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Abstract Recently, the nonlinear dynamics of memristor

has attracted much attention. In this paper, a novel four-

dimensional hyper-chaotic system (4D-HCS) is proposed by

introducing a tri-valued memristor to the famous Lü system.

Theoretical analysis shows that the 4D-HCS has complex

chaotic dynamics such as hidden attritors and coexistent at-

tractors, and it has larger maximum Lyapunov exponent and

chaotic parameter space than the original Lü system. We

also experimentally analyze the dynamics behaviors of the

4D-HCS in aspects of the phase diagram, Poincaré mapping,

bifurcation diagram, Lyapunov exponential spectrum, and

the correlation coefficient, and the analysis results show the

complex dynamic characteristics of the proposed 4D-HCS.

In addition, the comparison with binary-valued memristor-

based chaotic system shows that the 4D-HCS has unique

characteristics such as hyper-chaos and coexistent attractors.

To show the easy implementation of the 4D-HCS, we im-

plement the 4D-HCS in an analogue circuit-based hardware

platform, and the implementation results are consistent with

the theoretical analysis. Finally, using the 4D-HCS, we de-

sign a pseudorandom number generator to explore its poten-

tial application in cryptography.
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1 Introduction

Chaos is a pseudorandom phenomenon produced by a cer-

tain nonlinear system. It shows many unique properties such

as initial sensitivity and ergodicity. Since the first chaotic

system was designed by Lorenz in 1963 [1], researchers

have developed many chaotic systems and applied them to a

wide body of research fields such as dynamics research [2],

neural networks [3], secure communication [4–6], image en-

cryption [7–11].

Generally, the complexity of a chaotic system is deter-

mined by its nonlinear term [12]. Memristor is a circuit el-

ement with nonlinear characteristics, and it can be used to

construct chaotic circuits [13]. In 2008, Itoh and Chua first

introduced the memristor into chaotic system to propose a

memristive chaotic system [14]. In 2012, Wang et al. first

proposed a memristor model using light dependent resistor

(LDR) [15], and then designed a chaotic circuit based on the

LDR memristor [16].

In recent years, chaotic systems are discovered to have

many new characteristics such as hidden attractors, coexist-

ing attractors, and multistability [17]. For example, Li et al.

proposed a new memristive chaotic system with an infinite

equilibrium plane in [18]. The amplitude and frequency of

the system can be changed by adjusting the initial value

of the internal state variable u of the memristor, indicating

that the chaotic system has hidden and coexisting attractors.

In 2018, using the Wien-bridge chaotic circuit, Ye et al.

proposed a memristive hyper-chaotic circuit with coexist-

ing attractors [19]. In the same year, Tan et al. proposed an

inductor-free memristive chaotic circuit with three line equi-

libria and coexisting attractors [20]. In 2019, Wang et al.

proposed a chaotic oscillator using memcapacitor and me-

minductor [21]. The system has infinite number of equilib-

rium points and coexisting attractors, and is extremely sen-

sitive to initial values. In the same year, Min et al. added an
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optimization factor f to a memristive chaotic system, and

then obtained a new system without equilibrium point, and

realized the control of the hidden attractor [22]. In 2020,

Wang et al. introduced a memristor feedback into a Lorenz-

like chaotic system to obtain a hyper-chaotic system with

multistability [23]. This system has rich and unique dynamic

characteristics. In addition, the nonlinear and random-like

behavior of chaotic systems makes them suitable for design-

ing pseudorandom number generator (PRNG). To explore

this application, Hua et al. designed a PRNG using a 2D

sine chaotification system. It can generate random numbers

with high randomness [24].

Up to now, most research works on memristive chaotic

systems focus on binary-valued and continuous memristors.

Tri-valued or multi-valued memristors can store more in-

formation and have richer characteristics than binary-valued

memristors. However, tri-valued memristor and its chaotic

system haven’t received much attention. Therefore, it is of

great significance to enrich the characteristics of chaotic sys-

tems using the tri-valued memristors. In this paper, we first

introduce a tri-valued memristor model, and then propose

a four-dimensional hyper-chaotic systems (4D-HCS) using

the tri-valued memristor. Theoretical analysis and experi-

mental results show the complex dynamics behaviors of the

developed 4D-HCS.

This paper is organized as follows. Section 2 introduces

the tri-valued memristor model and its equivalent circuit.

Section 3 presents the constructed 4D-HCS, calculates its

Lyapunov exponent and Lyapunov dimension, and discusses

its stability and equilibrium points. Section 4 analyzes the

hidden and coexistent attractors of the 4D-HCS. Section 5

compares the 4D-HCS with the binary-valued memristor-

based chaotic system. Section 6 designs a hardware circuit

platform for the 4D-HCS and applies it to the design of

PRNG. Finally, section 7 gives the conclusions about this

paper.

2 A Tri-valued Memristor Model and Its Equivalent

Circuit

2.1 The tri-valued memristor model

The memristor is used to describe the relationship between

the charge q and the flux ϕ . According to the definition in

[25], ideal memristors can be divided into current-controlled

memristors and voltage-controlled memristors, which can

be described by Eqs. (1) and (2), respectively:

{

v = R(q)i
dq

dt
= i

(1)

{

i = G(ϕ)v
dϕ

dt
= v

(2)

where v and i represent the voltage across and current flow-

ing through the memristor, q and ϕ mean the charge and flux

on the memristor at time t, R(q) and G(ϕ) are the memris-

tance and memductance of the memristor.

In [26], Wang et al. proposed a voltage-controlled tri-

valued memristor mathematical model. It satisfies the mem-

ristor theory and is different from binary-valued and contin-

uous memristors. The q-ϕ relationship of the model is de-

scribed by an asymmetric piecewise linear function, whose

general expression is shown in Eq. (3):

q = e0 +a0ϕ +b0 |ϕ + c0|−d0 |ϕ − c0| (3)

where a0, b0, c0, d0 and e0 are non-zero constant parameters

and c0 is positive. Taking the derivative of the flux ϕ form

Eq. (3), the G-ϕ relationship of the tri-valued memristor is

calculated as:

dq

dϕ
= G(ϕ) = a0 +b0sgn(ϕ + c0)−d0sgn(ϕ − c0)

=







a0 −b0 +d0, ϕ <−c0

a0 +b0 +d0, −c0 < ϕ < c0

a0 +b0 −d0, ϕ > c0

(4)

where sgn(x) represents the symbolic function. When x>0,

sgn(x)=1 and when x<0, sgn(x)=-1.

In this paper, we set a0=2.5, b0=4, c0=1, d0=2.5 and e0=-

1.5, according to Eqs. (3) and (4), the ϕ-q curve and ϕ-G

curve of the tri-valued memristor with three stable memduc-

tance 1S, 9S and 4S can be obtained and they are shown

in Fig. 1. We can see that the ϕ-q curve is across the ori-

gin, and the three different slopes in the curve indicate three

memductances of the memristor controlled by the voltage.
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Fig. 1 Characteristic curves of voltage-controlled tri-valued memristor

model: (a) ϕ-q curve, (b) ϕ-G curve

By applying a sinusoidal signal v(t)=v0sin(2π f t) to the

above model, and taking amplitude v0=4V, frequency f =

0.159Hz, initial value ϕ(0)=-1.5, the v-i curve and timing

diagram of the memristor can be obtained and shown in Fig.

2.
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Fig. 2 The v-i characteristic curve of the voltage-controlled tri-valued

memristor model: (a) Pinched hysteresis loop, (b) Timing diagram

2.2 Multiple pinch-off points analysis of the memristor

The circuit characteristics of the memory element appear as

a pinched hysteresis loop. Since the multiple pinch-off point

behavior reflects the complex nonlinearity of a memristor,

it is an important indicator to analyze the characteristics of

memristors [27, 28].

When applying a sinusoidal signal v(t)=v0sin(ωt) to the

tri-valued memristor, we can obtain the flux ϕ by Eq. (2) as:

ϕ (t) =
∫ t

−∞
v(τ)dτ =

∫ t

−∞
v0 sin(ωτ)dτ

= ϕ (0)−
v0

ω
cos(ωt)+

v0

ω

(5)

It can be seen from Eq. (5) that the value of the flux ϕ

is determined by the initial value ϕ(0), input voltage ampli-

tude v0 and frequency ω . The maximum flux ϕS under the

sinusoidal voltage input is obtained in half the input cycle,

as shown in Eq. (6).

ϕS = ϕ (0)+2
v0

ω
(6)

For the ϕ-q relationship of the piecewise linear mem-

ristor, its piecewise points ϕ1=-1 and ϕ2=1 show its non-

linearity, which is affected by the flux ϕS and the result is

expressed as the number of pinch-off points.

Let ϕ(0)=-1.5 and v0=4, the memristor characteristics

along the change of ω are shown as Fig. 3.

When ω =2, ϕS =2.5>ϕ2, and ϕ(0)=-1.5<ϕ1, the ϕ-q

curve has two piecewise points ϕ1 and ϕ2, and the v-i curve

has three pinch-off points. The ϕS decreases with the in-

crement of ω . When ω=4, ϕS=0.5<ϕ2, the ϕ-q curve has

one piecewise point (ϕ1), which shows a conventional sin-

gle pinch-off memristor; When ω=20, and ϕS=-1.1<ϕ1<ϕ2,

the ϕ-q curve has no piecewise point and shows a linear re-

lationship. Then the v-i relationship appears as a straight line

across the origin.

It can be seen that the frequency ω affects the value of

the flux ϕS and further changes the nonlinear characteris-

tics of the memristor. The experimental results show that
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Fig. 3 The ϕ-q curve and v-i curve of the memristor under different ω
(unit: rad/sec): (a) and (b) ω=2, (c) and (d) ω=4, (e) and (f) ω=20

when all piecewise points ϕ1 and ϕ2 are included between

ϕ(0) and ϕS, the ϕ-q curve has three pinch-off points and

the memristor has high nonlinearity, which is a tri-valued

memristor.

2.3 Equivalent circuit of the memristor

According to Eqs. (2)-(4), the equivalent circuit of the tri-

valued memristor can be designed and it is shown as Fig. 4,

where the A1 is an analogue multiplier, U4 and U5 are volt-

age comparators, and the other components are operational

amplifiers.

As can be seen from Fig. 4, R1, C1, and U1 form an in-

verting integration circuit, which turns the input voltage v

into the negative flux -ϕ . Through the inverting addition cir-

cuit composed by R2, R3, R4, and U2, ϕ+V1 can be obtained

as the output of U2. Similarly, the output at U3 is ϕ-V2 and

the output of U4 and U5 are sgn(·) in Eq. (4). Take U4 as an

example, when the input of U4 is ϕ+V1 and 0, the output will

be Usat if ϕ+V1>0 and it will be -Usat if ϕ+V1<0, where Usat

is the saturated output voltage. For simplicity, the output of

U4 can be written as Usatsgn(ϕ+V1). Similarly, the output

U5 is -Usatsgn(ϕ-V2). Since R8, R9, and U6 form an invert-
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Fig. 4 Equivalent circuit of the memristor

ing proportional operational circuit, the output of U6 is -(R9/

R8)Usatsgn(ϕ+V1). The output of U7 is (R11/R10)Usatsgn(ϕ-

V2). Since R12, R13, R14, R15 and U8 form an inverting ad-

dition circuit to add the outputs of U6 and U7 and -V3, the

memductance G(ϕ) finally is obtained from the equivalent

circuit can be described as Eq. (7).

G(ϕ) =V3 +
R9

R8
·Usat · sgn(ϕ +V1)−

R11

R10
·Usat · sgn(ϕ −V2)

(7)

where Usat is the saturated output voltage of the voltage

comparators and it is set as 13.5V. Set V1 and V2 in the circuit

as constant c0 in Eq. (4), namely 1V and set V3 as constant

a0, namely 2.5V. The circuit parameters determined by Eq.

(7) are C1=100nF, R1=10MΩ , R2=R3=R4=R5=R6=R7=10kΩ ,

R8=3.375kΩ , R9=R11=1kΩ , R10=5.4kΩ , R12=R13=R14=R15

=10kΩ .

After G(ϕ) is obtained, the current going through the

memristor can be achieved by multiply the input voltage

with the G(ϕ). As shown in Fig. 5, when the input voltage

v(t)=4sin(2ω f t) is given ( f =0.159Hz,ϕ(0)=-1.5), the timing

diagram of v, i and G are consistent with the simulation re-

sult shown in Fig. 2, which verifies the effectiveness of the

equivalent circuit.
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Fig. 5 Simulation results: (a) Timing diagram of v and i; (b) Timing

diagram of G

3 The Four-dimensional Chaotic System

3.1 Construction of memristive chaotic system

In 2002, Lü et al. proposed a new three-dimensional chaotic

system called Lü system [29], which realizes a conversion

between the Lorenz system [1] and Chen system [30].

As a nonlinear device, the memristors can be used to

construct chaotic systems. In this paper, a new 4D hyper-

chaotic system (4D-HCS) is proposed by introducing the

voltage-controlled tri-valued memristor model to the Lü sys-

tem. The expression of the 4D-HCS is shown as follows:















ẋ = a(y− x)

ẏ = cy− xz

ż = xy−bz−dG(w)

ẇ = z

(8)

where x, y, z and w are system state variables, and a, b, c and

d are constant parameters. G(w) is the memductance of the

tri-valued memristor in Eq. (4). When setting these parame-

ters as a=40, b=5, c=24.4 and d=50, and these initial values

as [x0, y0, z0, w0]=[0.01, 0.01, 0.01, 0.01], the Lyapunov

exponents of the 4D-HCS are calculated as LE1=4.2486,

LE2=0.0025, LE3=-0.004 and LE4=-24.8471, and its Lya-

punov dimension is calculated as DL=3.1709 using Eq. (9).

As a contrast, the Laypunov exponents of the Lü system are

LE1=2.7931, LE2=0.0049, LE3=-23.3979 and its Lyapunov

dimension is DL=2.1196. It is obvious that the 4D-HCS has

a higher maximum Lyapunov exponent and Lyapunov di-

mension than the Lü system.

DL = k+
1

|LEk+1|

k

∑
i=1

LEi = 3+
(LE1 +LE2 +LE3)

|LE4|
(9)

The phase diagrams of the 4D-HCS under the above

conditions are shown in Fig. 6, which indicates the rich dy-

namic behaviors of the system.
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Fig. 6 Phase diagrams of the system based on the tri-valued memristor:

(a) x-y, (b) x-z, (c) y-z, (d) x-y-z

3.2 Hyper-chaotic behaiovrs

Setting its parameters as other values, the 4D-HCS can show

hyper-chaotic behaviors. Specifically, setting the system pa-

rameters as a=12, b=-1, c=-1.2 and d=50, and its initial val-

ues as [x0, y0, z0, w0]=[0.1, 0.1, 0.1, 0.1], its Lyapunov ex-

ponent are calculated as LE1=2.4566, LE2=0.3086, LE3=-

0.0064≈0 and LE4=-14.9588, and its Lyapunov dimension

DL=3.1844. Since there are two positive Laypunov expo-

nents, the 4D-HCS shows hyper-chaotic behaviors under this

condition. The corresponding typical hyper-chaotic attrac-

tors can be obtained and shown in Fig. 7.

3.3 Dissipative property analysis

To study the dissipative property, we calculated the diver-

gence of the system using Eq. (10).

∇V =
∂ ẋ

∂x
+

∂ ẏ

∂y
+

∂ ż

∂ z
+

∂ ẇ

∂w
(10)

when parameters a=12, b=-1, c=-1.2 and d=50, the ∇V =–a

+c–b=-12.2<0. Then the system is dissipative and satisfies

the conditions for generating chaotic attractors.

3.4 Equilibrium point and stability analysis

To analyze the stability of the 4D-HCS, the equilibrium point

of the system must be calculated. Let the right part of Eq.

(8) equal to zero, and the system parameters a, b, c and

d are non-zero values, we can obtain an equilibrium point

O={x=y=z=0, G(w)=0}. However, the tri-valued memristor

model defined by Eqs. (3) and (4) shows that the memduc-

tance G(w)6=0, which indicates that the 4D-HCS based on

the tri-valued memristor has no equilibrium point. Thus, the

chaotic attractors generated by the 4D-HCS are all hidden

attractors.

3.5 Timing diagram and Poincaré mapping analyses

The Timing diagram of the 4D-HCS is shown in Fig. (8),

which indicates that the 4D-HCS shows pseudorandom and

aperiodic behaviors. Fig. 9(a) and Fig. 9(b) show the Poincaré

mapping on the x-z plane with y=-10 and the x-y plane with

z=10, respectively. As can be seen, the Poincaré mapping are

composed of dense points with hierarchical structures.

4 Dynamical Property Analysis

4.1 Influence of system parameters on dynamic

characteristics

The behaviors of a chaotic system are extremely sensitive

to the change of its parameters. Therefore, it is necessary to

study the influence of parameter variation on system dynam-

ics.

4.1.1 Influence of the parameter a

For the 4D-HCS, we first study its behaviors when its pa-

rameter a increases within [1, 12] by fixing the initial values

[x0, y0, z0, w0]=[0.1, 0.1, 0.1, 0.1], and its other parameters

b=-1, c=-1.2 and d=50. The corresponding Lyapunov expo-

nent spectrum and bifurcation diagram can be obtained and

shown in Fig. 10 and Fig. 11, respectively.

It can be seen from Fig. 10 that with the increment of pa-

rameter a, the 4D-HCS has different Lyapunov exponents,

and thus it exhbits different states. The bifurcation diagram

in Fig. 11 shows that the 4D-HCS transforms from the pe-

riodic state first to the chaotic state, and then to the hyper-

chaotic state, as the parameter a increases. The specific evo-

lution process is shown in Table 1, and the representative

phase diagrams in x-y plane are shown in Fig. 12.

Table 1 Different system states corresponding to different values of a

Value of a LE1 LE2 LE3 LE4 State

1.4 0.0009 -0.0029 -0.7991 -0.7989 Period

2.1 0.5289 -0.0013 -0.0056 -2.8221 Chaotic

8 1.8207 0.4598 -0.0303 -10.4502
Hyper-

chaotic
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Fig. 7 Phase diagram of the hyper-chaotic attractors: (a) x-y, (b) x-z, (c) x-w
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Fig. 9 Poincaré mapping: (a) y=-10, (b) z=10

4.1.2 Influence of the parameter c

Similar to the analysis of parameter a, we fix the initial val-

ues [x0, y0, z0, w0]=[0.1, 0.1, 0.1, 0.1], and parameters a=12,

b=-1 and d=50 in the 4D-hCS and calculate its Lyapunov

exponent spectrum and bifurcation diagram with the change

of parameter c. Fig. 13 and Fig. 14 show the calculation re-

sults. As can be seen from Fig. 13, the Lyapunov exponent

changes with the variation of the parameter c, and the sys-

tem switches between the chaos and hyper-chaotic when c

1 2 4 6 8 10 12

a

-15

-10

-5

0

3

L
y
a

p
u

n
o

v

LE1

LE2

LE3

LE4

Fig. 10 Lyapunov exponent spectrum corresponding to a

Fig. 11 Bifurcation diagram corresponding to a

is less than zero. Table 2 shows the different states of the

4D-HCS with different parameter c.

In addition, the bifurcation diagram in Fig. 14 shows that

the system reversely bifurcates from the chaotic state to the

periodic state when the parameter c increases within [-4, 8],



Tri-valued Memristor-based Hyper-chaotic System with Hidden and Coexistent Attractors 7

-15 -10 -5 0 5 10 15

x

-40

-30

-20

-10

0

10

20

30

40

y

(a)

-20 -10 0 10 20

x

-40

-30

-20

-10

0

10

20

30

40

y

(b)

-40 -20 0 20 40

x

-80

-60

-40

-20

0

20

40

60

80

y

(c)

Fig. 12 Corresponding evolution process of the system with varying parameter a: (a) Period with a=1.4, (b) Chaotic with a=2.1, (c) Hyper-chaotic

with a=8

Table 2 Different system states corresponding to different values of c

Value of c LE1 LE2 LE3 LE4 State

7 0.0025 -0.0034 -0.9707 -3.0283 Period

4 3.0553 -0.0079 -0.0070 -10.0403 Chaotic

-2 1.2517 0.3177 -0.0281 -14.4412
Hyper-

chaotic

which is consistent with its Lyapunov exponent spectrum in

Fig. 13. Besides, Fig. 15 shows the phase diagram of the

attractor on the x-z plane when the parameter c changes.
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Fig. 13 Lyapunov exponent spectrum corresponding to c

4.1.3 Dynamical map with parameters a and c

To further study the influence of parameters to the system

state, we illustrate the dynamical map of the 4D-HCS. The

dynamical map reflects the different dynamic characteris-

tics of a system with the change of multiple parameters. The

two-dimensional dynamic map of the 4D-HCS for param-

eters a and c is shown in Fig. 16, in which the green area

Fig. 14 Bifurcation diagram corresponding to c

marked with P represents the periodic state, the blue area

marked with C represents the chaotic state, and the dark

blue area marked with H represents the hyper-chaotic state.

It can be seen that when the parameter c is less than -1 and a

changes within [10, 15], the 4D-HCS mainly shows hyper-

chaotic behaviors; when c is greater than -1 and a is set as

a larger value, the system mainly shows chaotic behaviors;

when c is close to zero and a is set as a smaller value, the

system mainly show periodic behaviors.

4.2 Influence of memristor parameter on dynamic

characteristics

The tri-valued memristor improves the dimension of the chaotic

system and enlarges the number of parameters of the system.

In this subsection, we analyze the influence of the memristor

parameter to the dynamics of the 4D-HCS.
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Fig. 15 Corresponding evolution process of the system with varying parameter c: (a) Period with c=7, (b) Chaotic with c=4, (c) Hyper-chaotic

with c=-2
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Fig. 16 Dynamical map of parameters a and c

4.2.1 Influence of the parameter a0

For the q-ϕ relationship model of the memristor shown in

Eq. (3), the memristor parameters are set as [b0, c0, d0, e0]=[4,

1, 2.5, -1.5], and the system parameters are set as [a, b, c,

d]=[12, -1, -1.2, 50]. When the parameters a0 varies within

[2.5, 30], the new expression of G(ϕ) can be obtained as

follows:

G(ϕ) = a0 +4sgn(ϕ +1)−2.5sgn(ϕ −1)

=







a0 −4+2.5, ϕ <−1

a0 +4+2.5, −1 < ϕ < 1

a0 +4−2.5, ϕ > 1

(11)

The Lyapunov exponent spectrum and bifurcation dia-

gram of variable x can be calculated with the change of pa-

rameter a0 and they are shown in Fig. 17 and Fig. 18, re-

spectively.

Fig. 17 shows that when a0 increases within [2.5, 5], the

system shows hyper-chaotic behaviors, and Fig. 18 shows

that the system changes from the hyper-chaotic (and chaotic)

state to the periodic state through inverse bifurcation with

the increase of the parameter a0.
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Fig. 17 Lyapunov exponent spectrum corresponding to a0

Fig. 18 Bifurcation diagram corresponding to a0

Obviously, when the parameter a0 varies within [2.5,

30], the memductance of the memristor changes makes the

system state changes. This shows that the parameter space

of the 4D-HCS is expanded, and its system state is affected

by the memductance of memristor. The 4D-HCS still has no
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equilibrium point when G(ϕ) is positive, and also shows the

hidden oscillation phenomenon.

4.2.2 Influence of the parameter d0

Similar to the analysis of parameter a0, we set the parameter

[a0, b0, c0, e0]=[8, 4, 1, -1.5], and the parameter d0 varies

from [-1, 25]. The new expression of G(ϕ) is obtained as

follows:

G(ϕ) = 8+4sgn(ϕ +1)−d0sgn(ϕ −1)

=







8−4+d0, ϕ <−1

8+4+d0, −1 < ϕ < 1

8+4−d0, ϕ > 1

(12)

Keep other conditions unchanged and calculate the Lya-

punov exponent spectrum and bifurcation diagram of vari-

able x with the change of parameter d0 and show them in

Fig. 19 and Fig. 20, respectively.
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Fig. 19 Lyapunov exponent spectrum corresponding to d0

It can be seen that with the change of parameter d0, the

4D-HCS changes from the hyper-chaotic (and chaotic) state

to the periodic state through the inverse bifurcation, which

is similar to the evolution of the system with the change of

the parameter a0.

4.2.3 Dynamical map with varying a0 and d0

The dynamical map of the 4D-HCS for parameters a0 and

d0 is shown in Fig. 21, in which the green area marked with

P represents the periodic state, the blue area marked with C

represents the chaotic state, and the dark blue area marked

with H represents the hyper-chaotic state. Fig. 21 shows

the different dynamic characteristics of the system with the

change of the parameters a0 and d0. Specifically, when the

parameters a0 and d0 are both small values, the 4D-HCS

Fig. 20 Bifurcation diagram corresponding to d0

mainly shows hyper-chaotic behaviors; when the a0 and d0

increase, the 4D-HCS mainly shows chaotic state. In addi-

tion, when the parameters a0 and d0 are set as appropriate

values, the system shows periodic behaivors.
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Fig. 21 Dynamical map of parameters a0 and d0

4.3 Power spectrum analysis

In this section, we analyze the power spectrum of the 4D-

HCS to further demonstrate the evolution of its state.

The power spectrum is obtained by performing the Fourier

transform to the output sequence of the 4D-HCS, and it can

be used to distinguish the difference of dynamic states. It is

well-known that the power spectrum of a periodic signal is

a discrete spectrum, and the power spectrum of an aperiodic

signal is a continuous spectrum. For an aperiodic signal, its
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power spectrum is continuous and there are a large number

of peaks in its corresponding power spectrum, this is mainly

caused by a large number of period-doubling bifurcations in

chaos. In addition, for a noise signal, its power spectrum is

continuous and smooth.

Fig. 22 shows the phase diagram of different attractors

in the y-z plane and the corresponding power spectrum when

set the system parameters as a=12, b=-1, d=50. Fig. 22(a)

shows the period 1 attractor with c=7, and the corresponding

power spectrum has a peak in Fig. 22(b). Fig. 22(c) shows

the period 2 attractor with c=6.35, and the corresponding

power spectrum has two peaks in Fig. 22(d). Obviously, the

power spectrum of the above two periodic signals are all dis-

crete spectrum. Fig. 22(e) shows the hyper-chaotic attractor

with c=-2, and the corresponding power spectrum is shown

in Fig. 22(f), which is a continuous spectrum, and a large

number of peaks are formed due to period-doubling bifurca-

tion.

Therefore, power spectrum analysis can effectively dis-

tinguish and compare the periodic signal, chaotic signal and

noise signal of the system.
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Fig. 22 Attractor and corresponding power spectrum: (a) and (b)

period-1, (c) and (d) period-2, (e) and (f) hyper-chaotic

4.4 Initial sensitivity

A chaotic systems is also sensitive to the changes in its initial

values. With slightly different initial values, the chaotic sys-

tem can produce completely different sequences. The sensi-

tivity of a chaotic system can be analyzed by measuring the

correlation the two sequences generated by different initial

values. The correlation coefficient which is defined by Eq.

(13):

Co =
E[(Xt −µX )(Yt −µY )]

σX σY

(13)

where, Xt and Yt are two sequences generated by the system

under two slightly different initial values, µ and σ represent

the mean value and standard deviation of the sequence, E[·]

is the expectation function [31]. A Co value closer 0 indi-

cates the lower correlation between the two sequences, and

further means the higher sensitivity of the chaotic system to

its initial values.

For the 4D-HCS, we fix the system parameters [a, b, c,

d]=[12, -1, -2, 50], and slightly change each variable in [x0,

y0, z0, w0] with a 10−8 difference. Taking the variable x0 as

an example and let x0
′=x0+10−8, then the system generates a

different sequence pair (X1, X2) under initial values [x0, 0.1,

0.1, 0.1] and [x0
′, 0.1, 0.1, 0.1]. In the same way, slightly

change the y0, z0 and w0 to get (Y1, Y2), (Z1, Z2) and (W1, W2).

Then calculate the correlation values of these sequence pairs

and their results are shown in Table 3. It can be seen that the

correlation values of all the sequence pairs are very close to

0, which indicates that the 4D-HCS is extremely sensitive to

changes of its initial values. To visually show the sensitivity,

we plot these sequence pairs (X1, X2), (Y1, Y2), (Z1, Z2) and

(W1, W2) in Fig. 23. It clearly shows the difference between

each sequence pair generated by the system with slightly

different initial values. Therefore, the 4D-HCS is extremely

sensitive to its initial values.

4.5 Coexistent attractors analysis

The 4D-HCS not only has hidden attractors, but also coex-

istent attractors. Fix the system parameters as a=12, b=-1

and d=50, and change the parameter c. When c is set as an

appropriate value, the 4D-HCS can obtain coexistent attrac-

tors under the symmetrical initial values [0.1, 0.1, 0.1, 0.1]

and [-0.1, -0.1, 0.1, 0.1]. Different parameters c can result in

different states of the system.

Under symmetrical initial conditions, the phase diagrams

of the coexistent period attractors and the coexistent chaotic

attractors of the system are shown in Fig. 24 and Fig. 25,

respectively.

In Fig. 24 and Fig. 25, the red area represents the trajec-

tory with initial values [-0.1, -0.1, 0.1, 0.1], while the blue
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Table 3 Correlation values of different sequences

Initial values

Correlation coefficient

Correlation of X1, X2 Correlation of Y1, Y2 Correlation of Z1, Z2 Correlation of W1, W2

x0-x0
′ case -0.0643 -0.0612 -0.1663 -0.0576

y0-y0
′ case -0.1252 -0.0768 0.1275 0.0392

z0-z0
′ case 0.0912 0.0990 -0.0543 0.0643

w0-w0
′ case 0.0355 0.0468 0.0075 -0.0332
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Fig. 23 The timing diagrams of the sequences under the case of x0-x0
′:

(a) (X1, X2), (b) (Y1, Y2), (c) (Z1, Z2), (d) (W1, W2)

Table 4 Each type of coexistent attractors

Value of c

Lyapunov exponent

Type
LE1 LE2 LE3 LE4

6.4 0.0029 -0.0046 -0.1500 -4.4483 Period-1

6.3 0.0054 -0.0019 -0.7340 -3.9696 Period-2

6.25 0.0008 -0.0036 -0.1672 -4.5799 Period-4

6.17 0.9388 0.0018 -0.0052 -5.7653 Chaotic

2.4 3.1245 -0.0054 -0.0056 -11.7135 Chaotic

-1.2 2.4566 0.3086 -0.0064 -14.9588
Hyper-

chaotic

area represents the trajectory with initial values [0.1, 0.1,

0.1, 0.1].

As a result, under the symmetrical initial values [±0.1,

±0.1, 0.1, 0.1], a total of five types of coexistent attractors

appear when the parameter c changes, as shown in Table 4.

5 Comparison with the Binary-valued Memristor-based

Chaotic System

In this section, we compared the 4D-HCS with binary-valued

memristor-based chaotic system to further illustrate the ad-

vantages of the tri-valued memristor.

5.1 The binary-valued memristor model

In [14], Itoh etal. proposed a binary-valued memristor model,

whose q-ϕ relationship is described by a symmetric piece-

wise linear function, and its general expression is shown in

Eq. (14).

q = βϕ +0.5(α −β )(|ϕ +δ |− |ϕ −δ |) (14)

where α , β and δ are positive parameters. The correspond-

ing memductance G′ can be described by Eq. (15).

G′ (ϕ) = β +0.5(α −β )[sgn(ϕ +δ )− sgn(ϕ −δ )]

=

{

α, |ϕ|< δ

β , |ϕ|> δ

(15)

Similar to the tri-value memristor, setting α=9, β=4, and

δ=1. Then the G′(ϕ) has two stable memductance 9S and

4S. Applying a sinusoidal signal v(t)=v0sin(ωt) to the mem-

ristor, and taking v0=4, ω=4, and the initial value ϕ(0)=-1.5.

The v-i curve and t-G′ curve can be obtained as shown in

Fig. 26.

5.2 Simulation and comparison

Next, we introduce the G′(ω) to replace the G(ω) in Eq. (8)

to obtain a new system as shown in Eq. (16).















ẋ = a(y− x)

ẏ = cy− xz

ż = xy−bz−dG′(w)

ẇ = z

(16)

where, the G′(ω) 6=0, which indicates that the system has no

equilibrium point.
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(a) (b) (c)

Fig. 24 Coexistent period attractors of the system on the x-z plane: (a) Period-1 with c=6.4, (b) Period-2 with c=6.3, (c) Period-4 with c=6.25
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Fig. 25 Coexistent chaotic attractors of the system on the x-z plane: (a) and (d) Chaotic with c=6.17, (b) and (e) Chaotic with c=2.4, (c) and (f)

Hyper-chaotic with c=-1.2
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Fig. 26 The characteristic curve of the binary-valued memristor

model: (a) v-i curve, (b) t-G′ curve

Setting the system parameters as a=12, b=-1, c=-1.2 and

d=50, and its initial values as [x0, y0, z0, w0]=[0.1, 0.1, 0.1,

0.1], the Lyapunov exponent are calculated as LE1=3.0002,

LE2=0.0456, LE3=-0.0234 and LE4=-15.2225, which indi-

cates that the system shows chaotic behavior, and has hidden

attractors as shown in Fig. 27.

Table 5 compares the simulation results of Eq. (8) and

Eq. (16). It can be seen that under the same system parame-

ters and initial conditions, both systems have hidden attrac-

tors. In addition, the system based on the tri-valued memris-

tor has the unique characteristics of hyper-chaos and coexis-

tence attractors, which indicates that the tri-valued memris-

tor has a great advantage in enhance the chaos complexity.

6 Hardware Implementation and Application

In this section, we implement the hardware circuit platform

of the 4D-HCS and apply it to design PRNG.
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Fig. 27 Phase diagram of the chaotic attractors: (a) x-y, (b) x-z, (c) x-w

Table 5 The results of comparison

Memristor System LE1 LE2 LE3 LE4 Hidden attractors Coexistent attractors Hyper-chaotic

Tri-valued Eq. (8) 2.4566 0.3086 -0.0064 -14.9588 True True True

Binary-valued Eq. (16) 3.0002 0.0456 -0.0234 -15.2225 True False False

6.1 Hardware Implementation of the 4D-HCS

To further verify the easy implementation of the 4D-HCS,

we use an improved modular circuit design scheme to con-

struct the hardware circuit of the system. In numerical sim-

ulation, the range of the system variables is much larger

than the linear dynamic range (±13.5V) of the operational

amplifier. Therefore, to avoid nonlinear distortion, the pro-

portional compression transformation and time scale trans-

formation must be performed first. For Eq. (8), let kx→x,

ky→y, kz→z, kw→w and t=τ0t, where k=50 and τ0=100.

Determine the parameters a=12, b=-1, c=-1.2 and d=50, the

final system can be described by the following equations:



































dx

dt
= 1200(y− x)

dy

dt
=−120y−5000xz

dz

dt
= 5000xy+100z−100G(50w)

dw

dt
= 100z

(17)

The design result of the modular hyper-chaotic circuit is

shown in Fig. 28, and the state equations of the circuit can

be described by:











































dx

dt
=−

1

R1C 1

x−
1

R2C 1

(−y)

dy

dt
=−

1

R4C 2

y−
1

10R3C 2

xz

dz

dt
=−

1

10R6C 3

x(−y)−
1

R5C 3

(−z)−
1

R9C 3

G(50w)

dw

dt
=−

1

R12C 4

(−z)

(18)

According to Eqs. (17) and (18), the parameters of the

circuit can be determined as: C1=C2=C3=C4=10nF, R1=R2=

83.3kΩ , R3=R6=2kΩ , R4=833kΩ , R5=R9=R12=1MΩ , R7 =

R8 = R10=R11=10kΩ . In addition, the operational amplifiers

TL084CN(U1-U6) and analogue multipliers AD633(A1-A2)

with ±15V power are used to construct the circuit.

Fig. 29 shows the physical hyper-chaotic circuit, and

Fig. 30 shows the experimental results. Comparing the ex-

perimental results with the simulation results in Fig. 7, we

can observe that the theoretical analysis is consistent with

the physical experiment. This further proves the reliability

of the 4D-HCS.

6.2 Application in pseudorandom number generator

To further investigate the complex dynamics behaviors of

the 4D-HCS, we further designed a PRNG to analyze the

performance of its hyper-chaotic sequences. First, set the pa-

rameters a=12, b=-1, c=-1.2 and d=50. For the initial values

x0, y0, z0 within [0.1, 1] along w0=0.1, we take an interval

0.1 to obtain 1000 combinations of initial values. Then gen-

erate hyper-chaotic sequences using the Runge-Kutta meth-

ods. The time length is set as 135s, and the step size is set

as 0.001. Remove the first 10000 numbers, and finally get

1000 sets of different hyper-chaotic sequences Xi, Yi, Zi, Wi

(i=1, 2, . . . , 1000), each of which has a length of 125000.

Next, a PRNG is designed to generate pseudorandom

numbers (PRNs) and it is defined as:















Xpi = mod(round(Xi ·104),256)

Ypi = mod(round(Yi ·104),256)

Zpi = mod(round(Zi ·104),256)

Wpi = mod(round(Wi ·104),256)

(19)
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Fig. 29 Physical hyper-chaotic circuit

where round(·) is rounding operation, mod(·, 256) represents

the remainder operation of 256, and the PRN sequences {Xpi,

Ypi, Zpi, Wpi} with a value range of 0 to 255 are obtained.

Each PRN is represented by an 8-bit stream. Therefore, a

pseudorandom binary stream of length 106 bits can be ob-

tained from each hyper-chaotic sequence.

A PRNG is expected to generate PRNs with high ran-

domness. Here, we use the National Institute of Standards

and Technology (NIST) SP800-22 test suit in [32] to test the

performance of the pseudorandom bitstreams generated by

the proposed PRGN. The NIST SP800-22 test includes 15

subtests. For each subtest, a P-value is generated and the

sequence is considered to pass the subtest if the P-value is

greater than the significance level α , which is usually set as

0.01.

Here, we choose the hyper-chaotic sequence sets X and

Z as two examples to generate two binary stream sets with

a sample size of 1000 and a sample length of 106, which

meet the test conditions described in [32]. The test results

are given in Table 6, where P-valueT represents the uniform

distribution of P-values, which is calculated as:

P−valueT = igamc(9/2,χ2/2) (20)

where igamc(·) is the incomplete gamma function and:

χ2=
10

∑
i=1

(Fi − s/10)2

s/10
(21)

where the range of P-value is evenly divided into 10 subin-

tervals, Fi represents the number of P-value in the ith subin-

terval, and s represents the sample size. If the obtained P-

valueT≥0.0001, the sequences can pass the corresponding

subtest. And the minimum pass proportions are approximately

0.980 for a sample size 1000.

The test results in Table 6 show that all P-valueT are

larger than 0.0001 and all pass proportion are larger than or

equal to the minimum pass rate of 0.980, indicating that the

obtained PRNs can pass all the 15 subtests. This indicates

that the proposed PRNG using the 4D-HCS can generate

a large number of PRNs with high randomness. Therefore,

the 4D-HCS system has potential application in the field of

cryptography.

7 Conclusion

This paper proposes a new 4D-HCS based on the tri-valued

memristor. First, the mathematical model of memristor is

analyzed and its equivalent circuit is verified. Then, the 4D-

HCS is constructed by introducing the memristor into an ex-

isting chaotic system. Stability analysis results show that the
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Fig. 30 Experimental results: (a) x-y plane, (b) x-z plane, (c) x-w plane

Table 6 NIST test results of linear congruence and hyperchaotic pseudorandom sequences

No. Test items

PRNs obtained by X PRNs obtained by Z

P-valueT Proportion P-valueT Proportion

01 Frequency 0.350485 0.987 0.767582 0.990

02 Block Frequency 0.071620 0.993 0.317565 0.991

03
Cumulative Sums (F) 0.488534 0.987 0.701366 0.992

Cumulative Sums (R) 0.705466 0.989 0.380407 0.989

04 Runs 0.861264 0.989 0.154629 0.987

05 Longest Run 0.296834 0.990 0.249284 0.996

06 Rank 0.572847 0.984 0.536163 0.987

07 FFT 0.522100 0.989 0.317565 0.987

08 Non-Overlapping Template * 0.119508 0.980 0.170922 0.983

09 Overlapping Template 0.419021 0.992 0.145326 0.994

10 Universal 0.496351 0.988 0.124476 0.981

11 Approximate Entropy 0.454053 0.997 0.887645 0.986

12 Random Excursions * 0.294973 0.982 0.218048 0.988

13 Random Excursions Variant * 0.472198 0.981 0.385257 0.983

14
Serial (1st sub-test) 0.260930 0.994 0.313041 0.991

Serial (2st sub-test) 0.880145 0.993 0.585209 0.992

15 Linear Complexity 0.322135 0.996 0.377007 0.987

* Non-overlapping template test, Random excursions test, and Random excursions variant

test are comprised of 148, 8, and 18 subtests, respectively. The result with the lowest pass

proportion of multiple subtests is reported.

4D-HCS has no equilibrium point and thus has hidden at-

tractors. The dynamic characteristics of the 4D-HCS are an-

alyzed in aspects of the Poincaré mapping, bifurcation dia-

gram, Lyapunov exponential spectrum and power spectrum.

The analysis results verify that the introduction of tri-valued

memristor can greatly enhance the chaos complexity of ex-

isting chaotic system. Besides, the characteristics of the co-

existent attractors of the 4D-HCS are analyzed, and the re-

sults proves that the 4D-HCS can show five types of coex-

istent attractors. Furthermore, we compared the simulation

results of the binary-valued memristor-based chaotic sys-

tem. The results show that the introduction of the tri-valued

memristor is beneficial to the system to produce more com-

plex characteristics. To show the easy implementation of the

4D-HCS, we build a physical circuit to implement the sys-

tem and the implementation results show the correctness of

the theoretical analysis. Finally, a PRNG is designed using

the 4D-HCS. Test results shows that the PRNG can generate

random numbers with high randomness. Therefore, the ap-

plication of such kind of memristive hyper-chaotic systems

in cryptography deserve to further explore in the future.
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