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Abstract 
Objective: Overlapping anatomy in projection mammography can degrade the detection of mammographic lesions and 
further create mass-like features that can confound computer-aided detection (CADe) systems and degrade their 
performance. Tri-plane correlation imaging (TCI) aims to reduce this impact by incorporating three projection images into 
CADe using a geometric correlation scheme. This study aimed to assess the efficacy of TCI for breast cancer detection.  

Materials and Methods: An image set of 198 human subjects was used from a breast tomosynthesis database. Each case 
included 25 projections acquired within a 45 degree angular span at an approximate total glandular dose equal to that of 
two-view mammography. Triplet images were derived from each case (the central projection along with two symmetrical 
images) and analyzed by two independent CADe programs. The CADe results from the three projections from each 
program were combined using two TCI correlation rules based on unanimous vote and majority vote. The findings were 
analyzed in terms of true positives (TP), sensitivity, false positives per breast volume (FP), and a positive predictive index 
combining the two figures (i.e., TP/(TP+FP)).  

Results: For the first CADe program, the TCI scheme using the majority voting rule improved sensitivity by 40% while 
maintaining specificity, leading to a 40% improvement in the PPI performance. For the second, a higher-sensitivity/ 
lower-specificity CADe program, the TCI using the majority voting rule improved sensitivity by 10% while increasing 
false positives per breast volume by 3%, leading to an improvement of 8% in the PPI performance. The unanimous voting 
rule led to notably lower performance for both programs. For both CADe programs, an angular separation of six degrees  
(± 3 degrees) proved optimal.  

Conclusions: TCI was able to improve sensitivity over single projection imaging while maintaining specificity for both 
CADe programs, which suggests its potential as a supplement to standard mammography and as a complementary module 
to existing CADe algorithms. 
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1 Introduction 

In standard mammography, overlapping anatomical structures can mask the presence of suspected lesions [1, 2]. In certain 
conditions, overlapping anatomical structures can also mimic the appearance of breast masses in the formation of so called 
“noise lesions;” normal image features that appear like real lesions due to the confluence of unrelated anatomical 
structures [1, 2]. These overlapping structures thus may confound mammographic computer-aided detection (CADe) 
systems leading to loss of sensitivity as well as specificity. To reduce these effects, recent technological developments 
have focused on removing anatomic overlap via breast CT and tomosynthesis [2-7]. While CT and tomosynthesis have 
significant potential, they may incur higher costs with complex equipment and image processing. Moreover, both CT and 
tomosynthesis devices produce multiple projection images and even more reconstructed slices. Such an increase in the 
number of images that a radiologist has to read affects radiologist workflow in a screening setting. An alternative low-cost 
and efficient technology is correlation imaging [8]. In correlation imaging, a standard projection image is geometrically 
correlated with additional projections to eliminate suspicious regions created from anatomical overlap, or otherwise to 
improve sensitivity at constant or improved specificity.  

Correlation Imaging has been primarily applied to chest radiography [8-10]. A natural extension would be to explore the 
utility of the technique in breast imaging. However, while preliminary explored [11], that has not been fully developed. 
Further, a key question in the implementation of correlation imaging is how the performance of the technique varies with 
respect to angular separation of the individual projections (i.e., the angular difference between the individual projections 
that comprise the correlation imaging technique). This paper reports on a study that sought to answer these questions, 
using low-dose human subject data, in the context of a tri-plane implementation of the technique for breast imaging, 
so-named Tri-plane Correlated Imaging (TCI). The study limited the number of projections used to three to facilitate a 
future implementation of the technology that might use stereoscopic viewing of the left-right projections [12]. Image data 
were derived from a database of low-dose tomosynthesis projections at five different angular separations. These projection 
images were each analyzed with two different CADe programs; the suspicious regions identified on each projection were 
then geometrically correlated. The performance results were then compared across different angular separations and with 
different correlation rules. A key objective of the study was to determine the extent by which the additional low-dose 
views could improve CADe performance compared to that on single-view data.  

2 Methods and materials 

2.1 Human subject database 
This study was approved by the Institutional Review Board; informed consent was obtained for all subjects, and the study 
was compliant with the Health Insurance Portability and Accountability Act. An image database of 198 human subjects 
originally acquired for a clinical trial of tomosynthesis was used for this study [3]. The imaging system (MAMMOMAT 
Novation TOMO; Siemens Healthcare; Erlangen, Germany) used a selenium-based direct flat-panel detector with inherent 
85 μm pixels for image capture. Each case consisted of 25 projection images that were acquired over an angular range of 
45 degrees (see Figure 1). To reduce computational complexity, raw image pixels were binned 4 × 4 to produce an 
effective pixel size of 340 μm which was used for all image processing. All image sets were obtained using a W/Rh tube 
using 28-32 kVp.  

From the 198 images, 145 were normal, and 53 had masses. Image data were acquired from the human subjects in both the 
mediolateral oblique (MLO) and the craniocaudal (CC) orientations (80 Left CC, 191 Left MLO, 81 Right CC, 186 Right 
MLO volumes). The breast densities and the subtly of the masses were representative of the population of patients at our 

institution. Specifically, the distribution of densities was 40%, 24%, 29%, and 7%, for the BI‑RADS density categories of 

1 to 4, respectively. Comparison standard (the “truth”) was determined by an experienced MQSA radiologist (15 years’ 
experience) who identified the lesions in all projection view images and determined the lesion extent. We did not establish 
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a biopsy-based gold standard to ascertain the absolute presence of the lesions but our methodology was rigorous providing 
a reasonably robust alternative.  

The projection images were obtained without any post-processing except for conversion to logarithmic scale to make 
image values linearized with respect to attenuation. All image analysis was done without processing applied for visual 
interpretation. However, to suppress the background and improve visualization at the breast skin line, each 
mammographic projection was processed using a simple gray scale transformation that has been previously verified to 
mimic clinical processing [13]. The mammogram gray scale histogram was then analyzed to identify the breast and 
background distributions. The histograms had identifiable features to separate the two distributions. These parameters 
were combined to create a sigmoid transform that was applied to each mammographic projection.  

From the mammographic projections associated with each of 198 cases, the central projection image and projections at  
± 3, ± 6, ± 12, and ± 22 were extracted to be incorporated in the TCI scheme, as illustrated in Figure 1. As each projection 
image was acquired at an exposure (and thus the glandular dose, considering a constant beam quality) approximately 8% 
of that of standard, single-view mammography, the total dose associated with the TCI exam, as modeled in this study, was 
about a quarter (3 × 8% = 24%) of that of a single-view mammogram.  

Figure 1. Diagram of TCI technique. Three images of the 
compressed breast are taken from three separate projects 

spanning an angular range of  with respect to the center of 

rotation. The system used a source to image distance of 
65.3 cm, and an iso-centric gantry pivoting the x-ray tube 
about a point located 6 cm above the detector.  

 

2.2 Image processing 
The tri-plane correlation process was studied using the mass detector outputs of two CADe algorithms. The use of two 
algorithms was motivated as a way to examine the robustness of the approach and the generalizability of the findings.  

The first CADe system (CADe-1) filtered the images with a difference of Gaussians (DoG) filter [3]. This approach has 
been successfully used in CADe algorithms for mammography [14, 15]. The DoG filter was formed by subtracting two 
Gaussians as      

,                                                         (1) 
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where r corresponds to the radial distance from the origin, L  represents the standard deviation of the larger Gaussian 

(8.16 mm), and S refers to the standard deviation of the smaller Gaussian (4.76 mm). This filtering enhanced (or boosted) 

the features of interest in the image. The filtered images were then segmented using adaptive thresholding to produce 
CADe suspicious locations. For each projection, the thresholds started with the top tenth percentile of the filtered pixel 
values and then lowered until any two suspicious locations were merged together. The joining rule was used as the 
stopping criterion of the thresholding process. The results of the overall TCI scheme was not sensitive to the adaptive 
thresholding process and stopping criteria, but as in any CAD approach, this front-end component produced a large 
number of false positives (FPs), suspicious image enhancements that did not correspond to “true” lesions. A rule-based 
false-positive approach, as implemented earlier [3], was used to eliminate suspicious regions based on area, eccentricity, 
and filter values. This first mass detection algorithm had been previously optimized for our database with a reported 
sensitivity of 93% at 7.7 FPs per breast, corresponding to the algorithm results for the entire breast volume [3].  

The second CADe system (CADe-2) was implemented as described in an earlier publication [11]. In summary, the system 
filtered the projection images with a modified adaptive elliptical gradient convergence filter, based on the convergence 
index filter approach, to highlight suspicious regions. In the segmentation step, the filtered image data were smoothed 
using a Gaussian filter (σ = 3.5 mm) to minimize the enhancements that were associated with (comparatively 
smaller-sized) ducts, while retaining the areas of enhancement that would likely be associated with (comparatively 
larger-sized) masses [11]. Suspicious regions in the filtered image were segmented using a gray scale duration process. The 
filtered image was first thresholded at the 99th percentile. The threshold continued to be lowered to each lower percentile 
to grow regions until the entire region was segmented or a region attempted to merge with another suspicious region [16]. A 
minimal rule-based false-positive approach was used to eliminate suspicious regions based on area and eccentricity.  

The TCI algorithm combined the information from each set of three breast projections associated with each case. Figure 2 
illustrates the major steps in the TCI geometric correlation algorithm. Each projection contained suspicious regions 
identified by each of the CADe systems. These suspicious regions were first binarized to unity value at lesion location and 
zero elsewhere. The binarized images were then back-projected into the breast volume based on the imaging system 
geometry using the shift-and-add technique [3, 11]. The breast volume is discretized with 2 mm slice thickness, a magnitude 
found to adequately reflect the suspicious lesions of the targeted size. The result of this reconstruction was a volume 
containing voxel values corresponding to 0, 1, 2, or 3 depending on how many projections contributed toward each voxel. 
The back-projected volume was then thresholded to include only voxels shared by all projections (voxel values = 3), 
applying a “unanimous voting” rule. The data also thresholded to include only voxels shared by majority of projections 
(voxel values = 2-3), applying a so-called “majority voting” rule. The thresholded volumes were then summed in the z 
direction, equivalent to a parallel beam approximation of the central projection angle, to produce a single TCI projection.  

 

Figure 2.  Overview of TCI geometric 
correlation algorithm. First CAD is 
applied to individual projections (left). 
The individual CAD results are the 
combined by reconstruction (center). 
Finally the combined data is projected 
into the planar domain to identify the 
overall output of the processing for the 
case (right).  
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2.3 Performance evaluation 
The performance of the CADe programs on single-view projections and the TCI results were assessed in terms of 
sensitivity and specificity. For the evaluations, the conformance with the comparison standard (the “truth”) was 
determined based on percentage overlap of the identified suspicious regions with the “truth.” If a suspicious region 
overlapped a mass by more than or equal to 30%, it was considered a hit:  

,                                                                           (2) 

where SArea represents the area of a suspicious region identified by a CADe algorithm and TArea describes the true area of a 
mass delineated by an experienced radiologist. This rule was chosen as it ensured that the suspicious region was focusing 
on the abnormality while penalizing suspicious regions that blanketed large portions of the image. The 30% rule was 
empirically found to accommodate a possible shift in the center location of a legion depending on how the lesion might 
coincide with the underlying anatomical structure. The registration of the TCI output and the truth neglected the slight 
difference in the projection geometries (cone beam versus parallel bream), as that was an order of magnitude lower than 
the 30% rule that was applied. 

The sensitivity and FP per breast volume were combined into one figure of merit, the positive predictive index (PPI) [8, 9]. 
This was defined as 

,                                                                (3) 

where p represents the breast cancer prevalence in a screening population. The prevalence was chosen to be 0.78% based 
on previously published studies [17]. The PPI describes how likely a suspicious region identified by a CADe algorithm 
would be a cancer in a screening population. 

The CADe baseline performance was defined for the system operating only on the central (0°) projection. System 
performance was then measured for the correlated images produced at multiple angular separations and TCI voting rules. 
The sensitivity, FP/breast volume, and PPI were converted into relative values to measure the utility of the TCI algorithm 
in relation to the baseline single-view, CADe performance. 

3 Results 

Figure 3 illustrates the effects of angular separation and voting rule on sensitivity, false positives per breast volume, and 
positive predictive index for the CADe-1 system [1]. For a unanimous voting rule, increased angular separation reduced the 
number of FPs per breast volume as the chance correlation between randomly matched features reduced.  However, that 
was at the expense of sensitivity; increased angular separation with a unanimous voting rule led to a lower positive 
predictive index. For a majority voting rule, increased angular separation increased sensitivity at the expense of increased 
FPs per breast volume. Overall, the positive predictive value increased to a maximum at ± 3 degrees angular separation but 
declined beyond that. The optimality of ± 3 degrees angular separation coincides with prior reports [8, 11], and incidentally 
is in the range applicable for stereoscopic visualization [12].  

Figure 4 illustrates the effects of angular separation and voting rule on sensitivity, FPs per breast volume, and positive 
predictive index for the CADe-2 system. For a unanimous voting rule, increased angular separation slightly reduced the 
number of false positives per breast volume while moderately lowering sensitivity. The PPI increased to a maximum at ±3 
degrees and then declined. For a majority voting rule, sensitivity increased with angular separation till reaching a 
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maximum at ± 6 degrees, beyond which it declined. This sensitivity benefit was achieved with a minor increase in FPs per 
breast volume. Overall, similar to the finding with the other CADe algorithm, the positive predictive value increased to a 
maximum at ± 3 degrees angular separation but declined beyond that.  

For comparative purposes, the CADe-1 program, when applied only to the zero-degree low-dose projections, it provided a 
sensitivity of 60.0% at 6.3 FPs/image. The corresponding figures for the CADe-2 program were 53.0% sensitivity at 8.0 
FPs/image. These are intermediate results, as these CADe programs were not designed for use at 8% of single-view 
mammographic dose (even if the noise is reduced by pixel binning). Even though the CADe-1 program was previously 
planned for such data, it was designed to be applied to the entire projection dataset, not to a sub-selection of the 
projections. As such, these performance metrics cannot be directly compared with those from CADe systems designed to 
operate on full dose mammograms. However, they establish the baseline performance that TCI sought to improve. 
Furthermore, the comparison with the single-view, zero-degree projection views (with an acquisition dose lower than that 
of the combined TCI system), was made as a point of reference only, further justified by an underlying assumption that the 
main factor limiting mass detection in projection breast images is anatomical overlap, largely not impacted by the 
associated dose settings. 

 

(a)     (b)     (c) 

Figure 3. Effect of TCI algorithm on CADe sensitivity (a), non-existent false positives (FPs) per breast volume (b), and positive 
predictive index (c) for an optimized CADe system (CADe-1). The angular displacement is reflective of the angular separation of each 
of the oblique, left or right views from the central view. The data are normalized to unity for the single projection view, and error bars 
reflect the statistical uncertainty across the ensemble of cases used. 

 

(a)      (b)     (c) 

Figure 4. Effect of TCI algorithm on CADe sensitivity (a), non-existent false positives (FPs) per breast volume (b), and positive 
predictive index (c) for a basic CADe system (CADe-2). The angular displacement is reflective of the angular separation of each of the 
oblique, left or right views from the central view. The data are normalized to unity for the single projection view, and error bars reflect 
the statistical uncertainty across the ensemble of cases used. 
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4 Discussion 
Breast imaging using x-ray based methods remain an active area of research highlighted by recent studies that discuss its 
effectiveness and explore adjunct technologies that can improve its utility and potential [18-20]. Breast tomosynthesis has 
been a significant development in that front with the first commercial system recently approved by the FDA for clinical 
use in the United States. Investigators have further aimed to apply CAD methods to tomosynthesis datasets. Among them 
there has been adaptation of mammography algorithms to work with tomosynthesis [21], combination of projection images 
with 3D volumes [22], and a host of other implementations [23-26]. This study investigated the feasibility of a new adjunct 
technique to mammography: Tri-plane Correlation Imaging of the breast.  

For a CADe system that was previously optimized for complete view breast tomosynthesis imaging (CADe-1) [1], TCI 
using a majority voting rule improved sensitivity by 40% while maintaining specificity, leading to a 40% improvement in 
PPI performance. For the second CADe program (CADe-2), TCI using a majority voting rule improved sensitivity by 10% 
while increasing FPs per breast volume by 3%, leading to an improvement of 8% in PPI performance. For both CADe 
programs, the optimal TCI set was the central projection paired with the projections acquired at ± 3 degrees. TCI was able 
to improve sensitivity over single projection imaging while maintaining specificity, for two different CADe systems, 
which were not explicitly optimized for the tested dose levels. The findings indicate the potential of TCI as a beneficial 
supplement to standard mammography and a complementary module to existing CADe algorithms. Further improvement 
may be expected with acquisition and processing optimized for TCI including the acquisition of higher dose projection 
data. While these results are promising, it should be pointed out that CAD prompts, as advantageous as they might be, can 
lead to perceptual or cognitive responses that can reduce those advantages. Studies have noted that even a superior CAD 
might be sub optimally utilized in the clinical practice. These perceptual and cognitive elements of CAD require distinct 
and dedicated research of their own. The scope of the present study was limited to only a demonstration of the potential 
utility of the technology and not its clinical implementation. 

Although the implementation of TCI in this study is new, it corresponds closely with the work of Reiser et al. [3] where a 
multi-plane correlation across a wide range of angular views demonstrated the tradeoff between sensitivity and specificity 
for two correlation methods. A realization of the method was also previously implemented in chest radiography [8, 9]. Prior 
studies in chest and breast radiography [8, 9, 12], using human and phantom images, found that using the central projection 
along with projections acquired at ± 3-6 degrees produced the best performance. The current study similarly found that an 
angular separation in the ± 3-6 degrees yields optimal results. The current study added to prior work and also examined 
different voting rules (unanimous and majority) to determine whether regions were geometrically correlated. Other 
correlation imaging studies have examined the angular range and number of projections to combine [27, 28]. Those studies 
have found that optimum performance tends to occur for 11–17 projections over an angular span of 45°. However, this 
work shows that performance improvements can be seen with as few as three projection images over a smaller angular arc. 

Anatomical noise is a major limitation of projection imaging. Our study showed that the ensemble of three projections can 
offer an effective improvement over a single view to mitigate the anatomical noise in each view. Each of the three views 
renders the anatomical noise differently, and thus the combination of the three reduces the effect. Additional benefit can be 
gained by more projections with improvement patterns similar to those with three projection, but with diminishing return 
with each additional views, as shown in earlier publications [27, 28]. Added projection implies reduced quantum noise within 
the ensemble of images, but as the anatomical noise is the main factor limiting mass detection in projection breast     
images [1, 2], the added advantage is significantly more than what would be expected from quantum noise differences. 
While the study ascertains this added advantage of using multiple views, it does not explicitly indicate how the technology 
can be used. As far as clinical implementation, we do not envision that a radiologist would necessarily look at the three 
views (unless a stereo display is incorporated); the complementary projection information is rather integrated by the 
computer algorithm to provide an improved CADe prompt to the observer. And the technique may be applied to any view 
mammogram, ie, each of the two view mammograms can individually processed the same way. 
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In this study, the tri-plane geometric correlation algorithm was tested for two CADe algorithms. As both programs operate 
on very low-dose mammographic images extracted from a tomosynthesis database, their inherent performance on single 
images cannot be readily compared to those of commercial CADe algorithms designed for full dose mammograms. 
However, for both programs, false positives decreased with a unanimous rule and slightly increased with a majority 
correlation rule. For the first program (CADe-1), sensitivity dropped sharply with the unanimous rule but improved with a 
majority rule. This suggests that in cases where the CADe algorithm detected a mass, it detected it on most projections but 
not all projections. This is consistent with its more aggressive false-positive reduction algorithm. In contrast, the second 
CADe program (CADe-2) had a smaller difference in sensitivity between the two correlation rules. Sensitivity still 
improved with the majority rule and decreased slightly with the unanimous rule. This is consistent with its less aggressive 
false-positive reduction stage. In addition, CADe-1 demonstrated more fluctuation in performance as a function of angular 
separation, including a dip in performance at ± 6 degree, compared to CADe-2. The fact that the different CADe’s showed 
different performance patterns indicates that this was not an issue with the images. The fluctuations were also well within 
the error bars noted so it should not be taken as a systematic aberration. Future studies should consider more images and 
additional CADe programs to more fully substantiate the robustness of the technique. Nevertheless, the overall similarity 
of the results across CADe programs demonstrates the relative independence of the CI approach from the starting CADe 
algorithm used, demonstrating its general robustness.  

In our study, each projection image was acquired at a low dose level (8% of standard single-view mammography), and as 
such the level of quantum noise in each projection was high. While anatomical noise is the main factor limiting the 
detection of mammographic masses, further implied by this study, quantum noise can still degrade CADe performance. 
An earlier study [27] shows a 0.1 reduction in Az with 8% reduction is dose. Acquiring the projections at higher doses 
(ideally one-third of mammography dose) would improve the projection results. While this was not a scenario explored in 
this investigation, we hypothesize that reduced quantum noise can reduce the number of suspicious regions in the 
single-view projections and thus reduce the likelihood of coincidence match to cause false positives in TCI. This remains 
the topic of a follow up investigation. Furthermore, regardless of the level of dose, care should be exercised for the CADe 
algorithm to be explicitly trained for the dose level designed to be used with the imaging system; a CADe designed for full 
dose mammography might not be optimum for TCI or breast tomosynthesis. 

This study faced several limitations. First, the current implementation of correlation imaging was limited to three 
projections to facilitate future stereoscopic viewing of the projection data [12]. However, correlation imaging can be 
implemented with more than three projections [27, 28] in order to improve performance and reduce CADe reconstruction 
artifacts. Second, the two CAD algorithms used showed differences some of which exhibited fluctuations that were 
random in nature. The study will benefit with additional CAD implementations, further stratifying the impact of breast 
volume on performance as well. Nonetheless, certain conclusions can be reasonably drawn from the results, in spite of 
their limitations in terms of the fluctuations and the number of algorithms tests, in that 1) a level of benefit can be gained 
by combining CAD results from multiple projections regardless of the CAD algorithm used, and that 2) the optimum 
angular separation tends to be in the 3-6 degree zone. Finally, future work should incorporate a larger number of human 
subject cases, in order to allow for a more complete statistical evaluation of the technique and stratification in terms of 
different breast tissue types. In that vain, a clinical study is also needed to compare the technique to two-view 
mammography or breast tomosynthesis in order to establish the quantitative merits of the technique compared to the 
standard of practice. Nevertheless, this study showed the potential of the TCI technique in improving CADe performance. 
The effectiveness of TCI is dependent on the CAD algorithm applied as well as the magnitude of angular separation. 
However TCI leads to a net improvement in performance at ±3 degrees angular separation.  

5 Conclusion 
In conclusion, this study found that with an optimized choice of angular separation and a correlation voting rule, TCI was 
able to improve sensitivity over the single projection approach while maintaining specificity (indicated by a net gain in PPI 
when TCI is invoked). The optimal angular separation was six degrees (± 3 degrees) and the optimal voting rule was a 
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majority vote. By adding only two additional projections to a standard mammographic view, the positive predictive index 
could be improved by at least 8%, suggesting that the TCI technique is a cost-effective means of improving 
mammographic performance. As the optimal angular range of 6 degrees is also optimal for stereoscopic viewing of the 
image pairs [12], the TCI data could be easily utilized for stereoscopic mammography applications as well. 
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