
This paper is included in the Proceedings of the 

2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the 

2017 USENIX Annual Technical Conference 

is sponsored by USENIX.

TRIAD: Creating Synergies Between Memory,  
Disk and Log in Log Structured Key-Value Stores

Oana Balmau, Diego Didona, Rachid Guerraoui, and Willy Zwaenepoel, EPFL;  

Huapeng Yuan, Aashray Arora, Karan Gupta, and Pavan Konka, Nutanix

https://www.usenix.org/conference/atc17/technical-sessions/presentation/blamau



TRIAD: Creating Synergies Between Memory, Disk and Log

in Log Structured Key-Value Stores

Oana Balmau
EPFL

Diego Didona
EPFL

Rachid Guerraoui
EPFL

Willy Zwaenepoel
EPFL

Huapeng Yuan
Nutanix

Aashray Arora
Nutanix

Karan Gupta
Nutanix

Pavan Konka
Nutanix

Abstract

We present TRIAD, a new persistent key-value (KV)
store based on Log-Structured Merge (LSM) trees.
TRIAD improves LSM KV throughput by reducing the
write amplification arising in the maintenance of the
LSM tree structure. Although occurring in the back-
ground, write amplification consumes significant CPU
and I/O resources. By reducing write amplification,
TRIAD allows these resources to be used instead to im-
prove user-facing throughput.

TRIAD uses a holistic combination of three tech-
niques. At the LSM memory component level, TRIAD
leverages skew in data popularity to avoid frequent I/O
operations on the most popular keys. At the storage
level, TRIAD amortizes management costs by deferring
and batching multiple I/O operations. At the commit log
level, TRIAD avoids duplicate writes to storage.

We implement TRIAD as an extension of Facebook’s
RocksDB and evaluate it with production and synthetic
workloads. With these workloads, TRIAD yields up to
193% improvement in throughput. It reduces write am-
plification by a factor of up to 4x, and decreases the
amount of I/O by an order of magnitude.

1 Introduction

Key-value (KV) stores [1, 3, 4, 12, 29, 35, 38, 39, 47] are
nowadays a widespread solution for handling large-scale
data in cloud-based applications. They have several ad-
vantages over traditional DBMSs, including simplicity,
scalability, and high throughput. KV store applications
include, among others, messaging [12, 18], online shop-
ping [25], search indexing [22] and advertising [12, 22].
At Nutanix, we use KV stores for storing the metadata
for our core enterprise platform, which serves thousands
of customers with petabytes of storage capacity [21].

KV store systems are available for workloads that fit
entirely in memory (e.g., Mica [36], Redis [3], and Mem-

cached [2]), as well as for workloads that require persis-
tent storage (e.g., LevelDB [4], RocksDB [12]). Log-
Structured Merge trees (LSMs) [41, 40] are a popular
design choice for the latter category. LSMs achieve high
write throughput at the expense of a small decrease in
read throughput. They are today employed in a wide
range of KV stores such as LevelDB [4], RocksDB [12],
Cassandra [1], cLSM [29], and bLSM [44].

Broadly speaking, LSMs are organized in two com-
ponents: a memory component and a disk component.
The memory component seeks to absorb updates. For
applications that do not tolerate data loss in the case of
failure, the updates may be temporarily backed up in a
commit log stored on disk. When the memory compo-
nent becomes full, it is flushed to persistent storage, and
a new one is installed. The disk component is organized
into levels, each level containing a number of sorted files,
called SSTables. The levels closer to the memory compo-
nent hold the fresher information. When level Li is full,
one or more selected files from level Li are compacted
into files at level Li+1, discarding stale values. This com-
paction operation occurs in the background.

Compaction and flushing are key operations, respon-
sible for maintaining the LSM structure and its proper-
ties. Unfortunately, they take up a significant amount of
the available resources. For instance, for our production
workloads at Nutanix, our measurements indicate that,
at peak times, compaction can consume up to 45% of the
CPU. Moreover, per cluster, an average of 2.5 hours per
day is spent on compaction operations for the maps stor-
ing the metadata. Clearly, compaction and flushing pose
an important performance challenge, even though they
occur outside the critical path of user-facing operations.

We propose three new complementary techniques to
close this gap. Our techniques reduce both the time and
space taken by the compaction and flushing operations,
leading to increased throughput. The first technique de-
creases compaction overhead for skewed workloads. We
keep KV pairs that are updated frequently (i.e., hot en-

USENIX Association 2017 USENIX Annual Technical Conference    363



tries) in the memory component, and we only flush the
cold entries. This separation eliminates frequent com-
pactions triggered by different versions of the same hot
entry. The main idea of the second technique is to defer
file compaction until the overlap between files becomes
large enough, so as to merge a high number of dupli-
cate keys. Finally, our third technique avoids flushing the
memory component altogether, by changing the role the
commit logs play in LSMs and using them in a manner
similar to SSTables.

Combined, our three techniques form TRIAD, a new
LSM KV store we build on top of RocksDB. We exten-
sively compare TRIAD against the original version of
RocksDB on various synthetic workloads, with a focus
on skewed workloads, as well as on Nutanix production
workloads. TRIAD achieves up to 193% higher through-
put than RocksDB. This improvement is the result of an
order of magnitude decrease in I/O due to compaction
and flushing, up to 4x lower write amplification and 77%
less time spent compacting and flushing, on average.

To summarize, this paper makes the following key
contributions: (1) the design of TRIAD, a system com-
bining three complementary techniques for reducing
compaction work in LSMs, each interesting in its own
right, (2) a publicly available implementation of TRIAD
as an extension of RocksDB, one of the most popular
state-of-the-art LSM KV stores, and (3) an evaluation of
its benefits in comparison to RocksDB.

Roadmap. The rest of the paper is structured as follows.
Section 2 gives an overview of the LSM tree. Section
3 presents the background I/O overheads in LSM KV
stores. Section 4 presents our three techniques for re-
ducing the impact of the compaction and flushing opera-
tions on performance. Section 5 describes our evaluation
results. Section 6 discusses related work. Section 7 con-
cludes the paper.

2 Background on LSM

We provide an overview of the LSM structure, its user-
facing operations and the flushing and compaction pro-
cesses that take place in the background.

LSM Structure. The high-level view of a typical
LSM-based KV store is shown in Figure 1. The system
has three main components, which we briefly describe.
▷Memory Component. The memory component Cm is

a sorted data structure residing in main memory. Its pur-
pose is to temporarily absorb the updates performed on
the KV store. The size of the memory component is typ-
ically small, ranging from a few MBs to tens of MBs.
When the memory component fills up, it is replaced by a
new, empty component. The old memory component is
then flushed as is to level 0 (L0) of the LSM disk compo-

L0

L1

...

Ln

Cm

read	

Cdisk

SSD

RAM

update	

Commit	Log	

Figure 1: High-level view of a typical LSM KV store.

nent. L0 is a special level of the disk component hierar-
chy, described below.
▷Disk Component. The disk component Cdisk is struc-

tured into multiple levels (L0, L1, . . . ), with increasing
sizes. Each level contains multiple sorted files, called
SSTables. The memory component Cm is flushed to the
first level, L0. Because of this, the SSTables in L0 have
overlapping key ranges. SSTables on levels Li (i ̸= 0)
have disjoint key ranges. The choice of the number of
levels in Cdisk is an interesting aspect of the LSM struc-
ture. From a correctness perspective, it would suffice to
have only two levels on disk: one to flush memory com-
ponents and one in which we compact. However, there
is an I/O disadvantage to this approach. When we merge
L0 SSTables into L1, we identify all the L1 SSTables that
have overlapping key ranges with the L0 SSTable that is
being compacted (the SSTables from L0 cover the entire
key range, because they are directly flushed from mem-
ory). If L1 files are large, then fewer files would have
overlapping key ranges, but we would have to re-write
large files, leading to overhead in the compaction work
and a penalty in terms of of memory use. If L1 files are
small, then a large number of files would have overlap-
ping key ranges with the L0 file. These files would need
to be opened and rewritten, creating large overhead in the
compaction work. The leveled structure allows LSMs
to amortize the compaction work, as the updates trickle
down the levels.
▷Commit Log. The commit log is a file residing on

disk. Its purpose is to temporarily log the updates that
are made to Cm (in small batches), if the application re-
quires that the data is not lost in case of a failure. All up-
dates performed on Cm are also appended to the commit
log. Typically, the size of the commit log is kept small in
order to provide fast recovery in case the operations need
to be replayed to recover from a failure. A typical value
for the size of the commit log is on the order of hundreds
of MB.

User-facing operations. The main user-facing oper-
ations in LSM-based KV stores are reads (Get(k)) and

364    2017 USENIX Annual Technical Conference USENIX Association



updates (Update(k,v)). Update(k,v) associates value v

to key k. Updates are absorbed in Cm and possibly
appended to the commit log. Hence, LSM KV stores
achieve high write throughput. Get(k) returns the most
recent value of k. As illustrated in Figure 1, the read first
goes to Cm; if k is not found in Cm, the read continues to
L0, checking all the files. If k is not found in L0, the read
goes to L1,. . . Ln, until k is found. Apart from L0, only
one file is checked for the rest of Cdisk’s levels, because
of the non-overlapping key ranges property.

Flushing. LSM KV stores have two main background
operations: flushing and compaction. Flushing is the op-
eration that writes Cm to L0, once Cm becomes full. In
case a commit log is used, the flush can also be triggered
by the commit log getting full, even if there is still room
in the memory component.

Compaction. Compaction is the background oper-
ation that merges files in disk component Li into files
with overlapping key ranges in disk component Li+1,
discarding older values in the process. Leveled com-
paction is a popular strategy for compaction in LSM KV
stores [5, 14]. When the size of Li exceeds its target size,
a file F in Li is picked and merged into the files from
Li+1 that have overlapping key ranges with F , in a way
similar to a merge sort. Therefore, in the case of lev-
eled LSM trees, each KV pair might be eventually prop-
agated down to the component on the last level. Hence,
some KV pairs could be rewritten once for every level
during compaction. RocksDB and TRIAD employ lev-
eled compaction. The techniques proposed by TRIAD
could, however, easily be adapted to size-tiered [22] ap-
proaches.

3 Motivation

Despite I/O operations not being in the critical path of
user-facing operations, flushing, logging and compaction
still consume computational resources. The amount of
CPU cycles spent to coordinate these operations trans-
lates into a commensurate amount of processing power
that cannot be used to serve the user-generated workload.
Hence, the frequency and the length of the I/O opera-
tions have a significant impact on the final performance
perceived by the user.

We provide experimental evidence of this claim by
measuring the extent of the performance reduction due to
I/O operations. We consider two workloads that exhibit
different levels of skew in the data popularity (skewed/u-
niform) and two read/write mixes (write dominated and
balanced).

We run these workloads on RocksDB and on a version
of RocksDB in which we disable background I/O opera-
tions (i.e., flushing and compaction; logging was enabled
for both experiments). We pin all of the system activity

0	

50	

100	

150	

200	

250	

300	

Uniform	

50r-50w	

Uniform	

10r-90w	

Skewed	

50r-50w	

Skewed	

10r-90w	

K
	O
p
e
ra
9
o
n
s/
s	

RocksDB			

RocksDB	No	BG	I/O	

Figure 2: Background I/O impact on throughput.

(i.e., 8 worker threads and all threads created by the KV
store) to 8 cores. The LSM structures of the two sys-
tems are pre-populated with an identical value for every
key accessed during the experiment. This ensures that
every read operation can be served, possibly by travers-
ing the on-disk LSM tree. In the RocksdDB version with
no background I/O, when a memory component is full,
we discard it instead of persisting it, serving requests
only from the pre-populated data store. We compare the
throughput achieved by the two systems and report it in
Figure 2. The plot shows that, for all workloads, back-
ground I/O represents a major performance bottleneck,
yielding up to a 3x in throughput loss with respect to the
ideal case.

Driven by these results, we investigate the causes that
trigger frequent and intensive I/O operations. We iden-
tify three main sources of expensive I/O operations, one
for each of the three main components of the LSM tree
architecture, namely (1) data-skew unawareness, at the
memory component level; (2) premature and iterative

compaction, at the LSM tree level; (3) duplicated writes

at the logging level.
1. Data skew unawareness. Many KV store work-

loads exhibit skewed data popularity, in which a few hot

keys have a much higher probability of being updated
than cold keys [16]. As we show in Section 5, some Nu-
tanix production workloads also exhibit similar skew.

Data skew causes the commit log to grow more rapidly
than Cm, because updates to the same keys are appended
to the log but absorbed in-place by Cm. This triggers fre-
quent flushes of Cm before it reaches its maximum size.
Not only does this increase the frequency of flushing, but
because the size of the flushed Cm is often smaller than
the maximum, the fixed cost of opening and storing a file
in L0 is not amortized by the actual writing of data in it.

Data skew also has a negative impact on the extent
of the compaction process. In fact, it is highly likely
that a copy of a hot key is present in many levels of the
LSM tree structure. This results in frequent compaction
operations that easily trickle down the LSM tree struc-
ture, causing long cascading compaction phases at Li that
likely result into spilling new data to Li+1.

USENIX Association 2017 USENIX Annual Technical Conference    365



Cm
cold 

hot 
CL

Move cold entries 
to SSTables

free

Keep hot KV pairs in new memtable and 
Write them in new commit log

SSTable
1

... SSTable
n

Figure 3: TRIAD-MEM: Before hot-cold key separation.

2. Premature and iterative compaction. Existing
LSM KV systems exhibit a two-fold limitation in the
compaction process. Some LSM KV stores keep only
one file in L0 to avoid looking up several SSTables in L0

when reading [5]. As a result, every time the memory
component is flushed, a compaction from L0 to the un-
derlying levels is triggered. This choice leads to frequent
compactions of the LSM tree.

Other LSM schemes [4, 12, 14] keep several files in
L0. This approach leads to the second limitation of exist-
ing LSM KV stores. The issue lies in how LSMs com-
pact L0 to L1 when several SSTables are present in L0.
In fact, files in L0 are compacted to higher levels one at
a time, resulting in several consecutive compaction oper-
ations. If two files in L0 share a common key, this key
is compacted twice in the underlying LSM tree. Data
skew exacerbates this problem, because it increases the
probability that multiple L0 files contain the same set of
hot keys. Clearly, the higher the load on the system, the
higher is the probability of this event happening.

This phenomenon can also arise in systems that keep a
single file in L0. Indeed, during the compaction, the sys-
tem continues serving user operations, thus potentially
triggering multiple flushes of the memory component to
L0. As a result, when a compaction finishes, it is possible
that multiple files reside in L0.

3. Duplicate writes. When Cm is flushed to L0, the
corresponding commit log is discarded because flushing
already ensures the durability of the data. Each KV pair
in the new file in L0, however, corresponds to the last
version of a key written in the memory component and,
hence, appended to the commit log. Therefore, when
flushing the memory component to disk in L0, the system
is actually replaying I/O that it has already performed
when populating the commit log.

4 TRIAD

We now provide a detailed description of TRIAD’s tech-
niques. The pseudocode for the main parts of TRIAD’s

Figure 4: TRIAD-MEM: After hot-cold key separation
and flush.

algorithms are shown in Algorithm 1 and Algorithm 2.
The approach we use to tackle the I/O overhead is three-
fold, each solution addressing one of the challenges high-
lighted in the previous section:
(1) TRIAD-MEM tackles the data skew unawareness

issue at the memory component level.
(2) TRIAD-DISK tackles the premature and iterative

compaction issue by judiciously choosing to defer
and batch compaction at the disk component level.

(3) TRIAD-LOG tackles the duplicated writes issue,
bypassing new file creation during flushes, at the
commit log level.

The three techniques complement each other and tar-
get the main components of LSM KV stores. Even if
they work best together, they are stand-alone techniques
and generally applicable to LSM-based KV stores.

4.1 TRIAD-MEM

The goal of TRIAD-MEM is to leverage the skew ex-
hibited by many workloads [16] to reduce flushing and,
hence, reduce the frequency of compactions. To this end,
TRIAD-MEM only flushes cold keys to disk, while keep-
ing hot keys in memory. This avoids the numerous com-
pactions triggered to ensure non-overlapping key ranges
in the LSM disk structure.

TRIAD-MEM separates entries that are updated often
(i.e., hot entries) from entries which are rarely updated
(i.e., cold entries) upon flushing Cm to L0. The hot en-
tries are kept in the new Cm and only the cold entries are
written to disk. This way, the hot entries are updated just
in-memory and do not trigger a high number of com-
pactions on disk. The hot-cold key separation during a
flush to L0 is shown in Figure 3 and Figure 4.

The separation between hot and cold keys is shown
in the separateKeys function in Algorithm 2. The top-K
entries of the old Cm are selected, where K is a param-
eter of the system. Ideally, K should be high enough to
accommodate all the hot keys, but low enough to avoid
a high memory overhead for Cm. Thus, properly set-
ting K requires some a priori knowledge about the work-
load. TRIAD, however, is designed to deliver high per-

366    2017 USENIX Annual Technical Conference USENIX Association



Algorithm 1 Update and Flush.
1: function UPDATE(Key k, Val v)
2: Entry e =mem.getEntry(k)
3: CommitLog log =getCommitLog()

4: if (e ̸= NULL) then

5: e.val = v; e.updates++
6: CLUpdateOffset(log,&e) ▷ Update CL name and offset in entry e

7: else

8: e = new Entry(k, v); e.updates = 1
9: CLUpdateOffset(log,&e) ▷ Update CL name and offset in entry e

10: mem.add(e)
11: end if

12: end function

13: function FLUSH(Memtable mem)
14: if (mem.getSize() < FLUSH_T H) then ▷ Do not flush if mem too small

15: CommitLog newLog = new CommitLog()
16: populateLog(nwLog, mem)
17: CommitLog log = getCommitLog()
18: setCurrentCommitLog(newLog)
19: discardCommigLog(log)
20: CLUpdateOffset(newLog, mem)
21: else

22: Memtable hotMem = new Memtable()
23: Memtable coldMem = new Memtable()
24: separateKeys(mem, hotMem, coldMem)
25: setCurrentMemtable(hotMem)
26: CommitLog log = getCommitLog()
27: CommitLog newLog = new CommitLog()

▷ Write back hotMem entries to the new log

28: populateLog(newLog, hotMem)
29: setCurrentCommitLog(newLog)

▷ Update hotMem with offsets from new CL

30: CLUpdateOffset(newLog, hotMem)
▷ Extract index corresponding to cold keys

31: CLIndex index = getKeysAndOffsets(coldMem)
▷ Flush only index and link it to old CL

32: flushToDisk(index, log)
33: end if

34: end function

formance with no information about the workload. In our
current implementation, K is a constant. We will show in
Section 5 that thanks to its holistic multi-level approach,
TRIAD is robust against settings of K that correspond to
not storing all the hot keys in memory. We are also cur-
rently investigating techniques to automatically set K de-
pending on the runtime workload, for example by means
of hill climbing [43].

The entries that are preserved in the new memory com-
ponent and not sent to disk are written to the commit log
associated to the new memory component, as shown in
Figure 3. This write-back is necessary in order to not lose
information. A final optimization when separating the
hot and cold keys is not flushing at all if Cm’s size is not
larger than a certain threshold (denoted FLUSH_T H in
Algorithm 1). Indeed, in the case of very skewed work-
loads, a flush might be triggered not because Cm is full,
but because the commit log becomes full. To avoid hav-
ing a large number of small files, we keep all entries in
memory, discard the old commit log, and create a new
commit log, with only the freshest values of Cm entries.

We experiment with several methods for hot-cold key
detection, including looking at mean and standard devi-
ation of the update frequencies, and selection according
to quantiles. Simply selecting as hot keys those keys that

Algorithm 2 Key Separation and Deferred Compaction.
1: function SEPARATEKEYS(Memtables mem, hotMem, coldMem)
2: int hotKeyCount = sizeof(Memtable) *

PERC_HOT / sizeof(Entry)
3: Entry[] hotKeys = getTopKHot(mem, hotKeyCount)
4: hotMem.add(hotKeys)
5: for k in hotMem do ▷ Reset hotness

6: k.hotness = 0; k.updates = 0
7: end for

8: coldMem = mem
9: coldMem.remove(hotKeys)

10: end function

11: function DEFERCOMPACTION(())
12: assert(level == 0)
13: int totalKeys = 0
14: HyperLogLog hllVect[]
15: FileMetaData levelFiles[]
16: levelFiles = getLevelFiles(0)
17: for f in levelFiles do

18: totalKeys+= f.hllKeysCount()
19: hllVect.pushBack(f.hllGet())
20: end for

21: int estimated = hhllMergedEstimate(hllVect)
22: double overlapRatio = 1 - (estimated / totalKeys)
23: boolean notEnoughOverlap = overlapRatio < OV ERLAP_RAT IO_T H

24: boolean notEnoughFiles = getLevelFiles(0).size()≤ MAX_FILES_L0
25: if notEnoughOverlap ∧ notEnoughFiles then

26: return true ▷ Defer compaction

27: end if

28: return false
29: end function

are updated with higher frequency than the average one
is effective in all workloads.

4.2 TRIAD-DISK

TRIAD-DISK acts at L0 of the LSM disk component. In
a nutshell, TRIAD-DISK delays compaction until there
is enough key overlap in the files that are being com-
pacted. To approximate the key overlap between files,
we use the HyperLogLog (HLL) probabilistic cardinal-
ity estimator [28, 30]. HLL is an algorithm that ap-
proximates the number of distinct elements in a multiset.
To compute the overlap between a set of files, we de-
fine a metric we call the overlap ratio. Assuming we
have n files on L0, the overlap ratio is defined as 1 -
(UniqueKeys( f ile1, f ile2, . . . f ilen)) / sum(Keys( f ilei)),
where Keys( f ilei) is the number of keys of the i-th
SSTable and UniqueKeys is the number of unique keys
after merging the n files. UniqueKeys and Key( f ilei) are
approximated using HLL.

Figure 5 shows an example of how the overlap ratio is
used to defer compaction. In the upper part of the fig-
ure, there is only one file on L0; the L0 file overlaps with
two files on L1. Since the overlap ratio is smaller than the
cutoff threshold in this case, compaction is deferred. The
lower part of the figure shows the system at a time when
L0 contains two files. The overlap ratio is computed be-
tween all the files in L0 and their respective overlapping
files on L1. The overlap ratio is higher than the threshold,

USENIX Association 2017 USENIX Annual Technical Conference    367



2, 15, 
19

Level 0 Level 1

1, 2, 
5, 10

11, 12,  
19, 20

23, 25, 
27, 29

overlapRatio = 1 – (9/11) = 0.18; defer compaction 

key-range overlap

2, 15, 
19

Level 0 Level 1

1, 2, 
5, 10

11, 12,  
19, 20

23, 25, 
27, 29

overlapRatio = 1 – (10/14) = 0.28; compact 

key-range overlap

1, 10, 
13

Overlap Ratio Threshold: 0.2

Overlap Ratio Threshold: 0.2

Figure 5: Overlap ratio example.

so compaction can proceed, by doing a multi-way merge
between all files in L0 and the overlapping files in L1.

The function deferCompaction in Algorithm 2 shows
the TRIAD-DISK pseudo-code. We associate an HLL
structure to each L0 file in the LSM disk component. Be-
fore each compaction in L0, we calculate the overlap ratio
of all files in L0. If the overlap ratio is below a threshold,
we defer the compaction, unless the number of files in L0

exceeds the maximum allowed number. If the maximum
number of files in L0 is reached, we proceed with the L0

to L1 compaction, regardless of the key overlap.
The use of HLL is not new in the context of LSM com-

paction. So far, however, the way HLL is used is to detect
which files have the most key overlap to be compacted
(for instance in systems such as Cassandra [1]). This
way, the highest number of duplicate keys is discarded
during compaction. RocksDB employs a similar idea,
where the estimation of the key overlap in files at Li and
Li+1 is based on the files’ key ranges and sizes. Our use
of HLL is different. Instead of employing HLL to de-
cide which files to compact, we are using HLL to decide
whether to compact L0 into L1 at the current moment, or
defer it to a later point in time. If the L0 and L1 SSTables
do not have enough key overlap, compaction is delayed
until more L0 SSTables are generated.

Current LSMs trigger the compaction of L0 into L1 as
soon as the number of files on L0 reaches a certain thresh-
old. The larger the threshold, the more files need to be
accessed in L0 by read operations, which increases read
latency. However, since the chance of a key being present
multiple files on L0 is low (otherwise, the large overlap
ratio would trigger compaction), TRIAD-DISK can tol-
erate more files in L0 without hurting read performance,
as we show in Section 5.

4.3 TRIAD-LOG

The main insight of TRIAD-LOG is that the data that is
written to memory and then persisted into L0 SSTables is

already written to disk, in the commit log. The general
idea of TRIAD-LOG is to transform CL into a special
type of L0 SSTable, a CL-SSTable. This way, flushing
from memory to L0 is avoided altogether.

TRIAD-LOG enhances the role played by the commit
log. As Cm is being written to, the commit log plays its
classic role. When flushing is triggered, instead of copy-
ing Cm to disk, we convert the commit log into a CL-
SSTable. As shown in Figure 6, instead of storing copies
of the memory components in L0, we store CL-SSTables.
For readability, we only depict the TRIAD-LOG tech-
nique, and not the integration with our two other tech-
niques.

The advantage of treating the commit logs as L0 SSTa-
bles is that the I/O due to flushing from memory is
avoided. However, unlike SSTables, the commit log is
not sorted. The sorted structure of the classic SSTables
makes it easy to merge SSTables during compaction and
to retrieve information from the files. To avoid scanning
the entire CL-SSTable in order to find an entry in L0 files,
we keep the commit log file offset of the most recent up-
date in Cm, for each KV pair. Once the flush operation is
triggered, only the small index associated to the offsets
in the commit log is written to disk. The index is then
grouped with its corresponding commit log file, thus cre-
ating the new L0 CL-SSTable format.

For instance, consider a commit log with entries of
size 8B, in the format (Key; Value): (1;10), (2;20),
(3;30), (4;40), (3;300). Then, in Cm, TRIAD-LOG keeps
the following entries, in the format (Key; Value; CL off-
set; CL name): (1; 10; 0; CL-name), (2; 20; 8; CL-
name), (3; 300; 32; CL-name), and (4; 40; 24; CL-
name). The CL offset is equal to 32 for Key 3, because
we keep the offset of the most recent update.

TRIAD-LOG offers the greatest benefits when the
workload is more uniform. For such workloads it is rel-
atively rare that the same key appears several times in
the log. The corresponding CL-SSTable therefore con-
tains the most recent values of many distinct keys, and
relatively few older values. For skewed workloads, in
contrast, the log typically contains multiple updates of
the same keys, and the corresponding CL-SSTable there-
fore stores a high number of old values that are no longer
relevant.

The flow of the write operation remains unchanged
by TRIAD-LOG. The writes are performed in Cm and
persisted in the commit log. The only difference is that
apart from the value associated to the key, the commit
log name and offset entries are updated as well. Simi-
larly, the read path is largely unchanged, except for ac-
cessing the files in L0. As before, the reads first look in
Cm, then in all of the L0 files, and then in one file for
each of the lower levels of the disk component. Unlike
before, when a file from L0 is read, the index is searched

368    2017 USENIX Annual Technical Conference USENIX Association



Cm CL
Offsets

L0

L1 – Ln

Flush only  CL offsets

SSTable
1

... SSTable
n

CL2
In

d
ex

  

CL-SSTable2
CL

Figure 6: TRIAD-LOG operation flow.

for the key, and, if found, the CL-SSTable is accessed at
the corresponding offset.

Compaction from L1 to Ln is unchanged, because no
modifications are done to the SSTable format on these
levels. Only the compaction between L0 and L1 is af-
fected by our technique. A new compaction opera-
tion is needed for merging a CL-SSTable with a regu-
lar SSTable. Since the index kept on the CL-SSTable is
sorted, it is still possible to proceed in a merge-sort style
manner. For clarity and brevity of the presentation, we
omit the pseudocode for merging SSTables.

It is straightforward to integrate TRIAD-LOG with
TRIAD-DISK, since TRIAD-DISK affects only the de-
cision to call compaction. The integration with TRIAD-
MEM is done by flushing only the part of the index corre-
sponding to the cold keys, ignoring the offsets of the hot
keys. Then, during compaction, the hot keys are skipped,
similarly to the duplicate updates.

TRIAD Memory Overhead Analysis. TRIAD re-
duces I/O by using additional metadata in memory.
TRIAD-MEM needs an update frequency (4B) field for
each memory component entry. For each (CL-)SSTable
on L0, TRIAD-DISK tracks the HLL structure (4KB per
file). TRIAD-LOG adds two new fields for each mem-
ory component entry: the commit log file ID (4B) and
the offset in the commit log (4B). Finally, TRIAD-LOG
keeps track of the offsets index (8B per entry) for each
CL-SSTable on L0. While the HLLs and offset indexes
could be stored on disk, this would incur a performance
penalty. Since the number of files on L0 is not large,
the memory overhead is not significant. Generally, less
than 10 files are kept on L0. Hence, an upper bound on
TRIAD’s memory overhead is: 12B ∗EntriesCm + 10 ∗
(4KB+EntriesCm ∗8B). In our tests, the memory over-
head is on the order of tens of MB, which is negligible
with respect to the tens of GB of I/O saved.

5 Evaluation

We implement TRIAD as an extension of Facebook’s
popular RocksDB LSM-based KV store. The source

code of our implementation is available at https://github
.com/epfl-labos/TRIAD. We evaluate TRIAD with produc-
tion and synthetic workloads, and we compare it against
RocksDB. We show that:
(1) TRIAD achieves up to 193% higher throughput in

production workloads.
(2) TRIAD effectively reduces I/O by an order of mag-

nitude and spends, on average, 77% less time per-
forming flushing and compaction.

(3) TRIAD’s three techniques work in synergy and en-
able the system to achieve high throughput without
a priori information about the workload (e.g., skew
on data popularity or write intensity).

5.1 Experimental Setup

We compare TRIAD against RocksDB. Unless stated
otherwise, RocksDB is configured to run with its de-
fault parameters, and we do not change the correspond-
ing values in the TRIAD implementation. TRIAD uses
an overlap threshold of 0.4 and a maximum number of
6 L0 files for TRIAD-DISK. In addition, we configure
TRIAD-MEM such that its definition of hot keys corre-
sponds to the top 1 percent of keys in terms of access
frequency.

To evaluate TRIAD, we use four production work-
loads from Nutanix (see Section 5.2). We complement
our evaluation with synthetic benchmarks that allow us
to control key parameters of the workload, such as skew
and write intensity (see Section 5.3). The evaluation is
performed on a 20 core Intel Xeon, with two 10-core 2.8
GHz processors, 256 GB of RAM, 960GB SSD Samsung
843T, running Ubuntu 14.04.

Each synthetic benchmark experiment consists of a
number of threads concurrently performing operations
on the KV store – searching, inserting or deleting keys.
Each operation is chosen at random, according to the
given workload probability distribution, and performed
on a key chosen according to the given workload skew
distribution. Before each experiment, the LSM tree is
initialized with roughly half of the keys in the key range.

We use as evaluation metrics throughput measured in
KOperations/second (KOPS), bytes written to disk, time
spent in background operations (i.e., compaction and
flushing), write amplification (WA), and read amplifica-
tion (RA). WA and RA are established metrics for mea-
suring I/O LSM KV store efficiency [4, 12, 32, 34, 35,
38, 48]. WA is the amount of data written to storage com-
pared to the amount of data that the application writes.
Intuitively, the lower the WA, the less work is done
during compaction. We compute system-wide WA as:
WA = (Bytes f lushed + Bytescompacted)/Bytes f lushed . RA
is the average number of disk accesses per read.

USENIX Association 2017 USENIX Annual Technical Conference    369

https://github.com/epfl-labos/TRIAD
https://github.com/epfl-labos/TRIAD


1e
-8

1e
-7

1e
-6

1e
-5

0 1M 2M 3M 4MA
c
c
e
s
s
 p

ro
b
a
b
ili

ty
 (

lo
g
)

Key id by decreasing popularity

Workload 3
Workload 4

Workload 1
Workload 2

Figure 7: Production workloads key probability distribu-
tions (Logarithmic scale on y axis).

Wkld.	1	 Wkld.	2	 Wkld.	3		 Wkld.	4	

Updates	 250M	 75M	 200M	 75M	

Keys	 40M	 9M	 30M	 8M	

Figure 8: Production workloads: number of updates and
number of keys.

5.2 Production Workloads

The production workloads used for the evaluation of
TRIAD are internal Nutanix metadata workloads. The
key probability distributions of the workloads are shown
in Figure 7. The data sizes and number of updates are
shown in Figure 8. The production workloads have two
different skew profiles: W2 and W4 have more skew in
their access patterns, W1 and W3 have less skew.

The left-hand side of Figure 9A presents the through-
put comparison between RocksDB and TRIAD, for
the four production workloads. TRIAD outperforms
RocksDB in the four workloads, with a throughput in-
crease of up to 193%. The right-hand side of Figure 9A
shows the corresponding WA for each of the workloads.
TRIAD reduces WA by up to 4x.

As expected [34], in RocksDB the WA is higher for
the less skewed workloads (W1 and W3) and lower for
the more skewed workloads (W2 and W4). There is also
a clear correlation between the throughput and the WA:
throughput is lower in the workloads with higher WA.

For TRIAD WA is uniform across the four workloads,
because TRIAD-MEM converts the skew of the applica-
tion workload into a disk workload that is closer to uni-
form. Hence, the workload skew perceived by the disk
component is more or less the same across the four work-
loads, leading, in turn, to more predictable throughput.
In contrast with RocksDB, TRIAD’s throughput does not
exhibit high fluctuation across workloads. We explore
this connection between throughput and WA further in
the next section.

5.3 Synthetic Workloads

We define three workload skew profiles: (WS1) A highly
skewed workload where 1% of the data is accessed and
updated 99% of the time. This workload reflects the
characteristics of Facebook workloads analyzed in [16].
(WS2) A medium skew workload, where 20% of the data
is accessed and updated 80% of the time. (WS3) A uni-
form workload where all keys have the same popularity.

We use two different read-write ratios: one with 10%
reads and 90% writes, and one with 50% reads and 50%
writes. In all experiments, each key is 8B and each value
is 255B. To shorten our experiments with the synthetic
workloads, we use a small memory component of 4MB
and a dataset of 1M keys, so that compactions happen at
shorter time intervals.

Figure 9B shows the throughput comparison between
TRIAD and RocksDB for the three workload skews
and two read-write ratios. Figure 9C shows the corre-
sponding WA. TRIAD performs up to 2.5x better than
RocksDB for the skewed workloads and up to 2.2x bet-
ter for the uniform workloads.

For WS1 all the hot data fits in memory, allowing
TRIAD to achieve a throughput increase of 50% for
both the write-intensive and the balanced workloads. For
WS2, TRIAD-MEM cannot accommodate all the hot
keys. Nevertheless, TRIAD still achieves a throughput
gain of 51% in the write-intensive workload and 25%
in the balanced workload, because TRIAD-DISK and
TRIAD-LOG act as a safety net against possible un-
dersizing of the data structure tracking hot keys (Sec-
tion 4.1), due to lack of detailed knowledge of the work-
load characteristics. This result showcases the robustness
of TRIAD: It consistently delivers high performance, de-
spite not having any prior knowledge of the incoming
workload.

WA is decreased by up to 4x in the moderately skewed
and uniform workloads. For the highly skewed work-
load, however, the WA does not change, despite the gain
in throughput. This happens because the 1% of the data
that is updated 99% of the time fits entirely in memory.
As a consequence, Cm is only rarely flushed (as we ex-
plain in Section 4), because it takes longer for enough
cold entries to be present in Cm to trigger a flush. There-
fore, even if the total number of bytes is decreased by
an order of magnitude, as Figure 9D shows on the left-
hand side, the proportion between the compacted bytes
and flushed bytes is similar to RocksDB.

Finally, the right-hand side of Figure 9D shows the
time spent in compaction. For the highly skewed work-
load, the time spent in compaction in TRIAD is an or-
der of magnitude lower than RocksDB, for the same rea-
son as explained above. For the moderately skewed and

370    2017 USENIX Annual Technical Conference USENIX Association



0	

50	

100	

150	

200	

250	

300	

350	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

K
O
P
S
	

RocksDB	 LoWA	

0	

2	

4	

6	

8	

10	

Prod	Wkld	1	 Prod	Wkld	2	 Prod	Wkld	3	 Prod	Wkld	4	

W
ri
te
	A
m
p
li
fi
ca
9
o
n
	

RocksDB	 LoWA	TRIAD	TRIAD	

0	

200	

400	

600	

800	

1	 2	 4	 8	 12	 16	

K
O
P
S
	

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	

K
O
P
S
	

0	

50	

100	

150	

200	

1	 2	 4	 8	 12	 16	

K
O
P
S
	

0	

50	

100	

150	

200	

250	

300	

1	 2	 4	 8	 12	 16	

K
O
P
S
	

0	

50	

100	

150	

200	

250	

300	

1	 2	 4	 8	 12	 16	

K
O
P
S
	

0	

100	

200	

300	

400	

1	 2	 4	 8	 12	 16	
K
O
P
S
	

threads	 threads	 threads	

1%-99%	Data	Skew	 20%-80%	Data	Skew	 No	Data	Skew	

10%	read	

90%	write	

WKLD	

50%	read	

50%	write	

WKLD	

LoWA	LSM		

RocksDB		

LoWA	LSM		

RocksDB		

LoWA	LSM	TRIAD	

RocksDB		RocksDB	

LoWA	LSTRIAD	

RocksDB		RocksDB	

threads	

threads	 threads	 threads	

1%-99%	Data	Skew	 20%-80%	Data	Skew	 No	Data	Skew	

10%	read	

90%	write	

WKLD	

50%	read	

50%	write	

WKLD	

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

0	

2	

4	

6	

8	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

0	

2	

4	

6	

8	

10	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

0	

5	

10	

15	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

0	

2	

4	

6	

8	

10	

12	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

0	

5	

10	

15	

20	

1	 2	 4	 8	 12	 16	

W
ri
te
	A
m
p
li
fi
ca
4
o
n
	

LoWA	LSM		

RocksDB		

LoWA	LSM		

RocksDB		

LoWA	LSTRIAD	

RocksDB		RocksDB	

LoWA	LSTRIAD	

RocksDB		RocksDB	

C
o
m
p
a
ct
e
d
	G
B
	

0.1	

1	

10	

100	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

LoWA	 RocksDB	TRIAD	

0	

20	

40	

60	

80	

100	

120	

Skew	1%-99%	 Skew	20%-80%		 No	Skew	

%
T
im

e
	S
p
e
n
t	

	i
n
	C
o
m
p
a
c:
o
n
	

LoWA	 RocksDB	TRIAD	

A.	Produc*on	workload	throughput	and	corresponding	WA.	8	threads.		

B.	Throughput	comparison	for	different	workloads	and	skews	(higher	is	be@er).	

C.	Write	amplifica*on	comparison	for	different	workloads	and	skews	(lower	is	be@er).	

D.	LeF:	Compacted	GB	(Logarithmic	scale).	Right:	Percentage	of	*me	spent	in	compac*on.		

8	threads,	10%reads	–	90%writes.	

Figure 9: TRIAD in production and synthetic workloads.

USENIX Association 2017 USENIX Annual Technical Conference    371



0	

50	

100	

150	

200	

250	

300	

Skew	Awareness	

Only	

Deferred	

Compac;on	Only	

Commit	Log	

Indexing	Only	

RocksDB	

K
O
P
S
	

No	Skew	

TRIAD-MEM TRIAD-DISK TRIAD-LOG RocksDB

250	

260	

270	

280	

290	

300	

310	

320	

330	

Skew	Awareness	

Only	

Deferred	

Compac?on	Only	

Commit	Log	

Indexing	Only	

RocksDB	

K
O
P
S
	

Skew	1-99	

TRIAD-MEM TRIAD-DISK TRIAD-LOG RocksDB

No	Skew	

Skew	1-99	
TRIAD

TRIAD

Figure 10: Throughput breakdown for uniform and skewed workloads. 16 threads.

uniform workloads, the time spent in compaction is de-
creased by 48% and 72%, respectively.

5.4 Breakdown of TRIAD’s Benefits

We discuss the contribution of each of TRIAD’s tech-
niques, for different types of workloads, reporting the
throughput achieved by versions of TRIAD where we
only implement one out of the three techniques.

Figure 10 shows the throughput breakdown for each
of the techniques, for synthetic workloads WS3 (left-
hand side) and WS1 (right-hand side), with a 10%–90%
read–write ratio. While all three techniques outperform
RocksDB individually, TRIAD-MEM brings more bene-
fits than TRIAD-DISK and TRIAD-LOG for the highly
skewed workload, and vice-versa for the uniform work-
load. Indeed, TRIAD-MEM alone obtains 97% of the
throughput that TRIAD achieves for the skewed work-
load. For the uniform workload, TRIAD-DISK and
TRIAD-LOG obtain 85% and 97%, respectively.

A similar trend can be noticed in the WA breakdown
in Figure 11. TRIAD-MEM performs best for WS1, but
does not decrease WA as the workload is closer to uni-
form, having close to no effect compared to RocksDB
for the workload with no skew (right-most column).
TRIAD-DISK and TRIAD-LOG are complementary to
TRIAD-MEM, decreasing WA by up to 60% and 40%,
respectively, for the uniform workload.

The lower-right plot in Figure 11 shows the RA break-
down for a uniform workload, with 10% reads. As ex-
pected, TRIAD-MEM lowers RA, because more requests
can be served from memory. TRIAD-DISK, however,
increases RA compared to the baseline, as it keeps more
files in L0, and all these files may have to be accessed on
a read. TRIAD-LOG does not have an impact on read
amplification. Overall, TRIAD has a low overhead over
the baseline, increasing RA by at most 5%.

The breakdown shows tat the three techniques are
complementary: no one alone gives 100% of the ben-
efits across all workload types. Their combination al-
lows TRIAD to achieve high performance for any work-
load, automatically adapting to its characteristics without
a priori knowledge.

6 Related Work

Our work is related to previous designs of LSM-based
KV stores and to various systems that employ optimiza-
tion techniques similar to the ones integrated in TRIAD.
Related LSM-based KV stores. LevelDB [4] is one
of the earliest LSM-based KV stores and employs level-
style compaction. Its single-threaded compaction, along
with the use of a global lock for synchronization at the
memory component level are two of its main bottle-
necks. RocksDB [12] introduces multi-threaded com-
paction and tackles other concurrency issues. LevelDB
and RocksDB expose several tuning knobs, such as the
number and the sizing of levels, and policies for com-
paction [13, 14, 27]. Recent studies, simulations and an-
alytical models show that the efficiency of LSM-based
KV stores is highly dependent on their proper setting,
as well as workload parameters [34, 26] and require-
ments like memory budget [24]. In contrast, TRIAD
presents techniques that cover a large spectrum of work-
loads. Thanks to its holistic approach, TRIAD is able
to deliver high performance without relying on a priori

information about the workload.
bLSM [44] proposes carefully scheduling compaction

to bound write latency. VT-tree [45] uses an extra layer
of indirection to avoid sorting any previously sorted KV
pairs during compaction. HyperlevelDB [9] also ad-
dresses the write and compaction issues in LevelDB,
through improved parallelism and an alternative com-
paction algorithm [7, 8]. HyperLevelDB’s compaction
chooses a set of SSTables which result in the lowest WA
between two levels. TRIAD takes a different approach
to prevent the occurrence of high WA, by using HLL to
decide whether to compact or not at the first level of the
disk component.

LSM-trie [47] proposes a compaction scheme based
on the use of cryptographic functions. This scheme gives
up the sorted order of the entries in the LSM tree to
favor compaction efficiency over performance in range
queries. TRIAD instead preserves the sorted order of the
keys, facilitating support for efficient range queries.

WiscKey [37] separates keys from values and only
stores keys in a sorted LSM tree, allowing it to reduce

372    2017 USENIX Annual Technical Conference USENIX Association



3

3.2

3.4

3.6

3.8

TRIAD-MEM TRIAD-DISK TRIAD-LOG TRIAD RocksDB

R
e
a
d
	A
m
p
li
fi
c
a
ti
o
n

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
o
rm

a
li
ze
d
	W

A
	

RocksDB	 Commit	Log	Indexing	TRIAD-LOG	

1%	data

99%	time

10%	data

90%	time

20%	data

80%	time
No	skew

N
o
r
m
a
li
z
e
d
	W

A

TRIAD-LOGRocksDB

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
o
r
m
a
li
z
e
d
	W

A
	

RocksDB	 Skew	Awareness	TRIAD-MEM	

1%	data

99%	time

10%	data

90%	time

20%	data

80%	time
No	skew

N
o
r
m
a
li
z
e
d
	W

A

TRIAD-MEMRocksDB

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1%		data	-	99%	/me	 10%		data	-	90%	/me		 20%		data	-	80%	/me	 no	skew	

N
o
rm

a
li
ze
d
	W

A
	

RocksDB	 Deferred	Compac/on	TRIAD-DISK	

1%	data

99%	time

10%	data

90%	time

20%	data

80%	time
No	skew

N
o
r
m
a
li
z
e
d
	W

A

RocksDB TRIAD-DISK

Figure 11: Write Amplification and Read Amplification Breakdown. 8 threads.

data movement, and consequently reduce write amplifi-
cation. The techniques proposed in TRIAD are orthogo-
nal to this approach, and can be leveraged in synergy to
it to further enhance I/O efficiency.

Cassandra [1], HBase [11] and BigTable [22] are dis-
tributed LSM KV stores, employing size-tiered com-
paction. In addition, Cassandra also supports the leveled
compaction strategy, based on LevelDB’s compaction
scheme [5, 6]. For both compaction strategies, Cassandra
introduced HyperLogLog (HLL) to estimate the over-
lap between SSTables, before starting the merge [10].
TRIAD also makes use of HLL in its deferred com-
paction scheme. However, instead of using HLL to de-
termine which files to compact, the overlap between files
computed with HLL is used only at L0, to determine
whether we should compact or wait.

Ahmad and Kemme [15] also target a distributed KV
store and propose to offload the compaction phase to ded-
icated servers. In contrast, the techniques proposed in
TRIAD are applied within each single KV store instance
and do not need dedicated resources to be implemented.

Tucana [42], LOCS [46] and FloDB [17] act on other
aspects of the KV store design to improve performance.
Tucana uses an internal structure similar to a B − ε

tree [20] and uses copy-on-write instead of write-ahead
logging. LOCS exploits the knowledge of the underlying
SSD multi-channel architecture to improve performance,
e.g., by load balancing I/O. FloDB inserts an additional
fast in-memory buffer on top of the existing in-memory
component of the LSM tree to achieve better scalability.
TRIAD can integrate some of these features to further
improve its performance.
Systems with similar optimization techniques. The
hot-cold separation technique is employed in SSDs to
improve the efficiency of the garbage collection needed
by the Flash Translation Layer [23, 33]. In TRIAD, in-
stead, it is used at the KV store level to reduce the amount
of data written to disk.

Delaying and batching the execution of updates is used
in B − ε trees and in systems, e.g., file-systems [31],
which use B− ε trees as main building block. This tech-
nique is employed to amortize the cost of updates [19]
and to reduce the cases in which the effect of an update
is immediately undone by a following update [49]. By
contrast, TRIAD defers the compaction of the L0 level
of the LSM tree and batches the compaction of multiple
keys to increase the efficiency of the compaction process.

7 Conclusion

TRIAD is a new LSM KV store aiming to reduce back-
ground I/O operations to disk. TRIAD embraces a holis-
tic approach that operates at different levels of the LSM
KV store architecture. TRIAD increases I/O efficiency
by incorporating data skew awareness, by improving the
compaction process of the LSM tree data structure and
by performing more efficient logging.

We compared TRIAD with Facebook’s RocksDB and
we showed, using production and synthetic workloads,
that TRIAD achieves up to an order of magnitude lower
I/O overhead and up to 193% higher throughput.

Acknowledgements. We would like to thank our shep-
herd, Liuba Shrira, the anonymous reviewers and Dmitri
Bronnikov, Rishi Bhardwaj, Ashvin Goel, and Amitabha
Roy for their feedback that helped us to improve the pa-
per. This work was supported in part by the Swiss Na-
tional Science Foundation through grant No. 166306 and
by a gift from Nutanix, Inc. Part of the work has been
done while Oana Balmau was an intern at Nutanix.

References

[1] Apache Cassandra. http://cassandra.apache.org.

[2] Memcached, an open source, high-performance, distributed
memory object caching system. https://memcached.org/.

USENIX Association 2017 USENIX Annual Technical Conference    373

http://cassandra.apache.org
https://memcached.org/


[3] Redis, an open source, in-memory data structure store. https:

//redis.io/.

[4] LevelDB, a fast and lightweight key/value database library by
Google, 2005. https://github.com/google/leveldb.

[5] Leveled Compaction in Apache Cassandra, 2011.
http://www.datastax.com/dev/blog/leveled-compact

ion-in-apache-cassandra.

[6] When to Use Leveled Compaction, 2012. http://www.datast

ax.com/dev/blog/when-to-use-leveled-compaction.

[7] Hyperleveldb performance benchmarks., 2013. http://hyperd

ex.org/performance/leveldb/.

[8] Inside hyperleveldb., 2013. http://hackingdistributed.com

/2013/06/17/hyperleveldb/.

[9] HyperLevelDB, a fork of LevelDB intended to meet the needs
of HyperDex while remaining compatible with LevelDB., 2014.
https://github.com/rescrv/HyperLevelDB.

[10] Improving compaction in Cassandra with cardinality estimation,
2014. http://www.datastax.com/dev/blog/improving-com

paction-in-cassandra-with-cardinality-estimation.

[11] Apache HBase, a distributed, scalable, big data store, 2016. ht

tp://hbase.apache.org/.

[12] RocksDB, a persistent key-value store for fast storage environ-
ments, 2016. http://rocksdb.org/.

[13] RocksDB options of compaction priority, 2016. http://rocksd
b.org/blog/2016/01/29/compaction_pri.html.

[14] RocksDB tuning guide, 2016. https://github.com/faceboo

k/rocksdb/wiki/RocksDB-Tuning-Guide.

[15] AHMAD, M. Y., AND KEMME, B. Compaction management in
distributed key-value datastores. Proc. VLDB Endow. 8, 8 (Apr.
2015), 850–861.

[16] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND

PALECZNY, M. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review

(2012), vol. 40.

[17] BALMAU, O., GUERRAOUI, R., TRIGONAKIS, V., AND

ZABLOTCHI, I. Flodb: Unlocking memory in persistent key-
value stores. In Proceedings of the Twelfth European Conference

on Computer Systems (New York, NY, USA, 2017), EuroSys ’17,
ACM, pp. 80–94.

[18] BĂSESCU, C., CACHIN, C., EYAL, I., HAAS, R., SORNIOTTI,
A., VUKOLIĆ, M., AND ZACHEVSKY, I. Robust data sharing
with key-value stores. DSN 2012.

[19] BENDER, M. A., FARACH-COLTON, M., JANNEN, W., JOHN-
SON, R., KUSZMAUL, C., B., PORTER, D. E., YUAN, J., AND

ZHAN, Y. An introduction to bε-trees and write-optimization.
login 40, 5 (Oct. 2015).

[20] BRODAL, G. S., AND FAGERBERG, R. Lower bounds for exter-
nal memory dictionaries. In Proceedings of the Fourteenth An-

nual ACM-SIAM Symposium on Discrete Algorithms (Philadel-
phia, PA, USA, 2003), SODA ’03, Society for Industrial and Ap-
plied Mathematics, pp. 546–554.

[21] CANO, I., AIYAR, S., AND KRISHNAMURTHY, A. Characteriz-
ing private clouds: A large-scale empirical analysis of enterprise
clusters. SOCC 2016.

[22] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. ACM Transactions on Computer Systems 26, 2 (2008).

[23] CHANG, L.-P. On efficient wear leveling for large-scale flash-
memory storage systems. In Proceedings of the 2007 ACM Sym-

posium on Applied Computing (New York, NY, USA, 2007), SAC
’07, ACM, pp. 1126–1130.

[24] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S. Monkey:
Optimal navigable key-value store. In Proceedings of the 2017

ACM International Conference on Management of Data (New
York, NY, USA, 2017), SIGMOD ’17, ACM, pp. 79–94.

[25] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. SOSP 2007.

[26] DONG, S., CALLAGHAN, M., GALANIS, L., BORTHAKUR, D.,
SAVOR, T., AND STRUM, M. Optimizing space amplification
in rocksdb. In CIDR 2017, 8th Biennial Conference on Innova-

tive Data Systems Research, Chaminade, CA, USA, January 8-11,

2017, Online Proceedings (2017).

[27] DONG, S., CALLAGHAN, M., GALANIS, L., BORTHAKUR, D.,
SAVOR, T., AND STUMM, M. Optimizing space amplification in
rocksdb.

[28] FUSY, É., OLIVIER, G., AND MEUNIER, F. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. AofA
2007.

[29] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL, E., AND KEI-
DAR, I. Scaling concurrent log-structured data stores. Eurosys
2015.

[30] HEULE, S., NUNKESSER, M., AND HALL, A. Hyperloglog in
practice: algorithmic engineering of a state of the art cardinality
estimation algorithm. ICDT 2013.

[31] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA, A., ESMET,
J., JIAO, Y., MITTAL, A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., KUSZ-
MAUL, B. C., AND PORTER, D. E. Betrfs: Write-optimization
in a kernel file system. Trans. Storage 11, 4 (Nov. 2015), 18:1–
18:29.

[32] KUSZMAUL, B. A comparison of fractal trees to log-structured
merge (lsm) trees. White Paper (2014).

[33] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND ARVIND, A.
Application-managed flash. In Proceedings of the 14th Usenix

Conference on File and Storage Technologies (Berkeley, CA,
USA, 2016), FAST’16, USENIX Association, pp. 339–353.

[34] LIM, H., ANDERSEN, D. G., AND KAMINSKY, M. Towards
accurate and fast evaluation of multi-stage log-structured designs.
FAST 2016.

[35] LIM, H., FAN, B., ANDERSEN, D. G., AND KAMINSKY,
M. Silt: A memory-efficient, high-performance key-value store.
SOSP 2011.

[36] LIM, H., HAN, D., ANDERSEN, D. G., AND KAMINSKY, M.
MICA: A holistic approach to fast in-memory key-value storage.
management 15, 32 (2014).

[37] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Wisckey: Separating keys from val-
ues in ssd-conscious storage. FAST 2016.

[38] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., AND

RANGASWAMI, R. Nvmkv: A scalable, lightweight, ftl-aware
key-value store. USENIX ATC 2015.

[39] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RAN-
GASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND

GANESAN, S. Nvmkv: A scalable and lightweight flash aware
key-value store. HotStorage 2014.

[40] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4
(1996).

[41] OUSTERHOUT, J., AND DOUGLIS, F. Beating the I/O bottle-
neck: A case for log-structured file systems. ACM SIGOPS Op-

erating Systems Review 23, 1 (1989).

374    2017 USENIX Annual Technical Conference USENIX Association

https://redis.io/
https://redis.io/
https://github.com/google/leveldb
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://hyperdex.org/performance/leveldb/
http://hyperdex.org/performance/leveldb/
http://hackingdistributed.com/2013/06/17/hyperleveldb/
http://hackingdistributed.com/2013/06/17/hyperleveldb/
https://github.com/rescrv/HyperLevelDB
http://www.datastax.com/dev/blog/improving-compaction-in-cassandra-with-cardinality-estimation
http://www.datastax.com/dev/blog/improving-compaction-in-cassandra-with-cardinality-estimation
http://hbase.apache.org/
http://hbase.apache.org/
http://rocksdb.org/
http://rocksdb.org/blog/2016/01/29/compaction_pri.html
http://rocksdb.org/blog/2016/01/29/compaction_pri.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide


[42] PAPAGIANNIS, A., SALOUSTROS, G., GONZÁLEZ-FÉREZ, P.,
AND BILAS, A. Tucana: Design and implementation of a fast
and efficient scale-up key-value store. In Proceedings of the

2016 USENIX Conference on Usenix Annual Technical Confer-

ence (Berkeley, CA, USA, 2016), USENIX ATC ’16, USENIX
Association, pp. 537–550.

[43] RUSSELL, S., AND NORVIG, P. Artificial intelligence: a modern
approach (2nd edition).

[44] SEARS, R., AND RAMAKRISHNAN, R. bLSM: a general purpose
log structured merge tree. SIGMOD/PODS 2012, ACM.

[45] SHETTY, P., SPILLANE, R., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent
storage with vt-trees. FAST 2013.

[46] WANG, P., SUN, G., JIANG, S., OUYANG, J., LIN, S., ZHANG,
C., AND CONG, J. An efficient design and implementation of
lsm-tree based key-value store on open-channel ssd. In Pro-

ceedings of the Ninth European Conference on Computer Sys-

tems (New York, NY, USA, 2014), EuroSys ’14, ACM, pp. 16:1–
16:14.

[47] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie: An
LSM-tree-based ultra-large key-value store for small data items.
USENIX ATC 2015.

[48] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., AND

SUNDARARAMAN, S. Don’t stack your log on my log. INFLOW
2014.

[49] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P., AKSHINTALA,
A., CHANDNANI, K., DEO, P., KASHEFF, Z., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M., JOHNSON, R., KUSZ-
MAUL, B. C., AND PORTER, D. E. Optimizing every opera-
tion in a write-optimized file system. In Proceedings of the 14th

Usenix Conference on File and Storage Technologies (Berkeley,
CA, USA, 2016), FAST’16, USENIX Association, pp. 1–14.

USENIX Association 2017 USENIX Annual Technical Conference    375




