Al Magazine Volume 10 Number 3 (1989) (© AAAI)

Articles

Sandin the Design Re

Al MAGAZINE

_ o ' 0
- Trial by Fire:
| C
ents for Agents in Complex Environments
Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe

The Phoenix
Research Agenda

The Phoenix project is directed by
three complementary goals. First,
there are immediate technical aims: a
real-time, adaptive planner for con-
trolling simulated forest fires;

FALL 1989 33

Articles

Figure 1. A Portion of Yellowstone
National Park as Viewed within the
Phoenix Simulator.

This figure shows a small fraction
(about 7 km by 8 km) of the entire 75-
km-square map. The northern tip of Yel-
lowstone Lake is at the bottom of the
screen. Thin black lines represent eleva-
tion contours, slightly wider lines repre-
sent roads, and the widest lines represent
the fireline cut by bulldozers. Blue lines
represent rivers and streams. The blue B
in the bottom left corner marks the loca-
tion of the fireboss, the agent that directs
all the others. The white icons represent
buildings. Shades of green represent dif-
ferent vegetation, and shades of red rep-
resent different fire intensities.

toward goals; and distributed
planning algorithms. Second,
there are motivating issues, of
which the foremost is to under-
stand how complex environ-
ments constrain on the design of
intelligent agents. We seek gen-
eral rules that justify and explain
why an agent should be designed
one way rather than another.
The terms in these rules describe
characteristics of environments,
tasks and behaviors, and the
architectures of agents. Last,
because Al is still inventing itself,
Phoenix is a commentary on the
aims and methods of the field.
Our position is that most Al sys-
tems have been built for trivial
environments which offer few
constraints on their design and,
thus, few opportunities to learn
how environments constrain
and inform system design
(Cohen 1989). To afford our-
selves this opportunity, we began
the Phoenix project by designing
a real-time, spatially distributed,
multiagent, dynamic, ongoing,
unpredictable environment.

In the following pages, we
describe Phoenix from the per-

Figure 2. Fire at 12:30 pm: The Fireboss Is
Alerted to New Fire and Dispatches
Two Bulldozers to Fight It.
The left pane displays the actual state of the world; the
right pane displays the current state of the world as the
fireboss sees it.

34 Al MAGAZINE

spective of our technical aims and motives.
The second section describes the Phoenix
task—controlling simulated forest fires— and
explains why we use a simulated environ-
ment instead of a real, physical one. Environ-
mental Constraints on Agent Design
discusses the characteristics of the forest fire
environment and the constraints they place
on the design of agents. The two lowest
layers of Phoenix,
described in The
Phoenix Environ-
ment, Layers 1 and
2, implement the
simulated environ-
ment and maintain
the illusion that the
forest fire and
agents are acting
simultaneously.
Above these layers
are two others: a
specific agent design
(see Agent Design,
Layer 3) and our
organization of mul-
tiple fire-fighting
agents (The Organi-

zation of Fire-Fighting Agents in Phoenix).
These sections describe how Phoenix agents
plan in real time but do not provide the
minute detail that is offered elsewhere (Cohen
et al. forthcoming). The next section illus-
trates Phoenix agents controlling a forest fire.
The last section describes the current status of
the project and our immediate goals.

The Problem

The Phoenix task is to control simulated
forest fires by deploying simulated bulldozers,
crews, airplanes, and other objects. We dis-
cuss how the simulation works in The
Phoenix Environment, Layers 1 and 2 but
concentrate here on how it appears to the
viewer and the problems it poses for planners.

The Phoenix environment simulates fires
in Yellowstone National Park, for which we
have constructed a representation from
Defense Mapping Agency data. Figure 1
shows a view of an area of the park.

Fires spread in irregular shapes and at vari-
able rates, determined by ground cover, eleva-
tion, moisture content, wind speed and

Figure 3. Fire at 3:00 pm: Bulldozers Are
Beginning to Build a Line around the Fire.

Figure 4. Fire at 8:00 pm: The Fire is Nearly
Encircled. Bulldozers are Close to
Meeting at the Fire Front.

The left pane displays the real world; the right pane dis-
plays Bulldozer 11°s view of the world.

0738-4602/89/$3.50 ©1989 AAAL

direction, and natu-
ral boundaries. For
example, fires spread
more quickly in
brush than in
mature forest, are
pushed in the direc-
tion of the wind
and uphill, burn dry
fuel more readily,
and so on. These
conditions also
determine the prob-
ability that the fire agents.
will jump the fire-

Phoenix is a real-time, adaptive planner that
manages forest fires in a simulated environment.
Alternatively, Phoenix is a search for functional
relationships between the designs of agents, their
behaviors, and the environments in which they
work. In fact, both characterizations are appro-
priate and together exemplify a research method-
ology that emphasizes complex, dynamic
environments and complete, autonomous agents.
Within the Phoenix system, we empirically
explore the constraints the environment places
on the design of intelligent agents. This article
describes the underlying methodology and illus-
trates the architecture and behavior of Phoenix

the “two bulldozer
surround” illustrat-
ed in figures 2, 3,
and 4. In this plan,
two bulldozers begin
at the rear of the fire
and work their way
around to the front,
pinching it off.

The Phoenix fire-
boss directs bull-
dozers but does not
completely control
them. In fact, the
fireboss gives fairly

line and any natural
boundaries. Except
for two particular conditions (convective and
crown fires), Phoenix is an accurate simulator
of forest fires. Fire-fighting objects are also
accurately simulated; for example, bulldozers
move at a maximum speed of 40 kph in tran-
sit, 5 kph traveling cross-country, and 0.5 kph
when cutting a fireline. To give a sense of
scale, the fire in figure 1 is about 1.5 km in
diameter and has burned for about eight sim-
ulated hours. The fire’s history, which can be
read in figures 2, 3, and 4, is as follows: At
noon in simulation time (figure 2) a fire is
ignited; later, it is detected by a watchtower
(not visible in the figures). A little later, two
bulldozers start a journey from the fire sta-
tion, marked by a B in the southwest corner,
to the rear of the fire. Because the wind is
from the north, the rear is the northern end
of the fire. At 3 pm (figure 3), the bulldozers
arrive at the rear and start cutting a fireline.
Figure 4 illustrates conditions at 8 PM simula-
tion time. The fire is contained a little later.
This entire simulation takes about 1 minute
on a Texas Instruments Explorer.

Fires are fought by removing one or more
of the elements that keep them burning: fuel,
heat, and air. Cutting a fireline removes fuel.
Dropping water and flame retardant removes
heat and air, respectively. In major forest fires,
controlled backfires are set to burn areas in
the path of wildfires, thus denying them fuel.
Huge project fires, such as those in Yellow-
stone last summer, are managed by many
geographically dispersed firebosses and hun-
dreds of firefighters.

The current Phoenix planner is a bit more
modest. One fireboss directs a few bulldozers
to cut a line near the fire boundary. Currently,
we are implementing indirect attacks, which
exploit natural boundaries as firebreaks (such
as the river in figure 1), and parallel attacks,
which involve backfires. The Phoenix planner
does use common fire-fighting plans, such as

crude directions,
such as “go to loca-
tion x,y,” and individual agents decide how to
interpret and implement them. Thus, bulldoz-
ers and other agents are semiautonomous.
Other organizational structures are enabled
by increasing or decreasing the degree of
autonomy; for example, an earlier fire plan-
ner, designed by David Day, had a single fire-
boss that controlled every action of all its
agents. At the other extreme, we are working
with Victor Lesser on a completely distributed
version of Phoenix, in which agents negotiate
plans in the absence of a single fireboss. We
can experiment with different organizational
structures because all agents have exactly the
same architecture, and so each can assume an
autonomous, semi-autonomous, or completely
subservient role.

Although Phoenix agents and their envi-
ronment are all part of a large software
system, we designed them to give the impres-
sion of independent agents playing against
simulated forest fires, much as we play a
video game. In fact, early in the project, we
built an interface to allow us, instead of an
automated planner, to direct fire-fighting
agents. It required us to simultaneously con-
trol several agents, and demanded consider-
able foresight and planning. We found it
impossible to control more than a couple of
bulldozers in real time in the vicinity of the
fire, so we gave bulldozers simple reflexes,
enabling them to scurry away from encroach-
ing fire. Since this time, the basic style of
interaction between the Phoenix environ-
ment and the Phoenix planners has not
changed: One or more planners, Al or
human, direct semiautonomous agents to
move around a map, building a line around
continuously burning fires.

To some, the decision to develop and test
Phoenix agents in a simulated environment is
profoundly wrong. One argument is that by
building the environment and the interface

Articles

FALL 1989 35

Articles

environmental
characteristics

behaviors

dynamic, ongoing
real time
unpredictable
varied

multiple scales

spatial distribution

resource management
uncertainty management
cooperation

planning

agent design

Figure 5. The Behavioral Ecology Triangle.

36 AI MAGAZINE

to agents, we risk deferring or ignoring diffi-
cult problems. For example, if we build a sim-
ulated agent that has a completely accurate
internal map of its simulated environment,
and when it moves, its “wheels” don’t slip,
then all its planning and acting can be dead
reckoning. Obviously, we can create trivial
environments and develop techniques that
won’t work in real environments, but why
would we? The point of using simulators is to
create realistic and challenging worlds, not to
avoid these challenges. In response to the
criticism that simulators can never provide
faithful models of the real, physical world, we
argue that the fire environment is a real-time,
spatially distributed, ongoing, multiactor,
dynamic, unpredictable world, irrespective of
whether it is an accurate model of how forest
fires spread. As it happens, the fire environ-
ment is an accurate model of forest fires, but
this accuracy isn’t necessary for the environ-
ment to challenge our current planning tech-
nology. Moreover, we want to leave open the
possibility of working in simulated worlds
which are unlike any physical world that we
have encountered.

The advantages of simulated environments
are that they can be instrumented and con-
trolled and provide variety, all essential char-
acteristics for experimental research.
Specifically, simulators offer control, repeata-
bility, replication, variety, and interfaces.

Control

Simulators are highly parameterized, so we
can experiment with many environments.
For example, to test the robustness of real-
time planning mechanisms, we can change

the rate at which wind direction shifts or
speed up the rate at which fire burns. Most
important, from the standpoint of our work
on real-time planning, is the fact that we can
manipulate the amount of time an agent is
allowed to think relative to the rate at which
the environment changes, thus exerting (or
decreasing) the time pressure on the agent (see
The Phoenix Environment, Layers 1 and 2).

Repeatability

We can guarantee identical initial conditions
from one run to the next; we can exactly play
back some histories of environmental condi-
tions and selectively change others.

Replication

Simulators are portable; so they enable repli-
cations and extensions of experiments at dif-
ferent laboratories. They enable direct
comparisons of results, which would other-
wise depend on uncertain parallels between
the environments in which the results were
collected.

Variety

Simulators allow us to create environments
which don’t occur naturally or which aren’t
accessible or observable.

Interfaces

We can construct interfaces to the simulator
that allow us to defer questions we would
have to address if our agents interacted with
the physical world, such as the vision prob-
lem. We can also construct interfaces to show
elements that aren’t easily observed in the
physical world; for example, we can show the
different views which agents have of the fire,
their radius of view, their destinations, the
paths they are trying to follow, and so on.
The Phoenix environment graphics make it
easy to see what agents are doing and why.

Environmental Constraints
on Agent Design

From the preceding descriptions of the
Phoenix environment and tasks, one can
begin to see the challenges they present to
Phoenix agents. As researchers, our challenge
is to design these agents for the Phoenix
environment. The relationships between
agent design, desired agent behaviors, and
environment characteristics are clarified by
what we call the behavioral ecology triangle,
shown in figure 5.

The vertices of the triangle are the agent’s
design (that is, internal structures and pro-
cesses), its environment, and its behavior

(that is, the problems it solves and the ways it
solves them). In this context, our five tasks
(and, indeed, the tasks of all Al research on
intelligent agents) are:

1. Environment Analysis: What characteristics
of an environment most significantly con-
strain agent design?

2. Design: What architecture produces the
desired behaviors under the expected range
of environmental conditions?

3. Prediction: How does a particular agent
behave in particular environmental condi-
tions?

4. Explanation: Why does an agent behave as
it does in particular environmental condi-
tions?

5. Generalization: Over what range of envi-
ronmental conditions can we expect partic-
ular behaviors from the agent? Over what
range of problems? Over what range of
designs?

To date, the Phoenix project has concen-
trated on environment analysis (later in this
section), the design task (see Agent Design,
Layer 3 and The Organization of Fire-Fighting
Agents in Phoenix), and the building of an
environment in which the other tasks can be
empirically pursued. Figure 5 implicitly cap-
tures many hypotheses and explanatory tasks.
We can think of anchoring two corners and
solving for a third. For example, we can
anchor an environment and a set of behav-
iors and solve for an agent design, or we can
anchor a design and an environment and test
predictions about behavior. Another more
exploratory research strategy is to anchor just
one corner, such as the environment, and
look for trade-offs in the other corners. For
example, given the Phoenix environment,
how is adaptability to changing time pres-
sures affected by the design decision to search
for plans in memory rather than generate
them from scratch?

Let us survey the characteristics of the
Phoenix environment that constrain the
design of Phoenix agents and the behaviors
the agents must display to succeed at their
tasks. The fire environment is dynamic
because everything changes: wind speed and
direction, humidity, fuel type, the size and
intensity of the fire, the availability and posi-
tion of fire-fighting objects, the quantity and
quality of information about the fire, and so
on. The environment is ongoing in the sense
that there isn’t a single, well-defined problem
to be solved, after which the system quits, but
rather a continuous flow of problems, most of
which are unanticipated. The environment is

How do the characteris-
tics of the Phoenix
environment, in concert
with the desired
behaviors of Phoenix
agents, constrain the
design of the agents?

real time in the sense that the fire sets the
pace to which the agent must adapt. The
agent’s actions, including thinking, take time,
and during this time, the environment is
changing. These characteristics require an
agent to have some concept of relative or
passing time. The agent must reason about
the potential effects of its actions and, partic-
ularly, about how much time these actions
might require. Additionally, it must be able to
perceive changes in its environment, either
directly through its own senses or indirectly
through communication with other agents.

The environment is unpredictable because
fires can erupt at any time and any place;
because weather conditions can change
abruptly; and because agents can encounter
unexpected terrain, fire, or other agents as
they carry out plans. An agent must respond
to the unexpected outcomes of its own
actions (including the actions taking more or
less time than expected) and to changes in
the state of the world. This responsiveness
requires interleaving planning, execution,
and monitoring and suggests that detailed
plans of long duration are likely to fail before
successful completion. The unpredictability of
the environment requires agents to be flexi-
ble, particularly in the way they handle tem-
poral resources. In fact, all resources,
including time, fire-fighting agents, money,
fuel, and equipment, are limited and nonre-
newable. Because the environment is ongo-
ing, decisions about resources have long-term
effects that constrain later actions and require
agents to manage their resources intelligently,
with a global perspective. For this reason,
among others, Phoenix agents cannot be
exclusively reactive.

Whereas unpredictability is a characteristic
of the Phoenix environment, uncertainty
arises in agents. Uncertainty is the result of
the fire continuously moving, unpredictable
changes in wind speed and direction, com-
munication delays between agents, and the
limited world views of the individual agents.
For example, to the northwest of Bulldozer

Articles

FALL 1989 37

Articles

38 AIMAGAZINE

11, in the right-hand pane of figure 4 is a
small black patch of the fireline. This infor-
mation is all Bulldozer 11 knows about the
location and progress of the other bulldozer
(whose actual location is shown in the left-
hand pane of figure 4) and illustrates how far
Bulldozer 11 can see. It follows that Bulldozer
11’s fire map, as shown in the right-hand
pane, must merge what it currently sees with
what it recalls. As one would expect, the rec-
ollection is inaccurate; Bulldozer 11 thinks
the fire at its northern point is a few hundred
meters from the fireline because that’s where
it was when Bulldozer 11 cut the fireline. In
fact, the fire has spread all the way to the fire-
line, as shown in the left-hand pane. As a
consequence of these types of uncertainty,
agents must allot resources for information
gathering. Agents must be able to integrate
and disseminate local information, and
because of their own localized views, they
must be able to communicate and coordinate
with each other.

The fact that events happen at different
scales in the Phoenix environment has pro-
found consequences for agent design. Tempo-
ral scales range from seconds to days, spatial
scales from meters to kilometers. Agents’
planning activities also take place at disparate
scales; for example, a bulldozer agent must
react quickly enough to follow a road with-
out straying as a result of momentary inatten-
tion and must plan several hours of
fire-fighting activity, both within the time
constraints imposed by the environment.

Given the size and variation in the world
map, the degree to which the environment
can change, and the possible actions of
agents, the environment can produce a large
variety of states. Consequently, an agent
must know how to act in many different situ-
ations. The ramifications for agent design
depend on whether small differences in envi-
ronmental conditions can produce large dif-
ferences in plan utilities. For example, if
every fire scenario is truly different in the
sense that each requires a unique, scenario-
specific plan, then it might be pointless to
provide agents with memories of previous
plans. In fact, we believe that although the
fire environment presents a wide variety of
states, these differences do not require radi-
cally different plans.

The Phoenix environment is spatially dis-
tributed, and individual agents have only
limited, local knowledge of the environment.
Moreover, most fires are too big for a single
agent to control; their perimeters grow much
faster than a single agent can cut a fireline.
These constraints dictate multiagent, dis-

tributed solutions to planning problems.
They also expand the scope of our research
from a study of agent design to a study of
organizational design. We have drawn a line,
temporarily, and excluded the latter.

In sum, to perform their designated tasks
under the constraints of the Phoenix envi-
ronment, Phoenix agents must engage in par-
ticular behaviors. In gross terms, these
behaviors are resource management, uncer-
tainty management, planning, and coopera-
tive problem solving; we just discussed the
more specific behaviors. The question we
address in Agent Design, Layer 3 and The
Organization of Fire-Fighting Agents in
Phoenix is how the characteristics of the
Phoenix environment, in concert with the
desired behaviors of Phoenix agents, con-
strain the design of the agents. Specifically,
what architecture is capable of planning in
real time, responding to events at different
time scales, coordinating the efforts of several
agents, collecting and integrating data about
achanging environment, and so on.

The Phoenix Environment,
Layers 1 and 2

To facilitate experiments, Phoenix is built in
four layers. The lowest is a task coordinator
that on a serial machine, maintains the illu-
sion of simultaneity among many cognitive,
perceptual, reflexive, and environmental pro-
cesses. The next layer implements the
Phoenix environment itself—the maps of Yel-
lowstone National Park and the fire simula-
tions. The third layer contains the definitions
of the agent components—our specific agent
design. The fourth layer describes the agents
organization, their communication and
authority relationships. Layers 3 and 4 are
described in later sections.

The two lowest layers in Phoenix, called
the task coordinator layer and the map layer,
respectively, make up the Phoenix discrete
event simulator. We discuss the task coordi-
nator first. It is responsible for the illusion of
simultaneity among the three following
events and actions.

1. Fires. Multiple fires can burn simultaneous-
ly in Phoenix. Fires are essentially cellular
automata that spread according to local
environmental conditions, including wind
speed and direction, fuel type, humidity,
and terrain gradient.

2. Agents’ physical actions. Agents move
from one place to another, report what
they perceive, and cut a fireline.

Articles

3. Agents’ internal
actions. Internal
actions include
sensing, planning,
and reflexive reac-
tions to immedi-
ate environmental
conditions.

These tasks are not

generated at the task

coordinator level of

Phoenix, just sched-

uled on the central

processing unit

(CPU) there. Fire

reflexive
component

program

sensors dataflow cognitive component
state

program rogram .
prog memors planlibra
timelin cognitive
dataflo schedule:

program communication
effectory
otheragents

tasks are generated
at the map layer, and
agent tasks are gen-
erated as described
in later sections.

Typically, the task coordinator manages the
physical and internal actions of several agents
(for example, one fireboss, four bulldozers,
and a couple of watchtowers) and one or
more fires. The illusion of continuous, paral-
lel activity on a serial machine is maintained
by segregating each process and agent activity
into a separate task and executing them in
small, discrete time quanta, ensuring that no
task ever gets too far ahead or behind the
others. The default setting of the synchro-
nization quantum is five minutes, so all tasks
are synchronized within five minutes of each
other. The quantum can be increased, which
improves the CPU utilization of tasks and
makes the testbed run faster but increases the
simulation-time disparity between tasks, mag-
nifying coordination problems such as com-
municating and knowing the exact state of
the world at a particular time. Conversely,
decreasing the quantum reduces how out of
sync processes can be but increases the run-
ning time of the simulation.

The task coordinator manages two types of
time: CPU time and simulation time. CPU
time refers to the length of time that process-
es run on a processor. Simulation time refers
to the time of day in the simulated environ-
ment. Within the predefined time quantum,
all simulated parallel processes begin or end
at roughly the same simulation time. To exert
real-time pressure on the Phoenix planner,
every CPU second of thinking is followed by
K simulation-time minutes of activity in the
Phoenix environment. Currently K = 5, but
this parameter can be modified to experiment
with how the Phoenix planner copes with dif-
ferent degrees of time pressure.

The fire simulator resides in Phoenix’s map
layer; that is, the map layer generates tasks

Figure 6. Phoenix Agent Design.

that produce dynamic forest fires when exe-
cuted by the task coordinator. Phoenix’s map,
which represents Yellowstone National Park,
is a composite of several two-dimensional
structures and stores information for each
coordinate about ground cover, elevation, fea-
tures (roads, rivers, houses, and so on), and
fire state. The fire itself is implemented as a
cellular automaton in which each cell at the
boundary decides whether to spread to its
neighbors, depending on the local conditions
just mentioned and global conditions such as
wind speed and direction (currently, we do
not model local variations in weather condi-
tions). These conditions also determine the
probability that the fire will jump the fireline
and any natural boundaries.

The Phoenix discrete event simulation is
generic. It can manage any simulations that
involve maps and processes. For example, we
could replace the forest fire environment with
an oil spill environment. We could replace
our map of Yellowstone with oceanographic
maps of, say, Prince William Sound in Alaska.
Fire processes have spatial extent and spread
according to wind speed, direction, fuel type,
terrain, and so on. They could easily be
replaced with oil slick processes, which also
have spatial extent and spread according to
other rules. Similarly, we could replace the
definitions of bulldozers and airplanes with
definitions of boats and booms.

Agent Design, Layer 3

The third layer of Phoenix is our specific
agent design, which is constrained by the
forest fire environment as described earlier.
For example, because events happen on two
dramatically different time scales, we

FALL 1989

39

Articles

step 1:

selection actio
deal with fire 27

TIMELIN

Figure 7. Contents of Fireboss’s Timeline after Being Notified of a New Fire:
Action to Search for a Plan to Deal with the Fire.

The
combination
of a reflexive
and cognitive
component is

designed to
handle time
scale mis-
matches
inherent in the
fire-fighting
environment.

40 AI MAGAZINE

designed an agent with two parallel and
nearly independent mechanisms for generat-
ing actions (figure 6). One mechanism quick-
ly generates reflexive actions—on the order of
a few seconds of simulated time—and the
other generates plans that can take hours of
simulated time to execute. This longer-term
planning can be computationally intensive
because it incurs a heavy time penalty for
switching contexts when interrupted. For this
reason, the cognitive component is designed
to perform only one action at a time (unlike
sensors, effectors, or reflexes where multiple
activities execute in parallel). Both the cogni-
tive and reflexive components have access to
sensors, and both control effectors, as shown
in figure 6.

The agent interacts with its environment
through its sensors and effectors, and action
is mediated by the reflexive and cognitive
components. Sensory information can be
provided autonomously or can be requested,
and sensors’ sensitivity can be adjusted by
the cognitive component. Effectors produce
actions in the world, such as gathering infor-
mation, building a fireline, and moving.

Reflexes are triggered by sensor output.
They change the programming of effectors to
prevent catastrophes or fine tune the opera-
tion of effectors. For example, a bulldozer is
stopped by a reflex if it is about to move into
the fire, and reflexes handle the fine tuning
necessary for the bulldozer to follow a road.
Reflexes are allotted almost no CPU time and
have no memory of events, so they cannot
produce coordinated sequences of actions.
They are designed for rapid, unthinking
action. Although some researchers have sug-
gested that longer-term plans can emerge
from compositions of reflexes (Agre and
Chapman 1987; Brooks 1986), we do not
believe that compositions of reflexes can
handle temporally extensive planning tasks

such as resource management or spatially
extensive tasks such as path planning with
rendezvous points for several agents. Thus,
we have adopted a design in which reflexes
handle immediate tasks, and a cognitive com -
ponent handles everything else.

The cognitive component of an agent is
responsible for generating and executing
plans. Instead of generating plans de novo, as
classical hierarchical planners did, the
Phoenix cognitive component instantiates
and executes stored skeletal plans. We believe
this design is a good one for the forest fire
environment because, first, a relatively small
number of skeletal plans is probably suffi-
cient to cope with a wide range of fires and,
second, the store-recompute trade-off sug-
gests relying on stored plans, rather than
computing them, in real-time situations. In
addition to controlling sensors and effectors,
the cognitive component handles communi-
cations with other agents (including integrat-
ing sensor reports), and it responds to flags
set when reflexes execute. It also engages in a
wide range of internal actions, including pro-
jection (for example, where the fire will be in
20 minutes), plan selection and scheduling,
plan monitoring, error recovery, and replan-
ning. Our implementations of some of these
capabilities are quite rudimentary and leave
much room for improvement, as we discuss
in Current Status and Future Work.

As an overview, this is how the cognitive
component works: In response to a situation
such as a new fire, an appropriate plan is
retrieved from the plan library and placed on
the timeline (figure 6). State memory stores
information, such as weather, resource condi-
tions, and sensory input, that helps the cog-
nitive agent select appropriate plans and
instantiate the variables of the chosen plan
for the current situation. For example, if the
fire is small and nearby, and the weather is
calm, then a one-bulldozer plan is retrieved
and instantiated with situation-specific infor-
mation such as the wind speed and the cur-
rent location of the fire. The actions in a plan
are eventually selected for execution by the
cognitive scheduler, which is described short-
ly. At any time during this process, sensory
data can trigger reflexive actions; for exam-
ple, if the cognitive component is executing a
command to move to a destination, and a
sensor reports fire ahead, then the reflexive
component sends a command to reverse
direction. This reaction happens very fast rel-
ative to the cycle time of the cognitive com-
ponent, so the reflexive component sets a
flag to tell the cognitive component what it
did. When the cognitive component notices

the flag, it might modify its plan. The analo-
gy here is to our own reflexes, which yank us
away from hot surfaces long before our cogni-
tive apparatus becomes aware of the problem.

With this overview in mind, let us consider
the operation of the cognitive component in
detail. We focus on the operation of the fire-
boss agent, which plans the activities of other
agents such as bulldozers and crews. Each of
these, in turn, plans how to carry out the
directives of the fireboss. Because bulldozers
and crews have the same architecture as the
fireboss (figure 6), they can reason in exactly
the same way. In the following discussion, we
first describe planning when things go
according to plan and then describe error
handling, interruptions, and other unexpect-
ed events.

When a fire is reported, an action called
“deal with fire” is retrieved from the plan
library and used to create a timeline entry, in
this case called “deal with fire 27,” which is
added to the timeline (see figure 7). Actions
are general representations of the cognitive
activities the agent can perform, such as path
planning or communication, and describe
applicability conditions, resource constraints,
and uninstantiated variables. Creating a time-
line entry instantiates an action, binding its
variables and adding the temporal constraints
that relate it to other actions the agent has
chosen to execute. Although timeline entries
represent actions, it is not quite accurate to
say they are executed (although we use this
terminology where the accurate description is
too awkward). In fact, when a timeline entry
is created, it inherits a set of execution meth-
ods from the action it instantiates. Each of
these methods executes the desired action;
they differ along dimensions, such as the
time they require and the quality of their
output. For example, a single action “plan a
path” points to several path-planning algo-
rithms, some which run quickly and return
adequate paths and some which run longer
but produce shorter paths. When a timeline
entry is selected for execution, the execution
method most appropriate to the current cir-
cumstances is chosen. By delaying the choice
of methods, the cognitive scheduler can
reason about its own use of time and select
execution methods that are suited to emerg-
ing time constraints.

If entries exist on the timeline (for exam-
ple, “deal with fire 27”), then the cognitive
scheduler of the Phoenix cognitive compo-
nent makes three decisions: (1) which action
to execute next, (2) how much time is avail-
able for its execution, and (3) what execution
method should implement the action.

Articles

selection actio

| — deal with fire 27

T plan action:

plan 2 BD surround

library

TIMELIN

step 2: execution methodfind and filter plan

Figure 8. The Fireboss Executes Timeline Action “deal with fire 27.”

This action searches the plan library, selects the 2 BD surround plan as appropriate
for dealing with a new fire, and places the new plan on the timeline.

The cognitive scheduler always selects the
next action on the timeline to execute, but
often, several actions have this distinction,
and a choice must be made. Actions on the
timeline can be unordered (and, thus, equally
entitled to go first) for several reasons: Skele-
tal plans often leave actions unordered so
that the cognitive scheduler has flexibility at
execution time to select the best order. Fre-
quently, the agent is executing several plans
simultaneously, for example, when several
fires are reported. The planner formulates
plans for each but doesn’t specify temporal
constraints among actions from different
plans. In the current example, however, the
only action on the timeline is “deal with fire
27,” so the cognitive scheduler determines
how much time is available to execute it and
selects an execution method. In this case, it
selects a method called the find-and-filter
plan (step 2, figure 8). When executed, its
effect is to search the plan library for a plan to
“deal with fire 27.” First, it finds all plans for
dealing with fires of this type; then it filters the
infeasible ones; it selects from the candidates
to find the most appropriate one; and last, it
adds a new action to the timeline called “2
BD surround.” (This plan involves sending
two bulldozers to a rendezvous point, then to
the fire, after which they cut a fireline in
opposite directions around the fire.)

Once again, the cognitive scheduler selects
an action (the only one is “2 BD surround”),
assesses how much time is available, and
selects an execution method. In this case, the
method is to expand the plan. The result is to
add a network of actions, partially ordered
over time, to the timeline (step 3, figure 9).
The network starts with a placeholder action,
s, followed by two unordered actions that
allocate bulldozers 1 and 2, respectively. The
next action determines the rendezvous point

FALL 1989 41

Articles

| —

plan action:
2 BD surround

plan
library

step 3:

primitive actiol

execution method:expand plan

primitive actiol

get wind direction \

primitive actiol

N4

find rendezvous
point.

allocate BD 1 \ selection actio|
S rendezvous
primitive actior/ BD1and BD2
allocate BD 2
TIMELIN

Figure 9. The Fireboss Executes the Timeline Action, “2 BD surround,” which Expands into a Network of Plan Steps.

42 Al MAGAZINE

for the bulldozers. Then two unordered
actions bind the variables in the plan with
the current wind direction and the previously
determined rendezvous point. (Space precludes
showing the rest of the plan in figure 9.)

The cognitive scheduler again looks at the
timeline and now must make a decision
about which action to select. The “allocate
bulldozer” actions are unordered, so one
must be selected to go first. Then, as before,
the cognitive scheduler assesses the available
time and selects an execution method. We
discuss this example further, later.

Three kinds of actions can be differentiated
by their effects on the timeline when they are
executed: First, selection actions, such as “deal
with fire 27,” result in a search of the plan
library. Next, a plan action, such as “2 BD sur-
round,” is posted on the timeline. Plan
actions are placeholders for plans; executing
them results in plan expansions being posted
on the timeline. Many of the actions in a plan
are of the third type, primitive actions, that
result in a computation (for example, calcu-
lating a route) or a command to a sensor or
effector. However, a plan can contain any of
the three types of actions; for example, the
expansion of “2 BD surround” contains a
selection action. When executed, it results in
a search of the plan library for a plan to have
the two bulldozers rendezvous. Plans can also
contain plan actions, which, when executed,
add subplans to the network. This nesting of
plans within plans is our mechanism for rep-
resenting hierarchical plans. Last, plans can
contain just a single, primitive action, such as
finding the rendezvous point for two bull-
dozers.

We discussed how actions are scheduled
and executed when everything goes accord-

ing to plan, but in the Phoenix environment
it rarely does. Phoenix agents have three abil-
ities, all rudimentary, for handling unexpect-
ed events. Reflexes, operating on a short time
scale, can halt or modify potentially injurious
actions, such as straying into the fire. By
design, reflexes do little processing and
return little information. When a reflex halts
a bulldozer, it simply posts a flag for the cog-
nitive component; it does not interrupt the
cognitive component to explain what it did.
The cognitive component doesn’t become
aware of the change until it executes a regu-
larly scheduled status-checking action. In
fact, by design, nothing ever interrupts a cog-
nitive action because the cost of saving state
and switching context is prohibitive. Instead,
the reflexive component of a Phoenix agent
is expected to deal with situations as they
arise. Most situations, such as staying parallel
to a moving fire, never require the attention
of the cognitive component; but even when a
serious problem comes up, the reflexive com-
ponent is designed to keep the agent func-
tioning until the cognitive component
finishes its current task.

The second mechanism for handling unex-
pected situations is error recovery and replan-
ning. Errors are unexpected events that
preclude the completion of an action or a
plan. For example, bulldozers can travel to
their designated destinations but fail to find a
fire, path planning sometimes fails to gener-
ate a path, selection actions can search the
plan library but fail to find a plan that satis-
fies all constraints, and so on. Currently, over
a dozen error types can arise in Phoenix,
although we don’t have plans to deal with all
of them yet. The error-handling mechanism
is to post on the timeline a “deal with error”

I Lazy skeletal refinement responds to a complex dynamic
world by postponing decisions, while grounding potential
actions in a framework that accounts for data, temporal

and resource interactions.

selection action, which, when executed, gen-
erates a plan for dealing with the error. Cur-
rently, error recovery involves little tinkering
with the actions that are currently on the
timeline, that is, no serious replanning.

Last, Phoenix agents have limited abilities
for monitoring their own progress. This mon-
itoring is accomplished by generating expec-
tations of progress and matching them to
actual progress. In the near future, this mech-
anism (called envelopes; see Current Status
and Future Work) will enable Phoenix’s cogni-
tive components to predict failures before
they occur.

In sum, planning is accomplished by
adding a selection action to the timeline to
search for a plan to address some conditions.
Executing the selection action places an
appropriate plan action or primitive action on
the timeline. If this new entry is a plan
action, then it expands into a plan when it is
executed by putting its subactions onto the
timeline with their temporal interrelation-
ships. If it is a primitive action, execution
instantiates the requisite variables, selects an
execution method, and executes it. In gener-
al, a cognitive agent interleaves actions from
the several plans it is working on.

This style of planning is lazy skeletal refine-
ment, lazy because some decisions are
deferred until execution time. Specifically,
plans are not selected until selection actions
are executed, and execution methods are
selected only when an action is about to exe-
cute. This style of planning and acting is
designed to be responsive to a complex
dynamic world by postponing decisions while
grounding potential actions in a framework (a
skeletal plan) that accounts for data, tempo-
ral, and resource interactions. The combina-
tion of a reflexive and cognitive component
is designed to handle time-scale mismatches
inherent in an environment that requires
microactions (for example, following a road)
and contemplative processing such as route
planning, which involves long search times
and the integration of disparate data. We
must stress, however, that it is too early in
Phoenix’s development to claim that our
agent design is necessarily the best one for
the Phoenix environment (see Current Status
and Future Work).

The Organization of Fire-
Fighting Agents in Phoenix

The fourth level of the Phoenix system is the
centralized, hierarchical organization of fire-
fighting agents. Because all agents have the
same architecture, many other agent organi-
zations are possible. Our centralized model is
neither robust (for example, what happens if
the fireboss is disabled) nor particularly
sophisticated. However, it is simple, which is
a great advantage in these initial phases of
the project. One fireboss coordinates all fire-
fighting agents’ activities, sending action
directives and receiving status reports, includ-
ing fire sightings, position updates, and
actions completed. The fireboss maintains a
global view of the fire situation based on
these reports, using it to choose global plans
from its plan library. It communicates the
actions in these plans to its agents, which
then select plans from their own plan
libraries to effect the specified actions. Once
their plans are set in motion, agents report
progress to the fireboss, from which the exe-
cution of global plans is monitored. All com-
munication in this centralized imple-—
mentation is between the fireboss and the
individual agents; no cross-talk takes place
among the agents.

The fireboss maintains global coherence,
coordinating the available fire-fighting
resources to effectively control the fire. It is
responsible for all the work required to coor-
dinate agents, such as calculating rendezvous
points, deciding how to deploy available
resources, and noticing when the fire is com-
pletely encircled by the fireline. The plans in
its plan library are indexed by global factors,
such as the size of the fire and the weather
conditions. The actions in its plans are mostly
concerned with coordinating and directing
other agents. The fireboss’s state memory
records the current environmental condi-
tions, where agents have seen fire, what
actions have been taken, what agents are
available, and how well global plans are
progressing. The fireboss is currently imple-
mented without any sensors, effectors, or
reflexes. It is a cognitive agent that relies
solely on communication for its knowledge of
what develops in the outside world, although

Articles

FALL 1989 43

Articles

4 Tiepelngg Writial- HeMe 51 40 firdioss=b >

Totanagd,
PYTTTS T Y

TraTaevies

Tt ,.....,.,“.,. o i um [ites
TEEC L i E rll | J_'

T
A

l,"“LL*.f.L‘-L!

e e

U-plan-reiaray/
A et
51

rlm-runm— 0 firvtions- i
IJ-:;H Jledeatlocste=
,—4; \-Mgrnrn Zeser-a.2 !

Figure 10. The Fireboss’s Timeline, including Plan Expansions as
Viewed from the Phoenix Desktop (headers for

44 Al MAGAZINE

boxes name parent nodes).

it does have a map of the static features of
Yellowstone.

Each of the other fire-fighting agents has a
local view of the environment based on its
own sensory input. They have access to maps
of the static features in Yellowstone, such as
ground cover, roads, and rivers, but only
know about dynamic processes such as the
fire from what they see or are told by the fire-
boss. Sensors have a limited radius of view,
although agents are able to remember what
has been perceived but is no longer in view.
The fireboss’s global view is only available to
an agent through communication. A bulldoz-
er is an example of an agent type. It has a
movement effector that can follow roads or
travel cross-country. When it lowers its blade
while moving, it digs a fireline and moves
more slowly. It has a sensor that sees fire
within a radius of 512 meters. Another sensor
picks up the contour of a fire (within its
radius of view). When a bulldozer is building
a fireline at the contour, it uses the follow-fire
sensor in combination with the movement
effector (with lowered blade) and a reflexive
action that helps maintain a course parallel
to the contour. As the contour changes, the
contour sensor registers the change, which
triggers a reflex to adjust the movement effec-
tor’s course. The bulldozer’s plan library has
plans for simple bulldozer tasks such as fol-
lowing a given path or encircling a fire with a
fireline.

Although all agents have the same archi-
tecture (that is, timeline, cognitive scheduler,
plan library, state memory, sensors, effectors,
and reflexes), they do not have the same
plans, reflexes, sensors, or effectors. The dif-

ference between the fireboss and the other
agents lies in their views of the world and the
types of plans each knows. The lines of
authority and divisions of responsibility are
clear: The fireboss maintains the global pic-
ture, based on the local views of its agents,
and it executes plans whose effects are to
gather information, send directives to agents,
and coordinate their activity through com-
munications. In contrast, the agents execute
plans whose actions program sensors and
effectors, which, in turn, effect physical
actions in the world. In some sense, the fire-
boss is a metaagent whose sensors and effec-
tors are other agents.

An Example

We now return to the example that we intro-
duced earlier to illustrate cognitive schedul-
ing. In this two-bulldozer-surround plan, the
fireboss instructs two bulldozers to ren-
dezvous, then go to the fire and build a fire-
line around it in opposite directions. Figures
2, 3, and 4 show the progress of this plan.
Each offers two views of the situation. Figure
2 shows the real world in the left pane and
the fireboss’s view in the right pane. Note
that the fireboss is unaware of the true extent
of the fire. What it knows is based on status
reports from a watchtower agent (not
shown). Each watchtower has a sensor pro-
grammed to look for new fires at regular time
intervals. When it spots a fire, it reports the
location and size to the fireboss. Based on
this report and the resources available, the
fireboss selects the two-bulldozer-surround
plan. The first plan steps allocate the bulldoz-
ers, which ensures they are not busy with
other tasks and assigns them to this plan. The
next step instructs them to rendezvous so
they can follow the same route to the fire.
Next, the fireboss plan calculates a route for
the bulldozers to follow, then executes two
steps in which it communicates instructions
to each bulldozer to follow the given path
and encircle the fire. They are given clockwise
and counterclockwise encircling directions,
respectively.

After receiving its instructions, each bull-
dozer searches its plan library to find a plan
for following its given path and encircling
the fire in the given direction until it closes
the fireline. Neither bulldozer knows about
the other, nor does either know the full
extent or precise location of the fire. Recall
that the fireboss doesn’t know exactly where
the fire is either, so the path it supplied to the
bulldozers can direct them wide of the fire or,
more often, to a location that is burning. In

this example, the path given by the fireboss
ends at a point engulfed in fire, so the bull-
dozers follow the path until they detect it. In
figure 3, we see the bulldozers starting to
build a line. In the fireboss’s view (right
pane), each one appears at the position it had
reached when it made its last status report.
Thus, they are at slightly different positions
that are out of date with respect to their real
positions in the left-hand pane.

When fire is seen, a bulldozer reflex is trig-
gered to stop its movement effector. A cogni-
tive action also notes that the sensor has seen
fire and reprograms the sensors and effectors
with the right combination of instructions to
follow the fire in the direction specified by
the fireboss, building a fireline as it goes. A
message is sent to the fireboss to signal the
start of line building. Each bulldozer stops
building a line when it finds another fireline
and closes it off. In figure 4, we see in the left
pane that the bulldozers have almost encir-
cled the fire. In the right pane is the view of
the bulldozer encircling in the clockwise
direction. Note that it only knows about the
fire it has seen as it was building line. It is just
coming within range of the other bulldozer
(see the spot of fireline to the northwest of
the bulldozer).

This simple bulldozer plan, to follow a path
and encircle a fire without reference to other
bulldozers, can be used by one, two, or many
bulldozers. With its global view, the fireboss
picks points around the fire, selects any
number of bulldozers, and directs each to go
to one of the points and build a fireline in a
specified direction. The bulldozers only act
with regard to their instructions and the local
information in their field of view. If the bull-
dozers fail to fully encircle the fire (for what-
ever reason), the fireboss is responsible for
noticing the failure, based on what is reported
to it from watchtowers and bulldozers.

Figure 10 shows the fireboss’s timeline for
this plan at about the time the bulldozers
complete their encirclement of the fire. The
network in the top, left box is the top level of
the timeline, which contains four entries and
reads from left to right. The entries are start
action and end action (placeholders) and two
with no temporal constraint between them.
The top entry is an action that periodically
executes and updates state memory with new
information about the environment. The
bottom entry is an action that is automatically
placed on the fireboss’s timeline with the
report of a new fire. This selection action
causes a plan to be selected from the fireboss’s
plan library, based on the characteristics of
the reported fire, and then expanded on the

timeline, as illustrated in Agent Design, Layer
3. The selected plan is shown in the top, right
box, and its expansion is shown in the two
middle boxes (the plan unfolds left to right
and is continued in the lower, middle box).
Gray actions have already been executed.
These actions include allocating each bulldoz-
er, instructing them to rendezvous, calculat-
ing a route for them to take to the fire, and
(in undetermined order) instructing them to
follow this route and encircle the fire. They
also include noticing when the fire is com-
pletely encircled and instructing the bulldozers
to stop building a fireline. These actions are
necessary because the fireboss maintains the
global view of the fire and must tell the bull-
dozers when the fire is surrounded. The bull-
dozers’ timelines are not shown in figure 10.

The fireboss is currently executing a plan
action for each bulldozer that expands into a
plan for sending the bulldozer back to the
base. Note that these actions are not tempo-
rally ordered in the plan, so the fireboss has
to decide on an order. The timeline expansion
for this plan (for one of the bulldozers) is
shown in the bottom box, where the current-
ly executing action is calculating a path for
the bulldozer. Subsequent steps instruct the
bulldozer to follow the path, wait for an
acknowledgment that the bulldozer has
reached the base, and make a mental note
about the bulldozer’s availability to fight a
new fire.

Current Status and Future Work

The Phoenix system is a work in progress. As
is clear from the preceding sections, several
important aspects are handled in a rudimen-
tary or preliminary way. Currently, five
people are pursuing research and enhancing
the system in the following areas.

We have about a dozen plans that directly
attack fires, with as many as four bulldozers
building a line at the fire front until the fire is
encircled. We are starting to develop indirect
attack plans that incorporate natural barriers.
These plans require more knowledge and
coordination on the part of the fireboss;
because other agents can’t see the fire unless
they are close to it, the fireboss must guide
their activities when they are working at a
distance. The fireboss must take advantage of
natural barriers when deciding where to build
a fireline, which requires the ability to project
the spread of the fire and the progress of the
fire-fighting agents. As we develop new and
more sophisticated plans, we must also
enhance the mechanisms by which agents
select plans. Currently, the keys for selecting

Articles

FALL 1989 45

Articles

46 Al MAGAZINE

The development of Phoenix has been intimately tied
to our evolving ideas about Al research methodology, and

specifically to our understanding of the role of evaluation in

Al research.

plans are just wind speed and the availability
of fire-fighting agents, as well as some plan-
specific criteria such as whether bulldozers
are nearby or distant when the plan is select-
ed. The keys have to become more discrimi-
nating, and we probably have to develop
more sophisticated plan-selection mechanisms.

We have designed a general monitoring
mechanism called envelopes that minimizes
the cognitive resources devoted to monitor-
ing yet provides early warning of plan failure.
Envelopes incorporate expectations of how
plans are to proceed; they represent these
expectations as functions. As actual progress
is reported, it is compared with these expecta-
tions, and deviations outside certain parame-
terized thresholds are flagged for cognitive
attention. For example, if an agent must be at
a certain place at a certain time, we can tell
by projection whether the deadline is feasi-
ble—can the agent travel the distance in the
given time? By projecting the expected time
of travel (based on a parameter such as aver-
age speed for the agent on the given terrain),
we can create an envelope for the travel time
and use it to monitor the agent’s progress.
The envelope also predicts the expected
arrival time based on the recent progress of
the agent. Furthermore, it predicts the mini-
mum speed at which the agent must travel
over the remaining distance to arrive before
the deadline. If this speed is at or approach-
ing the top speed of the agent, then the enve-
lope signals the planner that the deadline is
in jeopardy, providing an early failure warn-
ing. Currently, we have hooks for envelopes
in plans, and limited mechanisms to replan
when envelopes are violated. For example, if
the fire spreads quicker than anticipated, a
slack time envelope is violated and the fire-
boss sends one or more additional bulldozers
to help out.

Error recovery and replanning are imple-
mented as cognitive actions, just like plan
selection and plan expansion. When an error
is detected in a plan, an action is posted to
the timeline that inspects the error and
attempts to fix the existing plan. Consider,
for example, a failure on the part of a bull-
dozer to find fire at the location to which it
was sent. A plan we currently have to fix the

error is to travel a little further in a specified
direction, looking for the fire. A really intelli-
gent error recovery knows when to try cheap
fixes, such as modifying a destination; when
to begin a search for a way to significantly
modify a plan (for example, by dispatching
another bulldozer); and when, as a last resort,
to abandon the current plan and begin from
scratch. Error recovery and replanning signifi-
cantly depend on intelligent monitoring; in
fact, envelopes are designed to predict errors
before they happen, minimizing downtime.

We need to enhance the scheduling abili-
ties of the cognitive component to make
agents responsive to real-time demands in
fire fighting. This need is particularly true for
the fireboss in our implementation because it
is essentially a cognitive agent. Currently,
scheduling involves three actions: selecting
an action to execute, deciding how much
time is available, and selecting an execution
method. Although these actions are charged
for the time they use, they are not themselves
scheduled, nor are there multiple execution
methods to implement them. In short, the
cognitive scheduler is a separate interpreter of
the timeline. To make the scheduling of
actions completely uniform, scheduling
actions must themselves be scheduled. In
addition, we must develop scheduling strate-
gies, along the lines suggested in Lesser,
Durfee, and Pavlin’s (1988) approximate pro-
cessing proposal.

To facilitate experiments with different
agent designs in different environments, we
have started to build a generic agent architec-
ture. It is a collection of parameterizable
structures that represent the design of parts of
an agent. For example, our generic action
structure includes pointers to execution
methods, envelopes, and predicates that are
tested before the action is selected. Generic
execution methods, in turn, contain esti-
mates of their time requirements, their pre-
requisites, and so on. We also have generic
structures for sensors and effectors. In the
near future, we will implement generic struc-
tures for strategies, including memory-access
strategies and cognitive-scheduling strategies.
The eventual goal is a full generic agent archi-
tecture that makes it easy to implement dif-

ferent agent designs by specifying how the
agent manages its sensors, effectors, and
memory, and decides what to do next.

We demonstrated one way to organize a
multiagent planner in the Phoenix testbed,
but the agent architecture certainly supports
others. Work is under way in Victor Lesser’s
laboratory to build a cooperating, distributed
planner for the Phoenix testbed. Although
preliminary, this model assumes multiple fire-
bosses, each with spheres of influence (geo-
graphic areas and agents) under its control,
who cooperatively fight fires at their borders,
loaning resources to neighbors or redrawing
their boundaries to shift the work load in
times of stress. Although this model is similar
to the Phoenix planner in the relationship
between firebosses and agents, it adds a coop-
erative relationship between firebosses.

Phoenix agents should learn to improve
their performance. The opportunities for
learning are myriad: We can learn new reflex-
es and chain reflexes together to learn short
plan fragments. We can learn new plans from
patches to failed ones. We can learn correla-
tions between environmental conditions,
such as changes in wind direction, and fail-
ures, such as bulldozers becoming trapped in
the fire. Currently, we are extending the
error-recovery mechanisms to learn patches
to failed plans. This is one aspect of Adele
Howe’s (1989) dissertation work. Allen Newell
recently pointed out that “you can’t program
SOAR” because much of its behavior emerges
from sequences of locally selected chunks,
and no way really exists to predict how a
chunk, added by hand, makes the system
behave. We have found the same to be true of
actions and reflexes in Phoenix and concur
with Newell that once a system attains a
degree of complexity, it must learn to
improve its performance on its own.

Conclusion

The development of Phoenix has been inti-
mately tied to our evolving ideas about Al
research methodology and, specifically, to our
understanding of the role of evaluation in Al
research (Cohen and Howe 1988, 1989).
Clearly, the evaluation of Phoenix must be
with respect to the goals of the project. More-
over, it must tell us not only whether we have
succeeded but whether we are succeeding and
why or why not. As noted in The Phoenix
Research Agenda, the goals of Phoenix are of
three kinds. Our technical goals are to build a
real-time planner with learning, approximate
scheduling, envelopes, and the other features
noted earlier. Our scientific goal is to under-

stand how environmental characteristics
influence agent design—the relationships dis-
cussed in the context of the behavioral ecolo-
gy triangle (figure 5). Last, we are using
Phoenix as a framework in which to develop
Al methodology.

Progress toward each of these goals is eval-
uated differently. Phoenix is parameterized
and instrumented at all its layers to facilitate
evaluations of specific technical develop-
ments; for example, we can assess whether an
approximate scheduling algorithm is robust
against varying time pressure because we can
vary time pressure while we hold other fac-
tors constant. We can run fire scenarios in
dozens of conditions with dozens of varia-
tions in the algorithms used by the Phoenix
planner. These experiments are scheduled to
begin in the fall of 1989. They will enable us
to demonstrate the utility of our technical
solutions, explain why they are solutions, and
discover the limits on their scope (Cohen and
Howe 1988).

Clearly, these cannot be the only aims of
the experiments. Although it is valuable to
probe the scope and efficacy of specific tech-
niques, such experiments might not necessar-
ily address our scientific goals. We might
show that a Phoenix planner works well in
the Phoenix environment but not how the
environment constrains the design of plan-
ners. Furthermore, unless we are trying to
answer specific questions of this sort, experi-
ments with techniques are unguided. Dozens
of variations on the Phoenix planner exist as
well as hundreds of environmental conditions
in which they might be tested. To guide the
search of this space, we will generate and test
general rules that justify and explain the
design of agents. These rules will call on func-
tional relationships that capture trade-offs.
For example, the well known store-recompute
trade-off lurks in the design of the Phoenix
planner: We use it to justify the decision to
rely on stored plans in an environment that
exerts time pressure, favoring storage over
computation. Perhaps, there is a general rule
here (for example, under time pressure, rely
on storage over computation), or many spe-
cific variants of this rule for environments
with different kinds of time pressures and
agents with different kinds of store-recom -
pute trade-offs. In any case, our scientific goal
is to discover functional relationships (and to
exploit those we already know such as the
store-recompute trade-off) and embed them
in rules for designing intelligent agents. To
evaluate progress toward this goal, we need to
measure the extent to which performance can
be predicted. If we really understand the rela-

Articles

FALL 1989 47

Articles

48

Al MAGAZINE

tionships between environmental characteris-
tics, agents’ behaviors, and agents’ designs,
then we should be able to predict that agents
with particular designs will behave in particu-
lar ways under particular environmental con-
ditions.

Although we are far from this goal, it is
paradigmatic of the style of Al research we ad-
vocate. To evaluate the success of this method-
ological stance will take a long time, but if it
is possible, surely there is no better aim for Al
than to understand—to the point of being
able to predict behavior—how to design intel-
ligent agents in complex environments. =

Acknowledgments

This research was supported by Defense Advanced
Research Project Agency/Rome Air Development
Center contract no. F30602-85-C0014; the Office of
Naval Research (ONR), under a university research
initiative grant, no. ONR N00014-86-K-0764; ONR
under contract no. NO0014-87-K-238; and a grant
from Digital Equipment Corporation. We also wish
to thank Paul Silvey.

References

Agre, P. E., and Chapman, D. 1987. Pengi: An
Implementation of a Theory of Activity. In Pro-
ceedings of the Sixth National Conference on Arti-
ficial Intelligence, 268-272. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Brooks, R. A. 1986. A Robust-Layered Control
System for a Mobile Robot. IEEE Journal of Robotics
and Automation RA-2(1) 14-23.

Cohen, P. R. 1989. Why Knowledge Systems
Research Is in Trouble and What We Can Do About
It, Technical Report, 89-81, Experimental Knowl-
edge Systems Laboratory, Dept. of Computer and
Information Science, Univ. of Massachusetts.

Cohen, P. R., and Howe, A. E. 1989. Toward Al
Research Methodology: Three Case Studies in Eval-
uvation. IEEE Transactions on Systems, Man, and
Cybernetics. Forthcoming.

Cohen, P. R., and Howe, A. E. 1988. How Evaluation
Guides Al Research. Al Magazine 9(4): 35-43.

Cohen, P. R.; Greenberg, M. L.; Hart, D.; and Howe,
A. E. Forthcoming. An Introduction to Phoenix,
the EKSL Fire-Fighting System, Technical Report,
Experimental Knowledge Systems Laboratory, Dept.
of Computer and Information Science, Univ. of
Massachusetts.

Howe, A. E. 1989. Adapting Planning to Complex
Environments. Ph.D. diss., Dept. of Computer and
Information Science, Univ. of Massachusetts.

Lesser, V. R.; Durfee, E. H.; and Pavlin, J. 1988.
Approximate Processing in Real-Time Problem
Solving. Al Magazine 9(1): 49-61.

Paul R. Cohen is an associate professor and

director of the Experimental Knowledge Sys-

tems Laboratory in the Department of Com-

puter and Information Science, University of

Massachusetts, Amherst. His research is con-

cerned with how complex environments con-
strain the design of
autonomous agents. Cohen is
also an editor of the Handbook
of Artificial Intelligence, Vol-
umes Il and 1V .

Michael L. Greenberg is a graduate student
in the Experimental Knowledge Systems Lab-
oratory, Department of Computer and Infor-
mation Science, University of
Massachusetts, Amherst. He received a B.S. in
electrical engineering from Carnegie-Mellon
University in 1982 and an M.S. in computer
science from the University of Massachusetts
in 1986. He is currently working on his Ph.D.
on designing planners for complex, real-time
domains.

David M. Hart is manager of the Experimen-
tal Knowledge Systems Laboratory at the Uni-
versity of Massachusetts, Amherst. His
research interests include knowledge-based
systems, real-time dynamic planning, and
control. Hart is a member of AAAI and ACM.

Adele E. Howe is a graduate student in the
Experimental Knowledge Systems Laboratory,
Department of Computer and Information
Science, University of Massachusetts,
Amherst. She received her B.S.E. in computer
science and engineering from the University
of Pennsylvania in 1983 and her M.S. in com-
puter science from the University of Mas-
sachusetts in 1987. Her Ph.D. dissertation is
on adapting planning to real-time, complex
domains.

