = ∅ and that Ep = K p \ Ap \ Ap

has cardinality β̃p. To prove disjointness, we recall that Lemma 2.2 asserts that
k = low(�) after column reduction iff � = left(k) after row reduction. Writing
σi for the i-th cell in the monotonic ordering, we have σi ∈ Ap iff p = dim σi
and left(i) < ∞. Writing j = left(i), this is equivalent to i = low( j), which
implies that σi gives birth to the p-cycle that σ j destroys. Hence, σi /∈ Ap, as
desired. The symmetric argument shows that Ap contains no cells of Ap, which
implies Ap ∩ Ap = ∅. Setting Ep = K p \ Ap \ Ap, we observe that it contains
a p-cell iff neither the corresponding row nor the corresponding column contains
a birth–death pair. In other words, each such p-cell gives birth to an essential p-
cycle in homology and, equivalently, it gives birth to an essential p-cocycle in
cohomology. There are β̃p = β̃ p of each kind, hence # Ep = β̃p, as claimed.

�

The proof shows slightly more than claimed in Theorem 3.1, namely that there is a
unique tri-partition for everymonotonic ordering of K . On the other hand, twodifferent
monotonic orderings do not necessarily have different tri-partitions. For example, the
tri-partition in dimension p is invariant as long as we retain the ordering among
the p-cells, rearranging the other cells at will provided the overall ordering remains
monotonic. This suggests we consider the collection of tri-partitions generated by
monotonic orderings of K . Looking at its three constituents,wenote that the collections
of sets Ap, of sets Ap, and of sets Ep are three matroids; see the formal claim and the
proof in Appendix A.
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Fig. 2 The persistence diagram of a monotonic ordering reveals the ranks of the reduced homology groups
of all complexes K�, and after reflecting the points at infinity from top to left, it reveals also the ranks of
the reduced relative cohomology groups of all pairs (K , K�)

3.3 Tri-partitions and persistence diagrams

It is interesting to compare the tri-partition with the persistence diagram for the
same monotonic ordering. Let σ0, σ1, . . . , σm be such an ordering and write K� =
{σ0, σ1, . . . , σ�} for every 0 ≤ � ≤ m. The persistence diagram consists of all
points (i, j) for which R[ . , i] = 0 and i = low( j) and all points (i,∞) for which
R[ . , i] = 0 but i 
= low(�) for all 0 ≤ � ≤ m; see Fig. 2 and refer to [7] for details.
Importantly, the number of points in upper-left quadrants anchored at points on the
diagonal give the reduced Betti numbers of complexes in the filtration. Specifically,
β̃p(K�) is the number of points (i, j) with dim σi = p that satisfy i ≤ � < j , which
includes the case j = ∞. As we slide the quadrant to the right and up the diagonal,
we can read the reduced Betti numbers of all complexes in the filtration. With a few
modifications, we can also read the ranks of the relative cohomology groups: reverse
the two axes and exchange birth with death, move the points at infinity from north to
west by reflecting them across the minor diagonal, and exchange the closed and open
sides of the quadrant, which we slide to the left and down the diagonal.

Thepersistence diagram implies the tri-partition but not the otherway round. Specif-
ically, for every finite point (i, j) with dim σi = p in the diagram, we have σi ∈ Ap

and σ j ∈ Ap+1, and for every point (i,∞)with dim σi = p we have σi ∈ Ep. In other
words, the tri-partition records which cells give birth, which of those are essential, and
which cells give death, but it does not determine the pairing that defines the persistence
diagram.

3.4 Incremental Construction

We conclude this section with a brief discussion on the incremental construction of the
tri-partition. Suppose we have the tri-partition of K�, how can we modify it to get the
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tri-partition of K�+1? There are only two cases, depending onwhether R[ . , �+1] = 0
after column reduction or not. Let p = dim σ�+1.

Case R[ . , � + 1] = 0. Then σ�+1 gives birth to a p-cycle, so we add σ�+1 to Ep,
leaving Ap and Ap untouched.

Case R[ . , � + 1] 
= 0. Then σ�+1 gives death to a (p − 1)-cycle, and we add σ�+1
to Ap. Letting k = low(� + 1), we have σk ∈ Ep−1 and since its class just got
killed, we move it to Ap−1.

Note the asymmetry between the trees and the cotrees revealed by the incremental
construction. Particularly perplexing, at first, is the move of σk ∈ Ep−1—which
signifies a birth in relative cohomology—to σk ∈ Ap−1—which signifies a death in
relative cohomology. The reason for this drastic change is the difference in direction,
which is from left to right in the incremental construction, and from right to left in the
computation of relative cohomology.

4 Bases

Besides constructing tri-partitions of a polyhedral complex, the exhaustive reduction
algorithms compute canonical bases in homology and in cohomology. This section
describes these bases and proves some of their properties.

4.1 Cycles and Chains

Fixing amonotonic ordering of a polyhedral complex, K , wewrite K p = ApApEp

for the corresponding tri-partition of the p-cells. For each σ j ∈ K p, we define a unique
p-cycle or a unique p-chain with non-empty boundary. Specifically, if σ j ∈ Ap  Ep,
then there is a unique p-cycle zp(σ j ) ⊆ Ap {σ j }, which we refer to as the canonical
p-cycle of σ j . If σ j ∈ Ap, then there is a unique sum of canonical and non-trivial
(p − 1)-cycles in K j−1 that is rendered trivial by adding σ j . Denoting this (p − 1)-
cycle by z, there is a unique p-chain, cp(σ j ) ⊆ Ap, with ∂cp(σ j ) = z, which we
refer to as the canonical p-chain of σ j . Symmetrically, for every σi ∈ K p, we define
the canonical p-cocycle, zp(σi ) ⊆ Ap  {σi }, if σi ∈ Ap  Ep, and the canonical
p-cochain, cp(σi ) ⊆ Ap, if σi ∈ Ap. We prove a technical lemma.

Lemma 4.1 (Off-diagonal Entries) Let R = ∂U and Q = V ∂ be the matrix equations
after exhaustive reduction. For every i 
= j there is a dimensionq such thatU [i, j] = 1
implies σi ∈ Aq and V [i, j] = 1 implies σ j ∈ Aq.

Proof To prove that all non-zero off-diagonal entries in U belong to rows of cells in
Aq , for some q, we note that this is trivially true at the start of the reduction algorithm,
when U = Id. Column � is added to column j only if � < j and R[ . , �] is non-zero.
Since the algorithm proceeds from left to right, this implies that σ� ∈ Aq . Assuming
inductively that also all off-diagonal non-zero entries in U [ . , �] belong to rows of q-
cells in Aq , we see that the column operation maintains the claim about off-diagonal
entries.
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The argument why all non-zero off-diagonal entries in V belong to columns of cells
in Aq is symmetric and omitted. �

The technical lemma is useful to shed light on the connection between the canonical
cycles, chains, cocycles, cochains and the matrices after exhaustive reduction.

Lemma 4.2 (Columns and Rows) After exhaustive column reduction of R = ∂U, the
columns ofU store the canonical cycles and chains, and after exhaustive row reduction
of Q = V ∂ , the rows of V store the canonical cocycles and cochains:

U [ . , j] =
{
zp(σ j ) if σ j ∈ Ap  Ep,

cp(σ j ) if σ j ∈ Ap,
(3)

V [i, . ] =
{
zp(σi ) if σi ∈ Ap  Ep,

cp(σi ) if σi ∈ Ap.
(4)

Proof Because of symmetry, it suffices to prove the claims about the cycles and chains.
Consider first the case in which σ j ∈ Ap  Ep. After completing the reduction of
column j , U [ . , j] stores a cycle. All cells in this cycle have the same dimension as
σ j , which is p. Lemma 4.1 implies that this cycle is a subset of Ap  {σ j }. There is
only one such cycle, namely zp(σ j ), which implies that U [ . , j] stores this cycle, as
claimed.

Consider second the case inwhich σ j ∈ Ap. To show thatU [ . , j] stores cp(σ j ), we
note that all non-zero entries in column j ofU belong to rows of cells in Ap, and this
includes the diagonal entry.Writing c ⊆ Ap for this chain and z = ∂c for its boundary,
we note that z is stored in column j of R. Separating the birth-giving from the death-
giving (p−1)-cells, wewrite z = zbthzdth. Note that zbth ⊆ z ⊆ Ap−1zbth and that
there is only one such (p−1)-cycle, namely the sum of the canonical (p−1)-cycles of
the σ ∈ zbth. Hence, z = ∑

σ∈zbth zp−1(σ ). Since the column reduction algorithm is
exhaustive, each (p−1)-cycle in the sum is born before σ j and dies after σ j . Any other
sum of non-trivial canonical (p− 1)-cycles is non-homologous to z. By construction,
z goes from non-trivial to trivial when we add σ j , which implies that U [ . , j] stores
cp(σ j ), as claimed. �

4.2 Canonical Bases

The columns ofU and R provide bases for the cycle, boundary, and homology groups,
and the rows of V and Q provide bases for the cocycle, coboundary, and cohomology
groups. These bases depend on the ordering of the cells, but they are canonical in the
sense that they are defined in terms of their algebraic properties and do not depend on
the algorithms that compute them.

Theorem 4.3 (Canonical Bases) Assume a monotonic ordering of a polyhedral com-
plex, K , and let K p = Ap  Ap  Ep be the corresponding tri-partition. Then

• {zp(σ j ) | σ j ∈ Ap  Ep} is a basis of Zp(K ).
• {zp(σ j ) | σ j ∈ Ep} generates a basis of H̃p(K ).
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• {∂cp(σ j ) | σ j ∈ Ap} is a basis of Bp−1(K ).
• {zp(σi ) | σi ∈ Ap  Ep} is a basis of Zp(K ).
• {zp(σi ) | σi ∈ Ep} generates a basis of H̃p(K ).
• {δcp(σi ) | σi ∈ Ap} is a basis of Bp+1(K ).

Proof Because of symmetry, we can limit ourselves to the first three claims, which
are about cycles and chains. We prove these claims in sequence.

To see that the zp(σ j ), over all σ j ∈ Ap  Ep, form a basis of Zp(K ), we note that
these cycles are clearly independent. Let z be an arbitrary p-cycle, and write z j =
zp(σ j ) for every σ j ∈ (Ap  Ep)∩ z. Then z = ∑

j z j , for if they were different, then
z+∑

j z j would be a p-cycle contained in Ap, which contradicts the acyclicity of Ap.
Recall that a homology class is essential if it is non-trivial in K . By construction,

when σ j ∈ Ep, then zp(σ j ) generates an essential class, and when σ j ∈ Ap, then
zp(σ j ) is trivial or homologous to a sum of cycles defined by p-cells in Ep. Since
H̃p(K ) requires β̃p generators and there are only β̃p cells in Ep, each homology class
represented by such a cell must be a generator of H̃p(K ).

To see that the ∂cp(σ j ), over all σ j ∈ Ap, form a basis of Bp−1(K ), we note that
these cycles are independent. Indeed, if they were not independent, then we had a non-
empty sum of chains with empty boundary, which contradicts the fact that the chains
are all contained in Ap since Ap contains no cycle by construction. To show that the
∂cp(σ j ) span the (p − 1)-dimensional boundary group, we recall that the number of
(p−1)-cycles ∂cp(σ j ) is # Ap = n•

p. For comparison, the rank of Bp−1(K ) is equal to

the rank of Zp−1(K )minus the rank of H̃p−1(K ), which is n◦
p−1 − (n◦

p−1 −n•
p) = n•

p.
Since this is the same as the number of (p − 1)-cycles, we conclude that the ∂cp(σ j )

indeed form a basis of Bp−1. �
Theorem 4.3 implies the algebraic analog of the Helmholtz–Hodge decomposition,

namely that the p-th chain group satisfiesCp � Bp−1⊕Bp+1⊕H̃p for every dimension
p. This is the algebraic way of saying that each p-cell either kills a (p − 1)-cycle,
gives birth to a p-cycle that later dies, or gives birth to an essential p-cycle. Indeed, if
we construct the filtration in reverse while maintaining the relative cohomology, the
second of these three options corresponds to killing a relative (p + 1)-cocycle. To
get the algebraic decomposition in a standard form, Cp � Bp ⊕ Bp ⊕ H̃p, we note
Bp−1 � Bp and Bp+1 � Bp as needed. Indeed, the rank of Bp is the number of pairs
i = low( j) in the column reduced boundary matrix, R, with dim σi = p. Similarly,
the rank of Bp+1 is the number of pairs j = left(i) in the row reduced boundary
matrix, Q, with dim σ j = p + 1. By Lemma 2.2, the two ranks are equal and the two
vector spaces are isomorphic.

4.3 Intersections of Basis Vectors

To study the relation between the various basis vectors, we consider thematrix product,
VU , which we compute over Z so that 1 + 1 = 2.

Theorem 4.4 (Intersection Patterns) Assume a monotonic ordering of a polyhedral
complex, K , and let K p = Ap  Ap  Ep be the corresponding tri-partition in
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σ j

σ i σ j σ j

σ i

σ i

Fig. 3 We draw the canonical 1-cycle of σ j in orange, the canonical 1-cocycle or 1-cochain of σi in black,
and their intersection in orange-black. From left to right: the intersection consists of two edges (σ j and σi ),
of one edge (σ j ), and of zero edges

dimension p. Then

VU [i, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j;
0, 1, or 2 if (σi , σ j ) ∈ Ap × Ap;
0 or 1 if (σi , σ j ) ∈ Ap × (Ap  Ep) or (Ap  Ep) × Ap;
0 otherwise.

(5)

Proof Recall that U and V are both upper-triangular, with all diagonal entries equal
to 1. It follows that VU is upper-triangular, with all diagonal entries equal to 1 as well.
To prove (5) for the off-diagonal entries of VU , we recall Lemma 4.1 and note that it
implies

VU [i, j] = V [i, . ] ·U [ . , j] = U [i, j] + V [i, j]. (6)

Indeed, all off-diagonal non-zero entries in row i of V belong to columns of cells in
Ap. Similarly, all off-diagonal non-zero entries in column j of U belong to rows of
cells in Ap. Multiplying the row with the column thus has the effect of adding the
items at position [i, j] in the two matrices. This implies that all entries are 0, 1, or
2. We have V [i, j] = 1 only if σ j ∈ Ap, and U [i, j] = 1 only if σi ∈ Ap. Hence,
VU [i, j] = 2 only if σi ∈ Ap and σ j ∈ Ap, which implies the second line of (5), and
VU [i, j] = 1 only if one of the two conditions is true, which implies the third line
of (5). �

Figure 3 illustrates Theorem 4.4 for p = 1 in a triangulated disk. The (co)cycles and
(co)chains are computed with implementations of the reduction algorithms described
in Sect. 2.

Consider for example the case (σi , σ j ) ∈ Ep × Ep. Then Theorem 4.4 implies
VU [i, j] = 1 if i = j and VU [i, j] = 0 if i 
= j . In words, each p-cell of Ep

belongs to exactly one generating p-cycle of H̃p and to exactly one generating p-
cocycle of H̃p, and there are no other intersections between the basis vectors of H̃p

and the basis vectors of H̃p.
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5 Discussion

The main contributions of this paper are the construction of a tri-partition of a poly-
hedral complex and the analysis of the corresponding bases in homology and in
cohomology. For a given monotonic ordering, the tri-partition is unique and so are
the corresponding bases. We mention a few questions suggested by the work reported
in this paper:

• Our constructions generalize to situations in which homology and cohomology
are defined for field coefficients. Do they also generalize to non-field coefficients,
for example the integers?

• Can the analogy between the tri-partition and the Helmholtz–Hodge decomposi-
tion of a smooth vector field be used to gain insights on either side? For example,
does the tri-partition lead to a fast algorithm for constructing harmonic cycles, that
is, whose Laplacian is zero?

• Can the tri-partitions be used to shed light on the stochastic properties of simplicial
complexes as studied in [15]?

Applications of tri-partitions outside ofmathematics are at least as important as finding
connections within mathematics; see [8] for a first step. Particularly interesting is the
use of the trees and cotrees to explore cave systems, such as within biomolecules and
the molecular structure of materials.

Acknowledgements Open access funding provided by the Institute of Science and Technology (IST Aus-
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Appendix A: Matroids

The fact that the greedy algorithm succeeds in constructingmaximal trees andmaximal
cotrees is not surprising since both form matroids [17]. We recall what this means.
Let E be finite and F be a collection of subsets of E . We call (F , E) an abstract
simplicial complex if ∅ ∈ F and F is closed under taking subsets. It is a matroid
if, in addition, (F , E) satisfies the exchange property: F,G ∈ F with #G < # F
implies the existence of e ∈ F such that G ∪ {e} ∈ F . Traditionally, the sets in F are
called independent. The exchange property implies that all maximal independent sets
in F have the same cardinality. It is often convenient to focus on the maximal sets
as all others are implied by inclusion. The exchange property can be replaced by the
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following, equivalent property: if F,G are different maximal independent sets of F
and a ∈ F \ G, then there exists b ∈ G \ F such that F \ {a} ∪ {b} ∈ F .

Given a polyhedral complex, K , we write Ap, Ap, and Ep for the collections of
p-trees, p-cotrees, and p-dimensional leftovers, which we recall are sets of p-cells.
We note that all these sets arise in tri-partitions of K constructed for some monotonic
ordering. Indeed, every Ap ∈ Ap arises as a subset of the maximal p-tree if we order
the p-cells in Ap before all others. Symmetrically, every Ap ∈ Ap arises as a subset
of the maximal p-cotree if we order the p-cells in Ap after all others. To see that every
Ep ∈ Ep arises as a subset of the leftover constructed for some ordering, we recall
that there are collections Dp = {zp(σ ) | σ ∈ Ep} and Dp = {zp(σ ) | σ ∈ Ep} that
satisfy Theorem 4.4; see in particular the remark following the proof of this theorem.
Writing

⋃
Dp and

⋃
Dp for the p-cells that belong to the cycles and cocycles in the

two collections, we note that
⋃

Dp \ Ep and
⋃

Dp \ Ep are disjoint, so we can make
sure that the p-cells in

⋃
Dp \ Ep precede the p-cells in Ep, and the latter precede

the p-cells in
⋃

Dp \ Ep. Adding the remaining p-cells arbitrarily, we get Ep as a
subset of the leftover for the ordering.

It is well known that the trees and cotrees have matroid structure. We add that the
same is true for the leftover sets.

Lemma A.1 (Tri-matroids)Let K beapolyhedral complex. Then (Ap, K p), (Ap, K p),
and (Ep, K p) are matroids for every dimension p.

Proof We prove the claim for p-trees as a warm-up exercise, skipping the argument
for p-cotrees, which is almost verbatim the same. Let F,G ∈ Ap be maximal, and
let a ∈ F \G. Adding a to G creates a unique p-cycle, A ⊆ G ∪ {a}. Adding a p-cell
b ∈ A \ F to F creates again a unique p-cycle, which for the purpose of this proof we
refer to as an elementary p-cycle in F ∪ A. The elementary p-cycles span the entire
space of p-cycles of F ∪ A, which includes A. We have a ∈ A, so a must belong
to at least one elementary p-cycle. Letting b ∈ A \ F be a p-cell whose elementary
p-cycle contains a, we get F \ {a} ∪ {b} as an independent set. Noting that b ∈ G,
this implies that (Ap, K p) is a matroid, as claimed.

To prove that (Ep, K p) is a matroid, we use the fact that (Ap, K p) and (Ap, K p)

are matroids, and that for each maximal Ep ∈ Ep there are maximal Ap ∈ Ap

and Ap ∈ Ap such that Ap  Ap  Ep = K p. Let E ′
p ∈ Ep be maximal and

different from Ep, and let A′
p, A

p ′ be a maximal p-tree and a maximal p-cotree with
A′
p  Ap ′  E ′

p = K p. Let a ∈ Ep \ E ′
p and assume without loss of generality that

a ∈ A′
p. We add a to Ap and let b 
= a be any p-cell of the thus created unique p-

cycle. Removing b from Ap ∪ {a}, we get again a p-tree. If b ∈ E ′
p, then we proceed

to the next step, else b ∈ Ap ′, we add b to Ap, and we iterate with a p-cell c in the
thus created unique p-cocycle. Continuing this way, we eventually get a p-cell z in
E ′
p. Indeed, every step makes Ap more similar to A′

p or it makes Ap more similar to
Ap ′, so the process must terminate. By construction, z /∈ Ep and Ep \ {a} ∪ {z} is a
maximal independent set of Ep, which implies that (Ep, K p) is a matroid, as claimed.

�
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We note that the matroid structure implies that the greedy algorithm can be used to
construct optimal trees, cotrees, and leftovers efficiently. This is in contrast to optimal
bases, which for many objective functions are NP-hard to construct [2].

The proof that (Ep, K p) is a matroid extends to general partitions of a ground-set.
Fixing an integer k and a set E , we consider partitions E = F1  F2  . . .  Fk such
that for each 1 ≤ i < k the collection of sets Fi is a matroid over E , and conclude
that the collection of sets Fk is also a matroid over E .
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