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Objective.—To investigate the safety and tolerability of convection-enhanced delivery (CED) of 

an adeno-associated virus, serotype-2 vector carrying glial cell line-derived neurotrophic factor 

(AAV2-GDNF) into the bilateral putamina of PD patients.

Methods.—13 adult patients with advanced PD underwent AAV2-GDNF and gadoteridol 

(surrogate MRI-tracer) co-infusion (450μl/hemisphere) at escalating doses: 9 × 1010vg (n=6); 3 × 

1011vg (n=6); 9 × 1011vg (n=1). Intraoperative-MRI monitored infusion distribution. Patients 

underwent UPDRS assessment and [18F]FDOPA-PET scanning pre-operatively and 6 and 18 

months post-operatively.

Results.—AAV2-GDNF was tolerated without clinical or radiographic toxicity. Average 

putaminal coverage was 26%. UPDRS scores remained stable. 10/13 and 12/13 patients had 

increased [18F]FDOPA Ki’s at 6- and 18-months post-infusion (increase range: 5–274% and 8–

130%, median: 36% and 54%), respectively. Ki differences between baseline and 6- and 18-

months follow-up were statistically significant (P<0.0002).

Conclusions.—AAV2-GDNF infusion was safe and well-tolerated. Increased [18F]FDOPA 

uptake suggests a neurotrophic effect on dopaminergic neurons.
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Introduction

Parkinson’s disease (PD) affects about 1 million people in the U.S.1 Medications palliate PD 

symptoms but do not prevent neurodegeneration. The pathological PD hallmark is 

progressive nigral dopaminergic (DA) neuron loss. Neuroprotective agents to prevent 

neurodegeneration and possibly arrest the disease have been identified,2 including glial cell 

line-derived neurotrophic factor (GDNF), which promoted embryonic DA neuron survival in 
vitro and in PD animal models.3–7 Clinical trials delivering GDNF protein to the brain via 

ventricular or parenchymal infusion were inconclusive or negative,8, 9 suggesting that GDNF 

did not selectively or effectively affect nigrostriatal neurons, respectively. A trial of AAV2-

vector delivering the GDNF homolog, Neurturin, to the putamen was also negative.10

The U54 “PD Gene Therapy Study Group” conducted preclinical investigations of GDNF 

gene transfer.11–13 The clinical trial reported here sought to increase the neurotrophic effect 

seen in the Neurturin trial by 1) delivering GDNF, a more potent neurotrophic factor than 

Neurturin,14–16 via an AAV2-vector17–19 2) using intraoperative MRI to target vector to the 

putamen, 3) monitoring convection-enhanced delivery (CED) of vector with a surrogate 

MRI tracer, and 4) increasing vector infusion volume. A previous Phase 1 gene transfer 

clinical trial of PD patients at UCSF had similar clinical response measures and patient 

populations.20 We discuss the first-in-human use of the AAV2-GDNF vector co-infused with 

gadoteridol via CED into the bilateral putamina of adult PD patients. The study investigated 

the 1) safety of the vector and delivery technique, 2) vector distribution throughout the 

putamina, 3) tolerability, and 4) disease course measured by UPDRS, [18F]FDOPA PET, and 

L-DOPA equivalent dose.
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Methods

Study Design

This was a Phase 1 single-center, open-label, dose escalation, safety and tolerability study of 

AAV2-GDNF infused via CED into the bilateral putamina of adult patients with PD. 

Gadoteridol (ProHance), a gadolinium contrast agent, was co-infused with AAV2-GDNF. 25 

patients were enrolled (Supplementary Figure S1), with 13 patients receiving AAV2-GDNF 

(Supplementary Table S1), 8 failing screening, and 4 withdrawing prior to treatment. Three 

escalating dose levels were evaluated: 1) 9 × 1010vg (n=6); 2) 3 × 1011vg (n=6); 3) 9 × 

1011vg (n=1). This study was approved by the institutional review board and registered at 

clinicaltrials.gov (NCT01621581). All participants gave informed consent.

Outcome Measures

Primary outcome measures were the safety and tolerability of different AAV2-GDNF 

infusion dose levels in patients with advanced PD. Secondary outcome measures included 

changes in pre-synaptic dopamine activity by [18F]FDOPA PET scanning, clinical rating 

scores (UPDRS), and total levodopa equivalent doses (TLED).

Statistical Analysis

For each outcome measure, a repeated-measures analysis of variance (RM-ANOVA) 

examined the effect of time on [18F]FDOPA Ki values, UPDRS score, and TLED with 

compound symmetry as covariance structure. The Dunnett-Hsu method was used for post-

hoc analysis with baseline as control.

Results

Adverse Events

AAV2-GDNF infusion was well-tolerated by all subjects. Six serious adverse events (SAEs) 

occurred but were not attributable to study drug and resolved (Supplementary Table S2). The 

423 non-serious adverse events included minimal elevations of CSF IgG, glucose and 

protein without clinical sequelae. No study drug or infusion-related brain injuries occurred.

AAV2-GDNF MRI Distribution

Gadoteridol distribution on T1-weighted intraoperative MR-imaging is shown in Figure 1A. 

The volume of distribution was 2.63cm3±1.09cm3 (mean±SD; range: 0.82–4.36cm3). The 

volume of distribution to infusion ratio (Vd:Vi) was 2.93±1.21. The putaminal coverage of 

infused fluid (AAV2-GDNF) was 995mm3±376mm3 (mean±SD; range: 315–1881mm3), 

approximately 26% of the putaminal volume.

PET Scanning

[18F]FDOPA Ki values increased from baseline in bilateral putaminal injection sites in 10/13 

patients at the 6-month timepoint (percent increased Ki range: 5–274%, median: 36%) 

(Figure 1B–C). In the remaining three patients, 2 had slight increases in [18F]FDOPA Ki 

values on one side and slight decreases on the other while the final patient had unchanged 
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[18F]FDOPA Ki values in the right putamen and slightly decreased Ki values (-13%) in the 

left.

At the 18-month postoperative PET scan timepoint, 12/13 patients showed increased 

[18F]FDOPA Ki values bilaterally compared to baseline (increase range: 8–130%, median: 

54%). In the other patient, [18F]FDOPA Ki values increased 29% in the right putamen, but 

decreased 16% contralaterally. The two different AAV2-GDNF dose cohorts were not 

significantly different in their [18F]FDOPA putaminal Ki percentage change from baseline at 

the 18-month timepoint (right putamen: P = 0.69; left putamen: P = 0.58) (Table 1).

Ki values differed significantly between baseline and the 6- and 18-month follow-up scans 

bilaterally (RM-one-way ANOVA, P = 0.0001 (right); P = 0.0002 (left)). Post hoc analysis 

showed significant increases between baseline and 6-months bilaterally (P = 0.006 (right); 

and P = 0.016 (left)), and between baseline and 18-months bilaterally (P = 0.0002 (right); P 
= 0.0003 (left)) (Figure 1D–E).

Lumbar Puncture: CSF and Serum Samples

Clinical laboratory analysis of CSF and serum samples revealed no clinically significant 

abnormalities. 3/13 (#6, 13, 21) and 2/13 (#6, 13) patients had increased serum anti-AAV2 

antibody titers at 6- and 18-months post-infusion, respectively. 1/13 patients (#6) had an 

increased CSF anti-AAV2 antibody titer at each of the 6- and 18-months post-infusion 

timepoints (same patient). Increased serum anti-GDNF antibody titers were seen in 3 

patients (#12, 13, 16) 6-months, and 3 (#10, 12, 15) 18-months post-infusion. Increased CSF 

anti-GDNF antibody titers were seen in 3 patients (#1, 10, 15) 6-months, and 4 (#6, 10, 15, 

16) 18-months post-infusion. Serum and CSF anti-AAV2 and-GDNF antibody titer increases 

were clinically silent and unrelated to [18F]FDOPA Ki values.

UPDRS Assessments

UPDRS assessment scores varied between visits but generally remained stable over the 

study. Specifically, there were no statistically significant differences between dose cohorts in 

UPDRS Part 1, 3 “On” or “Off”, or 4 scores across any timepoints (Table 1). UPDRS Part 2 

“On” and “Off” scores also remained stable throughout the study for all dose cohorts, except 

for significant difference in Part 2 “Off” scores between baseline and 1 month post-infusion 

(P = 0.0252).

Total Levodopa Equivalent Dose

Differences in TLED change between AAV2-GDNF dose cohorts were not statistically 

significant from baseline 18-months post-infusion (P = 0.99) (Table 1). However, there was a 

statistically significant increase in TLED between the first and second dose levels from 

baseline to 48-months post-infusion (P = 0.0433).
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Discussion

This Phase 1 clinical trial included 13 adult patients with advanced PD who received 

bilateral AAV2-GDNF CED to their putamina. AAV2-GDNF delivery to the human brain 

using CED was safe and well-tolerated, with no SAEs attributable to AAV2-GDNF infusion.

GDNF was the first identified neurotrophic factor related to basic fibroblast growth factor. 

Neurturin, persephin and artemin were subsequently identified.3 GDNF isolated from the 

B49 cell line promoted survival of embryonic DA neurons in vitro.21, 22 GDNF protein 

delivery methods had tolerability and safety problems in preliminary GDNF clinical trials, 

prompting interest in viral vectors delivering GDNF for PD treatment.17–19, 23 Our study 

used an AAV2 vector encoding GDNF. Whone et al. recently reported a blinded clinical 

study of CED delivering intraputaminal GDNF protein versus placebo in PD patients.24, 25 

GDNF infusion was safe and well-tolerated. Furthermore, the group receiving GDNF had 

increased putaminal [18F]FDOPA uptake on PET, as in our study, suggesting neurotrophic 

effect on putaminal DA neurons. However, clinical benefit was not different between GDNF 

and placebo treated groups. CED into the putamen in PD patients was safe in both studies. 

Future trials with increased infusion volumes and doses of AAV2-GDNF or GDNF may 

demonstrate clinical benefit.

Our study evaluated escalating AAV2-GDNF dose levels, starting at an anticipated 

minimally effective dose of 9 × 1010vg, that was expected to produce somewhat less than 

1ng of GDNF/mg of putaminal protein. Slow enrollment and interim analysis of limited 

putaminal infusion coverage prompted premature enrollment closure prior to completing the 

proposed 3rd or 4th dose cohorts. Clinical evaluation showed safety at the dose levels 

studied.

In this study, co-infused gadoteridol allowed tracking of the AAV2-GDNF infusion within 

the putamina during T1-weighted MR-imaging. The Vd/Vi ratio of gadoteridol was 

consistent with previous related studies.26 The volumetric distribution of infusate covered 

about 26% of the putaminal volume and did not significantly differ between dose cohorts. 

Limited coverage was due, in part, to the infused fluid distributing around the cannula, 

whose trajectories were perpendicular to, rather than aligned with the long axis of each 

putamen. A follow-up clinical trial is planned using larger infusion volumes and a posterior 

surgical approach along the putamen’s long axis to increase coverage sffuciently to affect the 

relevant motor circuitry of the post-commissural putamen.11

Evidence for GDNF expression within putaminal infusion sites was provided by the 

enhanced [18F]FDOPA PET uptake. [18F]FDOPA Ki values were significantly increased 

above baseline values at the 6- and 18-month timepoints. Increases in [18F]FDOPA uptake 

have been associated with upregulated pre-synaptic dopamine activity, potentially due to 

restoration or sprouting of nigrostriatal dopaminergic terminal fibers in nonclinical studies.15 

In certain patients, Ki values at the 6- and 18-month timepoints reached putaminal values 

reported in control patients of earlier trials.27 The wide range of Ki percentage increase at 

the 18-month timepoint corresponded to the wide range of patient baseline Ki values. Also, 
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the large Ki increase variability in our study may have arisen from incomplete and variable 

coverage of the putaminal target and variable extra-putaminal leakage of infusate.

No significant PD medication changes or LED were made during the study. Two patients, 

however, did reduce their daily LED, while most (8 patients) had increased daily LEDs, as 

expected with normal PD progression. UPDRS scores remained stable throughout the study. 

No clinical or statistically significant changes in UPDRS scores were observed between dose 

cohorts. The AAV2-GDNF, a placebo effect, and/or close medical monitoring could have 

resulted in the medication changes or clinical improvements noted in specific participants.

Higher doses of AAV2-GDNF in the originally proposed 3rd and 4th cohorts and greater 

(>50%) putaminal coverage would be expected to provide higher putaminal levels of GDNF. 

The proposed higher doses of AAV2-GDNF were expected to approach GDNF levels 

produced in nonclinical studies,14,15 which demonstrated significant restoration of dopamine 

activity and motor function in parkinsonian animals.

The safety and tolerability of AAV2-GDNF administered via CED into the human brain in 

our study supports additional clinical investigations providing improved putaminal coverage 

and use of higher AAV2-GDNF doses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gadoteridol Distribution, Parametric Ki Maps, and Longitudinal Ki Changes.
T1-weighted post-contrast MR-images show gadoteridol distribution in the axial and coronal 

planes following infusion into the anterior (pre-commissural) and posterior (post-

commissural) putamina bilaterally (A). [18F-FDOPA] Ki parametric maps in axial and 

coronal planes from one patient at baseline (B) and 18 months after surgery (C) showing 

increased Ki at follow-up. Graphical changes of Ki values corresponding to the right (D) and 

left (E) injection distributions for all subjects. Dashed lines reflect reported putaminal Ki 

values for healthy controls.27

Heiss et al. Page 9

Mov Disord. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heiss et al. Page 10

TABLE 1.

Change from Baseline in Secondary Outcome Measures 18 Months after Treatment: [18F]FDOPA Uptake, 

UPDRS Scores, & Total Levodopa Equivalent Doses.

Endpoint Dose 1 (n=6) Dose 2 (n=6) Dose 3 (n=1) P

[18F]FDOPA Uptake
a

 Right Putamen 0.5 (0.13 to 0.88) 0.63 (0.16 to 0.79) N/A 0.696

 Left Putamen 0.35 (0.08 to 0.69) 0.56 (−0.16 to 1.30) N/A 0.586

UPDRS Part III (Off) 2.60 (−37.5 to 50) −7.10 (−44.7 to 50) N/A 0.754

UPDRS Part III (On) −9.55 (−45.7 to 36.8) 7.5 (−61.4 to 42.9) N/A 0.697

UPDRS Part I −22.5 (−50 to 0) −16.7 (−100 to 100) N/A 0.936

UPDRS Part II (Off) 2.26 (−45.5 to 28.6) −10.7 (−33.3 to 26.7) N/A 0.586

UPDRS Part II (On) 50 (−30 to 85.7) −5.45 (−50 to 62.5) N/A 0.298

UPDRS Part IV 0 (−66.7 to 44.4) −16.7 (−42.9 to 28.6) N/A 0.423

TLED 100 (−101.3 to 273) −119.5 (−400 to 667.5) N/A 0.999

Data are median (range) and the P-value comparing dose-related effects was calculated using a Wilcoxon test.

*
Dose cohort 3 was excluded from this analysis because the cohort included only 1 patient.

a
percentage change
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