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Abstract

Background: Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical
power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an
interim analysis on its way towards a required information size. The results of the meta-analyses should relate the
total number of randomised participants to the estimated required meta-analytic information size accounting for
statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are
insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to
too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors).

Methods: We developed a methodology for interpreting meta-analysis results, using generally accepted, valid
evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size
has not been reached.

Results: The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted
confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required
information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial
Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the
required information size and the corresponding number of required trials in a meta-analysis and the diversity (D2)
measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the
actual information size fails to reach the required information size. We present examples drawn from traditional
meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance.
Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential
Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of
type I errors and of type II errors than the traditional naïve meta-analysis.

Conclusions: Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and
better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence
intervals.

Keywords: Meta-analysis, Random-effects model, Fixed-effect model, Interim analysis, Group sequential analysis,
Trial sequential analysis, Heterogeneity, Diversity, Sample size, Information size
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Background

Most meta-analyses include too few randomised partici-

pants, to obtain sufficient statistical power that allow re-

liable assessment of even large anticipated intervention

effects [1]. The credibility of statistical significant meta-

analyses with too few participants is poor, and interven-

tion effects are often spuriously overestimated (type I

errors) or spuriously underestimated (type II errors) [2].

Meta-analyses of, e.g., cardiovascular, anaesthesiologic,

and neonatal interventions have many false positive and

false negative results, due to low statistical power in a

meta-analysis when the required number of randomised

participants or trials have not been reached [3–6]. Trial

Sequential Analysis (TSA) of a meta-analysis may amend

these problems [4, 7]. In this article, we aim to describe

the origin, history, adaptation, and criticism of TSA.

Using TSA, we can handle a meta-analysis of several

randomised clinical trials in an analogous manner to in-

terim analysis of a single randomised clinical trial. If the

accrued cumulative information fails to achieve the re-

quired number of randomised participants in order to

detect or reject a specific assumed effect, the uncertainty

of the estimate of the intervention effect will increase.

The uncertainty will decrease the higher the fraction of

the required information size the meta-analysis obtain.

To statistically solve the problem with uncertainty, we

expand the confidence interval, i.e., adjusting the thresh-

old for statistical significance when the required infor-

mation size has not been reached. The farther from the

required number of randomised participants, the wider

the confidence interval and the lower the statistical sig-

nificance level needs to be in order to reliably assess the

uncertainty of the point estimate.

In TSA of a meta-analysis, we include the trials in

chronological order and we handle the analysis of these

trials as an interim analysis relative to the required num-

ber of randomised participants. TSA calculates the re-

quired number of participants, based on our predefined

anticipated intervention effect, i.e., our alternative hy-

pothesis [7–9]. The result of a trial sequential meta-

analysis is displayed on a TSA diagram (e.g., Fig. 1a and

b) with a TSA-adjusted confidence interval and an ad-

justed level of statistical significance, i.e, a lower thresh-

old for statistical significance compared to the usual

nominal of 0.05, if the required information size has not

been reached [10].

In the above-mentioned adjustments, we take into

consideration if the required number of randomised par-

ticipants and corresponding trials, to show or reject a

specific intervention effect, were reached or not. The re-

quired information size is defined as the number of par-

ticipants and events necessary to detect or reject an a

priori assumed intervention effect in a meta-analysis

[11]. The required information size is not a single

sample size, but a summation of sample sizes from a

given number of included trials. Therefore, the calcula-

tion is performed considering the variability (heterogen-

eity variance) between the estimates of the intervention

effects of the included trials.

In TSA, the sample size, required for a single rando-

mised clinical trial to be conclusive for a specific inter-

vention effect, is adjusted upward by an appropriate

measure of the statistical heterogeneity in the meta-

analysis in order to become the required information

size. This is equivalent to using the variance in the

random-effects model to calculate the required informa-

tion size (the model variance based calculation of the re-

quired information size). In the TSA, we hereafter adjust

the confidence interval of the point estimate and the

threshold for statistical significance relative to the frac-

tion of the required information size which has been ac-

crued in the actual meta-analysis [11].

First, we will present a motivating example of a meta-

analysis on hypothermia versus no hypothermia in co-

matose patients having survived cardiac arrest. Second,

we present an updated meta-analysis with the results of

a new trial, and we describe how this update has chan-

ged the conclusion of the preceding traditional meta-

analysis. We also show how the use of TSA would

appropriately have reduced the risk of a wrong conclu-

sion in the first meta-analysis failing to achieve the re-

quired information size. Third, we shortly describe the

historical development of sequential analyses in a single

trial with interim analyses and in a cumulative meta-

analysis of several trials. We explain how sequential

meta-analysis can be performed with TSA [12]. Finally,

we discuss the criticism that has been raised about TSA

and we briefly describe the possibility for Bayesian meta-

analysis as an alternative to both traditional naïve meta-

analysis and TSA of a meta-analysis.

A motivating example: how the Target Temperature

Management-Trial changed the conclusion of the meta-

analysis of trials with cooling of patients after out of

hospital cardiac arrest

In TSA, we consider each interim-analysis result, pro-

duced after the addition of a new trial, a sequential meta-

analysis. The possibility to include groups of several new

trials at a time is, of course, also possible. This latter ap-

proach will decrease the number of interim-analyses in

the cumulative meta-analysis [10]. However, updating the

meta-analysis in a systematic review each time a new trial

is published is a rational decision, and to update a system-

atic review before a new trial is initiated ought to become

mandatory [13–15]. Previous trial results ought to be

considered whenever we evaluate the cons and pros

of designing new trials, as the evidence on a given

intervention may already be sufficient [13–15]. It is
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Fig. 1 (See legend on next page.)
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surprising to see how little the TSA, conducted after

each new trial has been interim-analysed, differs from

the last TSA on groups of trials (e.g., TSA only up-

dated every second year).

Figure 1 shows the result of a TSA of meta-analysis of

four trials comparing a target temperature of 33°–34 °C

versus no cooling, conducted before the initiation of the

Target Temperature Management (TTM) Trial (Fig. 1a)

[16–18]. The TSA shows that the four trials did not even

reach half of the required information size to confirm or

reject a 17% relative risk reduction which was the inter-

vention effect indicated in a conventional meta-analysis

of the trials [16]. The conventional confidence interval

for the relative risk ratio of all-cause mortality in a trad-

itional meta-analysis is 0.70 to 1.00 (P = 0.05), suggesting

a reduction of mortality. The confidence interval and

the P-value would not have been sufficient to claim a

conclusive interim analysis stopping for benefit in a sin-

gle randomised trial if analysed with Lan-DeMets’ group

sequential monitoring boundaries [19]. For demonstrat-

ing a 17% relative risk reduction, the TSA-adjusted con-

fidence interval of the relative risk is 0.63 to 1.12. This

confidence interval shows that i) a target temperature of

33°–34 °C versus no cooling can either decrease or in-

crease mortality, and ii) that definitive evidence has not

yet been reached. The cumulative Z-curve in the figure

does not pass through the trial sequential monitoring

boundary for benefit; only the conventional and naïve P

= 0.05 (Z = 1.96) level for a beneficial effect has been

reached. Therefore, there is not sufficient information to

document the effect, or there may not be a beneficial ef-

fect at all. Nevertheless, based on this evidence, inter-

national guidelines had recommended for ten years that

the temperature of comatose cardiac arrest patients

should be targeted to 33°–34 °C, calling the intervention

»mild therapeutic hypothermia« [20]. No further rando-

mised clinical trials of induced hypothermia versus no

temperature control (or normothermia) in comatose car-

diac arrest patients after resuscitation and admittance to

intensive care units were conducted during this 10-year

period. This may indicate that a P-value of 0.05 in the

conventional meta-analysis was used as an unofficial

»stopping boundary« for further trials within this same

period.

In the TTM Trial, we compared the effect of cooling

to target temperature 33 °C versus 36 °C on mortality of

cardiac arrest patients [17, 18]. The updated TSA in-

cluding the TTM Trial showed no statistically significant

effect at the conventional level, as the Z-curve returned

to the area with P > 0.05 (|Z| < 1.96) (Fig. 1b). Figure 1b

shows that the cumulative Z-curve touches the futility-

boundaries in the TSA diagram (see section ‘False Nega-

tive Meta-analyses’ below). Therefore, the updated TSA

indicates that a 17% relative risk reduction, or an even

greater reduction, most likely can be rejected, although

the pre-estimated required information size of 2040 pa-

tients has not yet been reached. It is not likely that a

meta-analysis will ever show a 17% statistical significant

relative risk reduction of mortality, even though the con-

tinued conduct of trials until a cumulated number of pa-

tients, corresponding to the required meta-analytic

information size of 2040 patients, was reached (Fig. 1b).

The conclusion is that hypothermia to 33°–34 °C does

not seem to have a clinical important effect on mortality

compared with no cooling or targeted normothermia

(36 °C), as the 17% relative risk reduction only corre-

sponds to a median of 3 weeks’ longer survival [17, 18].

Moreover, the original conventional meta-analysis before

(See figure on previous page.)
Fig. 1 a Showing Trial Sequential Analysis of meta-analysis before the Target Temperature Management Trial. The Z-value is the test statistic and
|Z| = 1.96 corresponds to a P = 0.05; the higher the Z-value, the lower the P-value. Trial Sequential Analysis (TSA) of mortality after out of hospital
cardiac arrest patients, randomised to cooling to 33°–34 °C versus 36 °C or no temperature control in four trials performed before the Target
Temperature Management (TTM) trial [16, 20]. The required information size to detect or reject the 17% relative risk reduction found in the
random-effects model meta-analysis is calculated to 977 participants using the diversity found in the meta-analysis of 23%, mortality in the control
groups of 60%, with a double sided α of 0.05 and a β of 0.20 (power of 80.0%). The cumulative Z-curve (black full line with quadratic indicatons
of each trial) surpasses the traditional boundary for statistical significance during the third trial and touches the traditional boundary after the
fourth trial (95% confidence interval: 0.70 to 1.00; P = 0.05). However, none of the trial sequential monitoring boundaries (etched curves above
and below the traditional horizontal lines for statistical significance) have been surpassed in the TSA. Therefore, the result is inconclusive when
adjusted for sequential testing on an accumulating number of participants and the fact that the required information size has not yet been
achieved. The TSA-adjusted confidence interval is 0.63 to 1.12 after inclusion of the fourth trial [10, 12]. b showing Trial Sequential Analysis of
meta-analysis after the Target Temperature Management Trial. The Z-value is the test statistic and |Z| = 1.96 corresponds to a P = 0.05; the higher
the Z-value, the lower the P-value. Trial Sequential Analysis (TSA) of mortality after out of hospital cardiac arrest patients, randomised to cooling
to 33°–34 °C versus 36 °C or no temperature control in five trials after inclusion of the Target Temperature Management (TTM) Trial [17]. The re-
quired information size to detect or reject the 17% relative risk reduction found in the random-effects model meta-analysis prior to the TTM Trial
is calculated to 2040 participants using the diversity found in the meta-analysis of 65%, mortality in the control groups of 60%, with a double
sided α of 0.05 and a β of 0.20 (power of 80.0%). The cumulative Z-curve (black full line with quadratic indicatons of each trial) touches the
boundary for futility indicating that it will be unlikely to reach a statistical significant P < 0.05, even if we proceed to include trials randomising
patients until the required information size of 2040 is reached. The result indicates that a 17% relative risk reduction (or more) may be excluded,
even though the required information size has not been achieved, adjusting for sparse data and sequential testing on an accumulating number
of patients [10, 12]
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inclusion of the TTM Trial had a false positive result;

the null hypothesis was falsely rejected. Whether the

avoidance of fever is actually beneficial compared with

no cooling at all, remains to be tested, as the TTM trial

used cooling in both the intervention (target 33 °C) and

the control group (target 36 °C).

Interim-analyses during a randomised clinical trial with an

accumulating number of participants

If a trial is stopped after an interim-analysis because of a P

< 0.05 or the trial is continued if P ≥ 0.05, the real risk of

committing a type I error will increase to more than 0.05

with the number of interim-analyses. Introducing an

interim-analysis half-way in a randomised clinical trial,

using a stopping P-value equal to 0.05 in both the half-way

analysis and the final analysis, will increase the real max-

imal type I error risk to 8% [21, 22] (Table 1). If the proced-

ure of interim analysis is performed as four interim

analyses and one final analysis, with a constant level of stat-

istical significance of 5%, the real type I error risk will be

14% [21]. A simulation study using repetitive testing on an

accumulating number of participants in a single trial, has

shown that the P-value will inevitably become less than

0.05, despite the true intervention effect being zero [23].

A Bonferroni adjustment of the level of statistical signifi-

cance, being 5% divided with the number of tests on accu-

mulating data, assumes that all tests are conducted on

independent data. As the tests on the accumulating trial

population are not statistically independent, the

Bonferroni-adjusted levels of statistical significance are

most often too conservative [24]. The trial participants in

an early sequential analysis are also included in the subse-

quent later sequential analyses. Therefore, there is an in-

creasing overlap of trial participants included in the latest

sequential analysis compared to participants included in

the previous sequential analyses. The closer we come to the

a priori calculated sample size, the Bonferroni adjustment

becomes more and more unjustified (too conservative).

Historical development of sequential analyses in a single

trial with interim analyses

Methods to avoid an increased risk of a type I error due

to repetitive testing on an increasing number of observa-

tions was described by Abraham Wald in 1945 in Con-

tributions to the theory of statistical estimation and

testing hypotheses [25]. Wald proposed »the sequential

probability ratio test« in which the sequential testing

continues until a definitive wanted or unwanted effect

can be proved [26, 27]. According to this procedure, the

trial continues as long as the results of the sequential

tests fall within the so-called ‘zone of indifference’

amidst the two alternative hypotheses. This procedure,

used as a quality assurance measure of production dur-

ing the Second World War, has never achieved wide im-

plementation in randomised clinical trials; possibly

because the procedure is bound to continue infinitely as

long as the true intervention effect lies between the two

alternative hypotheses. Consequently, a decision to stop

the trial may never become possible [28].

After the Second World War, Peter Armitage sug-

gested more restrictive levels of statistical significance

than 5% to stop a trial before the a priori calculated

sample size was reached [21]. This procedure was ap-

plied in a number of interim analyses of large trials [29].

Furthermore, Stuart Pocock proposed a procedure in

which the overall risk of type I error is limited to 5% by

setting the statistical significance level to 0.05 divided by

k, using k-1 interim analyses and a final analysis [22].

This procedure is identical to the Bonferroni procedure

for interim analyses and a final analysis of a single trial

[30]. Researchers might find it peculiar to only declare

statistical significance if P < (0.05/k), despite the esti-

mated sample size has been reached and the required

criterion for statistical independence was not fulfilled.

In 1977, Richard Peto suggested the use of a maximal

type I error risk (α-spending) in each of four interim

analyses of 0.001 (1 promille) and 0.05 in the final ana-

lysis. As this would produce a summary additional type I

error risk of 0.004 to the final 0.05, the total type I error

risk would maximally be 5.4% [31] (Fig. 2). However, by

a modest increase of the a priori estimated sample size,

the summary maximal used type I error risk would re-

main within the usual 5%. As shown above, the rationale

of statistical independence required for this procedure

still lacks underlying reason as to why the trial partici-

pants in an early sequential analysis are also included in

the subsequent sequential analysis.

In 1979, Peter O’Brien and Thomas Fleming proposed

the group sequential design of trials with interim analyses,

using exponential decreasing levels of statistical

significance with the increasing number of patients in the

sequentially analysed groups (Fig. 2) [32]. The recommenda-

tions of the International Conference on Harmonization –

Table 1 Showing the level of cumulated type 1-error risk, if a
threshold of 5% is applied constantly at each sequential
significance testing, on an accumulating number of trial
participants

Number of statistical
significance tests

The cumulated type 1-error
risk in %

1 5%

2 8%

5 14%

20 25%

100 37%

Infinitely many 100%

The resulting type 1-error risk will be larger than the nominal 5%, if a

decisison is made to stop the inclusion of participants when P <0.05 and to

continue when P ≥0.05 [22, 24]
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Good Clinical Practice, the U.S.A. Food and Drug Admin-

istration, and the European Medicines Agency on the

design and analysis of randomised trials with interim ana-

lyses are mainly based on works from 1980s, primarily

prepared by Gordon Lan, Kuyung Man Kim, and David

DeMets (Fig. 2) [18, 33, 34]. Their works allow proper se-

quential testing at any time during the trial period, with-

out unduly increasing the overall risk of a preset nominal

type I error risk [34–36].

Methods

Avoiding the increased risk of random errors in

randomised clinical trials with interim analyses

It is and should be mandatory to perform interim ana-

lyses in large randomised clinical trials addressing

patient-centred outcomes. Even though the preplanned

sample size has not been reached, thousands of patients

might already have been randomised in a trial. Before we

allow the trial to continue, there is a need to secure that

no valid evidence showing superiority of one of the com-

pared interventions exists. If one of the interventions

(could also be placebo) with a sufficiently small uncer-

tainty is superior to the other one in an interim analysis,

it may be unethical to continue the trial. The explan-

ation for this is that the superiority can be so large that

it cannot be reversed even though we continue to

randomise patients until the total, originally preplanned

sample size is obtained. If the trial is continued despite

the superiority of the intervention in one of the inter-

vention groups, the patients in the other group will be

exposed to an inferior (harmful) intervention and the

trial must be stopped [37]. The use of interim analyses

in a single randomised trial has to be planned at the de-

sign stage of the trial and protocolised upfront as group

sequential analyses in the charter for interim analyses

[33]. For the conduct of group sequential analyses, a

sample size is calculated already at the design stage,

based on the anticipation of a minimal important and

realistic intervention effect of the primary outcome of

the trial [36, 38] (see Appendix).

The sample size calculation considers the level of statis-

tical significance at which we want to test a dichotomous

or a continuous outcome when the full sample size has

been reached. It is when the pre-calculated sample size

has been reached, and only then, a two-sided P-value of

less than 0.05, corresponding to a test-statistic Z-value of

±1.96, can be accepted as the statistical significance level

when α has been set to 5% in the sample size calculation.

Interim analyses, with the potential to stop a rando-

mised trial before the estimated (or fixed) sample size

has been reached due to a positive, negative, or lack of

the addressed effect, can be conducted for dichotomous

and continuous outcomes by calculating the cumulative

Zi-value at the i-th analysis (see Appendix). The calcu-

lated Zi-value is then related to the more restrictive level

of statistical significance, the critical Z-value being the

discrete group sequential boundary according to the ac-

tual accrued number of participants.

There is international consensus that the increase of

type I error risk with sequential testing, including the risk

of overestimating the intervention effect or underestimat-

ing the variance, at an interim analysis, should be out-

weighed by more restrictive levels of statistical

significance before the a priori estimated (fixed) sample

size has been reached [29, 31–37]. This is why ‘monitoring

boundaries’, with significance levels much smaller than a

nominal P-value of 0.05 (corresponding to much larger

|Z|-values than ±1.96) are applied as criteria to stop a trial

before achieving the estimated sample size [33].

Numerical integration is used to calculate the monitoring

boundaries, being the critical levels of statistical significance

for the Zi-values (and P-values) of the interim analyses [39].

Most often, the O’Brien-Fleming’s α-spending–function is

applied and converted to sequential boundaries (critical

values) for the Zi-values called Lan-DeMets’ sequential

monitoring boundaries (Fig. 2) [18, 19]. The α-spending

function allows only a small part of the total nominal type I

error risk to be used initially in the sequential analyses, and

with a modest increase of the estimated final (fixed) sample

size, there is a full 5% type I error risk available for the final

Fig. 2 Showing three different group sequential boundaries in a single
trial with interim analysis. The Z-value is the test statistic and a |Z| =
1.96 corresponds to P = 0.05; the higher the Z-value, the lower
the P-value. This is a historical overview of group sequential
boundaries for the cumulative Z-curve in relation to the number
of randomised participant in a single trial [19, 32, 33]
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analysis when the a priori estimated sample size is reached.

Lan-DeMets’ sequential boundaries allow testing whenever

you want during the trial [34, 35]. If we plan, e.g., a half-

way analysis in a randomised trial, we can monitor the P-

value at this time point according to Lan-DeMets’ moni-

toring boundaries and suggest that the trial is stopped if the

P-value is less than 0.003 which corresponds to a 99.7%

confidence interval excluding 1.00 for a relative risk or 0.00

for a mean difference [34–36]. Therefore, sequential ana-

lyses become a theoretical decision tool to decide whether

a trial should be stopped before the estimated (fixed)

sample size is achieved, considering the sparse data and the

repetitive testing during the trial [37].

Avoiding the increased risk of random errors in

cumulative meta-analyses with sparse data and multiple

meta-analytic up-dates

The majority of meta-analyses include less than the re-

quired number of randomised participants and trials in

order to become conclusive [1, 3, 5, 7]. There are two

reasons for this. First, most randomised trials are under-

powered [1, 3, 5, 7]. Second, the estimation of the

required information size in a random-effects meta-

analysis ought to incorporate the heterogeneity variance

(between trial variance) [1, 7, 11]. Only 22% of the meta-

analyses in The Cochrane Library have 80% power to

conclude whether there is an intervention effect of 30%

or not when the usual maximal risks of type I error (α)

of 5% and type II error (β) of 20% are applied [1]. This

lack of power is primarily caused by small trials and a

considerable heterogeneity variance between the esti-

mates of the intervention effect in the included trials [1].

Meta-analyses can be conducted with a fixed-effect

model or a random-effects-model [40, 41]. In the fixed-

effect model, we assume one true underlying effect in all

the included trials. In the random-effects model, we as-

sume that the true underlying effects vary from trial to

trial according to a normal or log normal distribution.

Often, the fixed-effect assumption is unrealistic as the

possible underlying effect may depend on, e.g., doses of

a pharmacological intervention, duration of the interven-

tions, timing of the outcome assessment, and differences

between the trial populations. These differences between

the included trials are called clinical heterogeneity. Due

to these factors and possibly random variation, the in-

cluded effect estimates often show considerable variation

defined as statistical heterogeneity and measured as large

inconsistency (I2) [42] and large diversity (D2) [11]. Con-

siderable statistical heterogeneity leads to increased

uncertainty, expressed as a wider confidence interval of

the intervention effect when the meta-analytic estimate is

calculated in a random-effects model. Early meta-analyses

conducted before the required information size and the

corresponding number of trials are achieved [43], often

wrongly show unrealistic large intervention effects as well

as statistical significance which cannot be reproduced

when the amount of required information is adequately

considered [44, 45]. The reliability in early meta-analyses

is lower compared to their updated counterparts years

later [2]; the estimated intervention effects, when further

trials are included in the meta-analysis update, become

considerably lower than previously estimated [2].

A large simulation study of random-effects meta-analyses

shows that there is a considerable risk of overestimating the

intervention effect when the required information size has

not been reached [6]. These results were based on the as-

sumption that the ‘true’ intervention effect was zero while

the frequencies of events in the control groups and the het-

erogeneity variance were assumed similar to those in large

cardiologic meta-analyses [6]. It has been shown empirically

that approximately 25% of cardiologic meta-analyses are in-

conclusive because of lack of power [3]. Turner and col-

leagues showed that the trials and the meta-analyses of

Cochrane systematic reviews have limited power [1]. In

Cochrane meta-analyses, each total number of analysed

participants provide only 22% of the meta-analyses with an

80% power to detect or refute a 30% relative risk reduction

(which is a large intervention effect) [1] (Fig. 3). Recently,

Imberger and colleaques confirmed these results in meta-

analyses of anaesthesiological interventions [46]. Accord-

ingly, four out of five meta-analyses did not have the statis-

tical power to address even substantial intervention effects.

The number of meta-analyses with sufficient power to

address smaller and clinically more plausible intervention

effects are, undoubtedly, even smaller.

If we test with a constant level of statistical signifi-

cance (e.g., 5%) on the way towards the required infor-

mation size, the risk of type I error is increased to more

than 5%. The problem for cumulative meta-analyses, due

to repeated updating and consecutive calculation of 95%

confidence intervals, with inclusion of results from new

randomised trials is, therefore, analogous to interim ana-

lyses of a single trial [8, 9]. Thus, we, as well as others,

recommend that the interpretation of meta-analyses in

systematic reviews is done alongside with a sequential

analysis, e.g., Trial Sequential Analysis (TSA) [46, 47].

The purpose of using TSA is to avoid the risk of type I

and type II errors due to sequential testing on a constant

statistical significance level and with inclusion of fewer

participants than the required number in order to detect or

reject specified effects [7, 10, 11]. It is possible to accommo-

date Gordon Lan and David DeMets’ group sequential ana-

lysis for interim analysis in a single randomised trial to the

updating of cumulative meta-analysis as it progresses with

the addition of trials. This is done with an appropriate con-

tinuous use of type I error risk and an α-spending function

of the allowed total nominal type I error risk, so that when

the required information size and the required number of
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trials have been reached and beyond, the risk is kept below

5%. The trial sequential monitoring boundaries generated

this way make it possible to test if significance is reached

and to adjust the confidence intervals every time new trials

are added to the meta-analysis. The latter is a prerequisite

for using sequential boundaries in cumulative meta-

analyses of trials with varying sample sizes [10, 12].

Besides applying the observed estimate of statistical

heterogeneity—the observed statistical diversity (D2)

[11, 41] in the most recently conducted meta-analysis—it

may be reasonable to apply an expected heterogeneity in

the calculation of the required information size, especially

when the observed heterogeneity is zero [48]. As it is un-

likely that diversity will stay zero when larger trials are

added, an expected heterogeneity may be used in a sensi-

tivity analysis (e.g., a diversity of 25% or the upper confi-

dence interval of the I2 (provided by the TSA program))

when the required information size is calculated [48, 49].

It may also be wise in a post hoc calculation of the re-

quired information size to apply the least likely interven-

tion effect, i.e., the confidence limit of the summary

estimate in the meta-analysis confidence interval closest

to the null effect. The latter is a conservative approach fa-

cilitating the evaluation of whether a meta-analysis may

show an effect of the least likely magnitude in a TSA. If a

TSA with such an approach shows a statistical significant

intervention effect, judged by the TSA-adjusted confi-

dence interval, there is a very high probability that the

intervention has an effect, provided that the included trials

are at low risk of bias. In contrast, there will only be very

low evidence of effect if the TSA-adjusted confidence

interval does not exclude the null effect for an interven-

tion effect of a magnitude indicated by the point estimate.

Results

False positive meta-analyses

It is necessary to assume or address a specific magnitude

of the intervention effect, different from zero, in order to

calculate the sample size in a single trial. Therefore, when

a sample size is estimated, we relate not only to the null

hypothesis but also to a specific alternative hypothesis.

The alternative hypothesis is the assumption or the antici-

pation of a specific magnitude of the intervention effect

different from zero. Most often random-effects meta-

analysis will be the preferred appropriate method to esti-

mate the precision weighted average effect as it does not

ignore the statistical heterogeneity variance. If statistical

heterogeneity is anticipated, the information size in the

conclusive meta-analysis ought to be an upward adjusted

sample size of a corresponding adequately powered single

trial. The upward adjustment is done with the variance ex-

pansion shifting from a ‘fixed-effect’ model to a ‘random-

effects’ model, see Appendix [11].

The described example from cooling of patients after

out of hospital cardiac arrest is far from being unique

(Fig. 1). Among meta-analyses of interventions for neo-

natal patients, there were approximately 25% to 30%

false positive results [5, 50]. In 2009, we showed empir-

ically that the use of Lan-DeMets’ trial sequential moni-

toring boundaries eliminated 25% of the false positive

traditional interim-meta-analyses. This analysis included

33 final meta-analyses with sufficient information size to

detect or reject a 15% relative risk reduction [44]. In

2013, we showed that 17% of cardiovascular meta-

analyses with P < 0.05 were most likely false positive [3].

Fig. 3 Showing trial sequential monitoring boundaries for benefit and
harm in a cumulative meta-analysis. The Z-value is the test statistic and
|Z| = 1.96 corresponds to P = 0.05; the higher Z-values, the lower the
P-values. a Shows how an early statistical significance no longer is
present in a cumulative meta-analysis when the required information
size has been reached. b Shows how an early lack of statistical signifi-
cance emerges later when the requiered information size is achieved.
c Shows how an early statistical significance can be avoided by adjust-
ing the level of statistical significance. The etched upper curve is the
group sequential boundary adjusting the level of statistical significance
for multiple testing and sparse data. Z-value is shown on the y-axis and
on the x-axis IS is the required information size [10]
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In 2015, we showed that less than 12% of meta-analyses

of anaesthesiological interventions had 80% power to

show a 20% relative risk reduction [46].

There may be other important reasons for a traditional

meta-analysis to yield a false positive result than only the

increased risk of random errors. A risk of systematic error

(bias) in the included trials is a frequent cause of overesti-

mation of benefit and underestimation of harm – sequen-

tial meta-analyses do not in any way solve problems with

bias [51–58]. Therefore, it is recommended that every sin-

gle trial included in a systematic review with meta-analysis

be evaluated for risks of bias. This evaluation should

encompass the following domains: generation of the allo-

cation sequence, allocation concealment, blinding of

patients and caregivers, blinding of outcome assessment,

report on attrition during the trial, report on outcomes,

and industry funding. Other types of bias may also need

to be considered [51–58].

False negative meta-analyses

Lack of a statistical significant intervention effect in a

traditional meta-analysis is not necessarily evidence of

no effect of the intervention. »Absence of evidence is

not evidence of absence of effect« [59]. Nevertheless, se-

quential meta-analyses with the TSA software may show

that the meta-analysis has sufficient statistical power to

reject an intervention effect of a specific magnitude even

though the estimated required information size has not

yet been reached (Fig. 4).

This can be done by calculating the non-superior and

non-inferior trial sequential monitoring boundaries, the

socalled ‘futility boundaries’. Futility boundaries indicate

when the assumed effect could be considered unachiev-

able. Futility-boundaries are calculated using a power

function analogous to the α-spending function for

constructing superiority- and inferiority-boundaries with

application of numerical integration [36]. The example

with cooling of comatose patients after cardiac arrest

shows a situation where the assumed intervention effect

of 17% relative risk reduction can be rejected because the

Z-curve crosses the futility-boundary (Fig. 1b). However,

this is not always what happens. We found that in 25 of

56 (45%) published cardiovascular systematic reviews in

The Cochrane Library, the actual accrued information size

failed to reach what was required to refute a 25% relative

risk reduction [3]. Only 12 of these reviews (48%) were

recognised as inconclusive by the authors. Of the 33

meta-analyses not showing statistical significance, only 12

(36%) were truly negative in the sense that they were able

to reject a 25% relative risk reduction [3]. This illustrates

that the statistical power is also low in many cardiovascu-

lar meta-analyses, and false conclusions are imminent.

Within other medical specialities, the problems are likely

to be even bigger as trials and meta-analyses usually

include less patients. Nevertheless, sequential meta-

analyses with calculated futility-boundaries may, in some

instances, contribute to adequately declare the a priori an-

ticipated intervention effect to be unachievable, though

the required information size was not reached [10].

Analogous to the false positive meta-analyses, a meta-

analysis may result in a false negative result due to bias.

Bias is a frequent cause for underestimation of harmful

intervention effects [51–57], and therefore, the prelimin-

ary defined bias risk domains should also be evaluated

for all included trials when it comes to serious and non-

serious adverse events [51–58].

Discussion

We have explained and shown how the use of TSA may

assist the meta-analyst in controlling risks of type I and

type II errors when conducting meta-analyses. The use

of TSA has now increasingly been advocated by authors,

both inside and outside The Cochrane Collaboration

[47, 60, 61]. However, the use of TSA is not easy, may

be misused, and has been critisised [62].

Fig. 4 Showing trial sequential monitoring boundaries for benefit and
futility in cumulative meta-analysis. The Z-value is the test statistic and
|Z| = 1.96 corresponds to P = 0.05; the higher Z-values, the lower
P-values. a Shows how trial sequential monitoring of a cumulative
meta-analysis, before the requiered information size (IS) is achieved,
makes it likely that the assumed effect is in fact absent when the
Z-curve surpasses the futility-boundary (etched curve). b Shows how
trial sequential monitoring of a cumulative meta-analysis, before the
required information size (RIS) is achieved, makes it likely that the
assumed effect is in fact true when the Z-curve surpasses the trial
sequential monitoring boundary for benefit (etched curve). Lan-
DeMets’ α-spending-function has been applied for the construction of
the trial sequential monitoring boundaries, the critical Z-values [10]
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If TSA is designed and conducted after data were col-

lected, there is a danger that the analysis becomes data

driven and that it may not be sufficiently stringent to ad-

dress a predefined alternative hypothesis [63–65]. How-

ever, using data-driven hypotheses and analyses is a

critique that could potentially be directed against all

meta-analyses. This is why, for each TSA, the anticipated

intervention effect, the anticipated between trial hetero-

geneity, and the proportion of the outcome in the con-

trol group, should be part of a peer reviewed protocol,

published prior to the conduct of the systematic review

and the TSA [49, 64, 65]. These considerations should

also impact the choice of the meta-analytic model, e.g.,

whether to give most credibility to the fixed-effect or the

random-effects model and how to calculate the required

information size [11, 65].

TSA has been criticised for transferring a method

from a decision theoretical universe in a single rando-

mised clinical trial into a universe where the result does

not directly impact the subsequent decisions [63–66].

The postulate seems to be that no matter that a TSA

shows benefit, harm, or lack of a relevant effect, it will

not impact any part of the already finalised trials, and

possibly, not decisions to stop or continue ongoing tri-

als, or to initiate trials. This point of view seems to un-

duly emphasise the difference between the consequences

of an interim-analysis in a single trial and the conse-

quences of a sequential meta-analysis of several trials.

First, the systematic review is placed at the top of the

generally recognised hierarchy of evidence, meaning that

the systematic review is considered the most likely reli-

able source of evidence, implicating whether an inter-

vention should be implemented in clinical practice or

further trials should be launched [52, 53]. Interventions

are often recommended in clinical guidelines and imple-

mented in clinical practice when a meta-analysis shows

statistical significance on the traditional naïve level (P <

0.05) [16, 18, 67–69]. Furthermore, the chance that a

meta-analysis is updated in The Cochrane Library is ap-

parently 57% higher when P ≥ 0.05 than when P < 0.05

[4, 45]. This indicates that meta-analyses with P < 0.05

contribute to the decision to stop doing further trials or

to decide if meta-analyses should be updated or not.

Critics of sequential meta-analysis have stressed that

the method emphasises too heavily the result of the stat-

istical significance test instead of the 95% confidence

interval [70]. However, the fundamental problem is not

whether the result is presented as a P-value or as a con-

fidence interval, but it is foremost because a (1-α)% con-

fidence interval is based upon the choice of the

maximally allowed type I error risk (α). If we use naïve

unadjusted confidence intervals when the required infor-

mation size is still not reached, we will be led to make

hasty and false declarations of statistical significant

effects, likely to be refuted if further trials are added.

With TSA we adjust the confidence interval for the in-

complete meta-analytic information size and for multiple

testing [4]. It has been claimed that a traditional 95%

confidence interval is sufficient to evaluate whether the

intervention works or not [70], but the traditional 95%

confidence interval exclusively relates to the null hy-

pothesis and not to a relevant alternative hypothesis [68,

71]. Thereby, the supporters of the traditional confi-

dence interval forget that the rejection of the null hy-

pothesis (the conventional 95% confidence interval

excluding the null effect), does not in itself lead to the

acceptance of a relevant alternative hypothesis [71]. Pre-

mature rejection of the null hypothesis, in the case of

sparse data, may be dismissed if these data become suffi-

cient to conclude on a specific alternative intervention

effect that is different from the null hypothesis.

A traditional unadjusted 95% confidence interval ex-

cluding the null effect and accepting an effect indicated

by, e.g., the point estimate, is sufficient as a criterion for

statistical significance only when the required informa-

tion size has been reached. If the number of randomised

participants in the meta-analysed trials is less than the

required, the confidence interval needs to be adjusted

[34, 36]. By exclusively applying a 95% confidence inter-

val in a meta-analysis, one does not automatically

account for the lack of required power in the meta-

analysis to conclude on an effect size indicated by, e.g.,

the point estimate [71]. Therefore, in relation to a rele-

vant and realistic alternative hypothesis, the traditional

unadjusted confidence interval will represent a too nar-

row confidence interval which by chance does not in-

clude the null effect, and accordingly, the observed

effect of the intervention may be misleading [71, 72].

The credibility of the traditional confidence interval re-

lies on the fact that the required information size for a

specific effect has been achieved, and thereby, the ability

to conclude on an alternative hypothesis [59, 63–65].

TSA has also been criticised for being a too conser-

vative approach as one may decide to use a too scep-

tical a priori intervention effect and use the total

variance in the random-effects meta-analysis to calcu-

late the required information size. The use of an a

priori intervention effect does not consider the inter-

vention effect estimated from the data already ac-

crued; however, applying such an approach may in

fact lead to even larger required information sizes

[73]. Moreover, to think of the total variance in the

random-effects model as a result of random variation

alone, could be seen as a ‘worst-case scenario’ of risk

of random error [73]. However, we may rarely know

when a variation is caused by systematic differences

or by random variations [52]. Therefore, it seems

mandatory to perform an analysis, assuming that all
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the variance encountered in the random-effects meta-

analysis is arising from ‘play of chance’ [46, 47].

Elena Kulinskaya and John Wood [43] argued, in their

important article from 2013, that when estimating the

information size in random-effects model meta-analyses,

it is too simplistic to just increase the required informa-

tion size with the variance increase, going from a fixed-

effect to a random-effects model. Kulinskaya and Wood

[43] persuasively showed that the necessary number of

future trials to be included should be given with a lower

limit (i.e., minimal number), regardless of the sample

sizes of the trials, before the power of the random-

effects model meta-analysis becomes sufficient to detect

or reject a prespecified clinically relevant intervention ef-

fect. Kulinskaya and Wood also showed that increasing

the number of future trials in a random-effects model

meta-analysis might decrease the required information

size estimated for additional future trials to render suffi-

cient power of the random-effects meta-analysis [43].

We welcome the proposals for modifying the plan on

number of subsequently included trials and their sample

size. These considerations are in line with the findings of

Joanna in’t Hout et al. [74], Alexander Sutton et al. [73],

Jeffrey Valentine et al. [75], and Michael Borenstein et al.

[76]. However, we would still argue that the difference

between the required information size and the accrued

information, may contribute importantly to the estima-

tion of the necessary sample size in future trials, espe-

cially if coupled with the considerations proposed by

Kulinskaya and Wood [43]. If we use the weighted esti-

mate of the variance in previous trials as being the best

estimate of the variance for the future trials, we may

need 50% (Appendix) more trials than the minimal

number required to cover the information gap of the re-

quired minus the acquired information size (RIS-AIS)

(Appendix). Following an example given by Kulinskaya

and Wood [43], we will be able to cover the information

gap suggested by RIS-AIS with 12 trials instead of the

minimal required number of eight trials. As outlined by

Kulinskaya and Wood, we would be able to further de-

crease the total number of future randomised patients

by increasing the number of future planned trials even

more. However, this will be at the expense of dramatic-

ally decreasing the power of each new trial to detect the

difference, indicated so far by the point estimate of the

meta-analysis (or even the minimal important differ-

ence). Certainly, we could choose to increase the num-

ber of future trials with only one or two. However, the

corresponding information size will still be huge. The

minimal required number of trials calculated as the first

integer greater than c ⋅ τ2 (where c is a figure relating to

the information already gained and τ2 is the between

trial variance, Appendix), and the corresponding meta-

analytic information size, may be optimal because it

provides each of the new, equally sized, trials with the

same power as the ‘planned’ random-effects meta-

analysis aimed to detect or reject a similar intervention

effect. However, for most interventions, these huge trials

will be unrealistically large to conduct. Alternatively, in-

creasing the number of trials corresponding to a re-

quired extra information size of RIS-AIS will still provide

such trials with a power of 80% to detect or reject an

intervention effect of 2.5 times the effect indicated in

the meta-analysis. Increasing the number of trials even

further than the number corresponding to RIS-AIS will

decrease the power of these trials with approximately

10% per additional trial (or increase the detectable alter-

native to three times or more the effect indicated in the

meta-analysis). Such trials will subsequently be substan-

tially underpowered to detect or reject even much larger

intervention effects than the realistic difference, or even

the minimal important difference. This will obviously

destroy the integrity of such small future trials and they

will generally, and rightfully so, be disregarded as heavily

influenced by random error (‘play of chance’). Therefore,

the RIS and thereby the RIS-AIS seem to be a fair trade-

off between the number of required additional rando-

mised participants and the number of required

additional trials. In two examples given by Kulinskaya

and Wood, the number of additional randomised partici-

pants is reduced from 4700 to 720 and from 11,200,000

to 300,000 when using RIS-AIS at the expense of four

more trials than the minimal number of trials required.

However, we agree, that a reasonable strategy for resolv-

ing the question of the presence or absence of a specific

intervention effect with an adequately powered random-

effects model may include a first trial with a sample size

equal to the sample size indicated by formula 1 in the

Appendix. This is a sample size corresponding to the

minimal number of required trials. Such a trial may very

well be substantially larger than the total acquired infor-

mation size in the meta-analysis conducted before the

trial. When the result from such a trial becomes avail-

able, the updated cumulative meta-analysis using the a

priori anticipated intervention effect and a new estimate

of the between trial variance may be used in a fixed-

effect or a random-effects model to evaluate how far we

will be from a conclusion of whether the intervention ef-

fect exists or not. The fixed-effect model may then turn

out to be the most appropriate model to evaluate the

pooled intervention effect when one or a few trials heav-

ily dominate the entire accumulated evidence [77].

Nevertheless, we must be aware that including new tri-

als in a cumulative meta-analysis may change the esti-

mate of the ‘between trials variance’ as well as the

proportion of events in the control group which are both

essential for estimating the required information size

and the corresponding number of required future trials.
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If diversity and the proportion of events in the control

group change substantially, the magnitude of the re-

quired information size and the corresponding number

of required future trials may change accordingly. This is

the phenomenon of the ‘moving target’ which critics

hold against TSA. However, a moving target seems bet-

ter than having no target at all. Recently, we docu-

mented that in prospective application of TSA in very

large cumulative meta-analyses, TSA prevented false

positive conclusions in 13 out of 14 meta-analyses when

RIS was not reached [45].

Trial Sequential Analysis: a position between frequentist

and Bayesian thinking

TSA of meta-analysis like the sequential analysis of a

single randomised trial, originates from frequentist sta-

tistics [29]. The frequentist way of thinking was initially

based on testing of the null hypothesis. This applies to

both the P-value and its relation to an a priori accepted

maximal type I error risk (α) and the possibility of in-

cluding a null effect in the corresponding (1-α)% confi-

dence interval [29]. The anticipation of an intervention

effect of a specific magnitude, the alternative hypothesis,

and subsequently the calculation of a required informa-

tion size enabling the conclusion whether such an effect

could be accepted or rejected, is, however, intimately re-

lated to the Bayesian prior.

TSA contains an element of Bayesian thinking by re-

lating the result of a meta-analysis to the a priori point

estimate of the intervention effect addressed in the ana-

lysis [77]. Bayes’ factor (BF) for a trial result is the ratio

between the probability that the trial data originates

under the null hypothesis, and the probability that the

trial data originates under the alternative hypothesis or

even several alternative hypotheses [72, 78, 79]. The pos-

terior odds ratio for the estimate of the intervention ef-

fect after a new trial is added is calculated given the

prior odds ratio for the intervention effect before the

trial as: posterior odds ratio = BF x prior odds ratio [79].

In a Bayesian analysis, the prior takes form of an antici-

pated probability distribution of one or more possible al-

ternative hypotheses or intervention effects which

multiplied with the likelihood of the trial, results in a

posterior distribution [79].

A methodological position between the frequentist

and the Bayesian thinking can be perceived both in se-

quential interim-analyses of a single trial and in TSA of

several trials [29]. Both have a decisive anticipation of a

realistic intervention effect, although a full Bayesian ana-

lysis should incorporate multiple prior distributions with

different anticipated distributions of intervention effects:

e.g., a sceptical, a realistic, and an optimistic prior [79].

The TSA prioritise one or a few specific alternative hy-

potheses, specified by point estimates of the anticipated

effect in the calculation of the required information size

just as in the sample size estimation of a single trial [11].

The incentive to use sequential analyses arise because

the true effect is not known and the observed interven-

tion effect may be larger than the effect addressed in the

sample size estimation of a single trial as well as in the

estimation of the required information size for a meta-

analysis of several trials. The need to discover an early,

but greater effect than the one anticipated in the sample

or information size calculation, or to discard it, thereby

originates. If the intervention effect, in relation to its

variance, happens to be much larger during the trial or

the cumulative meta-analysis, this will be discovered

through the breakthrough of the sequential boundary.

However, this may also be problematic as too small sam-

ple sizes (in relation to the true effect), as mentioned, in-

crease the risk of overestimation of the intervention

effect or the risk of underestimation of the variance. In

other words, due to a factitious too small sample size,

we may erroneously confirm an unrealistic large antici-

pated intervention effect due to the play of chance.

There seems to be an ancestry between the sceptical

prior in a Bayesian analysis and the use of a realistic

intervention effect in a sequential analysis when the

sample size in a single trial or the information size in a

meta-analysis should be calculated [77, 78]. The smaller

the effect, the greater the demand for quantity of infor-

mation, and the sequential statistical significance bound-

aries become more restrictive. In other words, it

becomes more difficult to declare an intervention effect-

ive or ineffective, in case the required information size is

not achieved.

Christopher Jennison and Bruce Turnbull, however,

have shown that on average, when a small, but realistic

and important intervention effect is anticipated, a group

sequential design requires fewer patients than an adap-

tive design, e.g., re-estimating the (fixed) sample size

after the first interim analysis [80]. The group sequential

design seems more efficient than the adaptive design. In

line with mathematical theory [72], simulation studies

[6], and empirical considerations [44, 45, 81, 82], there is

evidence that small trials and small meta-analyses by

chance tend to overestimate the intervention effect or

underestimate the variance. Early indicated large inter-

vention effects are often contradicted in later published

large trials or large meta-analyses [6, 45, 81, 82]. The

reason might be that statistical confidence intervals and

significance tests, relating exclusively to the null hypoth-

esis, ignore the necessity of a sufficiently large number

of observations to assess realistic or minimally important

intervention effects. The early statistical significance, at

the 5% level, may be a result of an early overestimation

of the intervention effect or an underestimation of the

variance, or both, when the required information size for
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a realistic effect is not achieved. In general, it is easier to

reject the null hypothesis than to reject a small, but realis-

tic and still important, alternative hypothesis [64]. The

null hypothesis can never be proven, and in practice, this

means that it can never be completely discarded, as this

would require an infinitely large number of observations.

The reason for early spurious significant findings

may be quite simple, although not self-evident. Even

adequate randomisation in a small trial lacks ability

to ensure the balance between all the involved, known

or unknown, prognostic factors in the intervention

groups [81]. When we find a statistically significant

intervention effect in a small trial or in a small meta-

analysis, it is often due to insufficient balance of im-

portant prognostic factors, known or unknown,

between the intervention groups. Therefore, it is not

necessarily intervention effects that we observe, but

rather an uneven distribution of important prognostic

factors between groups. In addition to the described

risks of random error, the overall risk of bias which

includes the risk of publication bias makes it under-

standable why published trials and meta-analyses

often result in unreliable estimates of intervention

effects [2, 83].

The power of frequentist inference in a single trial

and in a meta-analysis of several trials lies in two

basic assumptions. First, the only decisive difference

between the intervention groups during the trial is

the difference between the interventions. We con-

clude that ‘despite everything else’, the measured dif-

ference in the outcome is due to different properties

of the interventions because everything else seems

equal in the groups. In a small trial and a small

meta-analysis, the assumption, that all other risk fac-

tors are equally distributed in the two intervention

groups, may not be fulfilled as described above, even

though adequate bias control has been exercised. Sec-

ond, the power of frequentist inference depends on

the correctness of applying the ‘reverse law of impli-

cation’ from mathematical logic (see Appendix): that a

sufficiently small P-value, calculated as the probability

that we got a specific trial result when the null hy-

pothesis is in fact true, leads us to discard the null

hypothesis itself. This assumption, which never totally

excludes the possibility that the result of a trial may

agree with or be a result of the null hypothesis, de-

mands a specific a priori chosen threshold for statis-

tical significance. That is, a sufficiently small P-value

leads us to regard the trial result as virtually impos-

sible under the null hypothesis, and, therefore, we re-

gard the opposite to be true and discard the null

hypothesis. This automatically raises the question:

how small a P-value should be before we can apply

the ‘reverse law of implication’. Or alternatively

expressed, does a P-value less than an a priori chosen

threshold of statistical significance reject the null hypoth-

esis? Ronald A. Fisher, already in 1956, warned against

using a statistical significance level of 5% in all situations

[84]. Nevertheless, ever since, it seems to have broadly

been implemented as a criterion for conclusion in medical

research [83], and this is likely wrong [85].

Sequential interim-analyses in a single trial and TSA

of meta-analyses of several trials deal systematically and

rationally with the misunderstood application of a con-

stant level of statistical significance (P < 0.05), unrelated

to the accrued fraction of the pre-calculated required

(fixed) sample or information size and number of trials.

Conclusions

Most systematic reviews with meta-analyses, including

Cochrane systematic reviews, do not have sufficient stat-

istical power to detect or reject even large intervention

effects. Meta-analyses are updated continuously, and,

therefore, ought to be regarded as interim-analyses on

the way towards a required information size. The evalu-

ation of meta-analyses ought to relate the total number

of randomised participants to the required meta-analytic

information size and the corresponding number of re-

quired trials considering statistical diversity. When the

number of participants in a meta-analysis is less than

the required, based on a realistic and minimally import-

ant intervention effect, the constant application of a

traditional naïve 95% confidence interval or a naïve 5%

statistical significance threshold will lead to too many

false positive and false negative conclusions. The Lan-

DeMets’ sequential monitoring boundaries in TSA offer

adjusted, expanded confidence intervals and adjusted,

restrictive thresholds for statistical significance when the

diversity-adjusted required information size and the re-

quired number of trials for the meta-analysis has not

been reached. A Bayesian meta-analysis, using prior dis-

tributions for both the intervention effect and the statis-

tical heterogeneity, may even be more reliable for

deciding whether an intervention effect is present or

not. However, the Bayesian meta-analysis also poses dif-

ficulties with interpretation. Until easy-to-use software

programs for full Bayesian meta-analysis become access-

ible, TSA represents a better assumption-transparent

analysis than the use of traditional meta-analysis with

unadjusted confidence intervals and unadjusted thresh-

olds for statistical significance.

Appendix

Sample size in a single randomised trial

Dichotomous outcome

When the intervention and the control group are equal-

sized groups, the sample size (SS) is calculated as [38]:
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SS ¼ 4⋅ðZα=2 þ ZβÞ
2
⋅
v

θ2
; with v ¼ P⋅ð1−PÞ og P

¼ ðPE þ PCÞ=2

In this formula, PE and PC are the frequencies of the

outcome in the experimental group and the control group,

ϴ is the intervention effect that the trial wants to address

with μ = PC– PE, α and β are the maximally allowed type I

and type II error risks, and ν is the variance of the out-

come difference between the two groups.

The test statistic Zi at the i-th interim analysis for the

dichotomous outcome measure:

Zi
¼ PEi−PCi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var PEi−PCið Þ
p

with PEi − PCi being the estimate of the intervention ef-

fect at the i-th interim analysis, and Var(PEi − PCi) is the

variance of the estimate [36].

Continuous outcome

If the anticipated difference between the means in the

control group and the experimental group is assumed

to be X1–X2 with the standard deviation SD, α and β

being the type I and type II error risks, the SS is

calculated as [38]:

SS ¼ 4⋅ðZ1−α=2 þ ZβÞ
2
⋅
ðX1�X2Þ

2

SD2

The cumulative Zi-value at the i-th interim analysis is

calculated as:

Zi ¼
X1�X2

SDðX1�X2Þ

X1i– X2i being the estimate of the intervention effect

at the i-th interim analysis, and SD(X1i –X2i) its standard

deviation [36].

The required information size in a meta-analysis

The required information size (RIS) in a meta-analysis of

a dichotomous outcome can be calculated as (see the

definition of μ and ν above) [11]:

RIS ¼
1

1−D2
�4� Z1−α=2 þ Zβ

� �2
�
v

θ2

Therefore, RIS emerges as the sample size estimated

for a single trial with corresponding power to detect

or reject an anticipated intervention effect μ, multi-

plied with a factor adjusting for the final expected or

the present diversity (D2) in the meta-analysis. PC
can be estimated as the pooled unweighted propor-

tion of outcomes in the control groups in the in-

cluded trials [11, 39–41].

Alternatively, but with equal result, the RIS for a

random-effects model can be calculated as:

RIS ¼ 4� Z1−α=2 þ Zβ

� �2
�
Vrandom

θ2

Where νrandom is the variance in the random-effects

model. This is the model variance based calculation of

RIS.

When the required information size has been esti-

mated, the meta-analysis can be analysed in relation to

the trial sequential monitoring boundaries, constructed

as per Lan-DeMets’ critical monitoring boundaries,

analogous to the sequential analysis of a single rando-

mised trial [17, 42]. Similar to the Zi-value for the i-th

cumulative meta-analysis, we use here the ratio between

the logarithm of the Mantel-Haenszels weighted relative

risik (RRiMH) and its standard error SE[ln(RRiMH)] in a

random-effects model, e.g., as suggested by DerSimonian

and Laird [44, 45]:

Zi ¼
Ln RRiMHð Þ

SE Ln RRiMHð Þ½ �

The required information size and the number of

required extra trials in a meta-analysis

As per Elena Kulinskaya and John Wood [43], using the

same mathematical notation, the sample size of future K'

equally sized trials with equally sized (ni) intervention

and control groups is:

2�ni ¼
4�σ2

K
0

c
−τ2

; ð1Þ

where σ2 is the variance in these future trials and τ2 the

between trial variance in the first K trials, and c is a con-

stant when the results from previous trials in the

random-effects meta-analysis are known being:

c ¼ Z1−α=2 þ Z1−β

� �

=θ
� �2

− V −1
R Kð Þ;

VR(K)
− 1 is the reciprocal of the variance in the random-

effects model of the pooled estimate from the first K tri-

als which is equal to SDR(K)
− 2 in a meta-analysis of a con-

tinuous outcome. In the examples, given by Kulinskaya

and Wood, σ2 is determined by the simple unweighted

average of the within trial variances in the first K trials

[43]. However, as it may be more appropriate to use an

estimate of the variance in the future trials which is the

weighted average of the pooled squared standard devia-

tions from the fixed-effect model, SDF(K)
2 , of the first K

trials for continuous outcomes, we propose:

σ2 ¼ SD2
F Kð Þ ¼

N ⋅SE2
F Kð Þ

4
;
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where N is the total number of participants in the meta-

analysis of the first K trials and SEF(K)
2 is the squared

pooled standard error in the fixed-effect model. If N’ is

the sum of sample sizes from the equally sized K' future

trials, the formula (1) for the sample size in future trials

can be rewritten to:

N
0

�
K
0 ¼

4⋅σ2

K
0

c −τ2
¼

4⋅σ2
⋅c

K
0
−c⋅τ2

and thereby N
0
¼

4⋅σ2⋅c

1− c⋅τ2

K
0

;

from which it is evident that K’ has to be an integer

greater than c ⋅ τ2 (the minimum required number of

extra trials) and that N’ converges to 4 · σ2 ⋅ c when K’

approaches the infinite as:

Lim

K
0
→∞

4⋅σ2⋅c

1− c⋅τ2

K
0

0

@

1

A ¼ 4⋅σ2⋅c ¼ 4⋅SD2
FðKÞ⋅c;

meaning that N’ can never be less than 4 · σ2 · c, despite

the number of future trials being carried out. Because

the random-effects model variance of the first K trials is

always greater than the fixed-effect model variance of

the K first trials, we have:

SD2
R Kð Þ≥ SD2

F Kð Þ

4⋅SD2
R Kð Þ⋅c > 4⋅SD2

F Kð Þ ⋅c ;

and as: c = ([Z1 − α/2 + Z1 − β]/θ)
2
− SDR(K)

− 2 , we get

4⋅SDR Kð Þ
2
⋅ Z1−α=2 þ Z1−β

� �

=θ
� �2

− SD−2
R Kð Þ

n o

> 4⋅SD2
F Kð Þ⋅c ¼ 4�σ2⋅c

ð2Þ

If RIS is defined as the required information size for a

meta-analysis to have as many participants as an equally

powered trial to address a hypothesis of the same inter-

vention effect. with the random-effects model variance

experienced [11] so far, we will have:

RIS ¼ 4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �

=θ
� �2

;

4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �

=θ
� �2

−SD−2
R Kð Þ

n o

¼ 4⋅SD2
R Kð Þ⋅ Z1−α=2 þ Z1−β

� �

=θ
� �2

−4 ¼ RIS‐4;

and thereby the equation (2) can be rewritten as:

RIS > RIS− 4 > 4⋅SD2
F Kð Þ⋅c ¼ 4�σ2⋅c ;

which shows that RIS is always greater than the mini-

mum required extra participants in the final meta-

analysis. If VR(K)
− 1 = SDR(K)

− 2 is small (close to zero when

abundant information has already been collected), the

statement that RIS > 4 · σ2 · c is merely the trivial that the

required information size will be greater than the sample

size in one future trial with an anticipated variance of σ2.

Two scenarios now cover all possible situations:

A) If: RIS −AIS > 4 SDF(K)
2

c, then we will be able

to calculate the corresponding required number

(K’RIS-AIS) of future trials to cover the information

gap indicated by the RIS-AIS participants according

to formula (1), having:

K ’RIS−AIS ¼
c⋅τ2

1− 4⋅σ2⋅c
RIS−AISð Þ

B) If RIS −AIS ≤ 4 SDF(K)
2

c, then the situation is

that the extra required information size is less than

what is required in one extra trial. The question of

whether there is an intervention effect greater or

equal to θ may be answered if RIS has been achieved

in the minimal number of required trials.

Moreover, if for example:

RIS−AIS > 3⋅4⋅σ2⋅c

with RIS −AIS = 3 ⋅ 4 ⋅ σ2 ⋅ c in the formula for K ’ RIS −AIS,

then this leads to:

K ’12⋅σ2⋅c ¼
c⋅τ2

1− 4⋅σ2⋅c
3⋅4⋅σ2⋅c

and we have:

K ’RIS−AIS ¼
3⋅c⋅τ2

2
¼ 1:5⋅c⋅τ2

meaning that the extra number of required trials, K ’

RIS − AIS, for the random-effects meta-analysis to be

adequately powered using RIS-AIS, would be 50%

higher than the minimal required number of trials. In

contrast, the minimal required number of trials, c ⋅ τ2,

demands a very large total information size.

The law of reverse implication in mathematical logic

If A and B are statements that can be determined to be

true or false, it follows from mathematical logic that the

statement: (from A follows B), is equivalent to the state-

ment: (from non-B follows non-A). That is: the state-

ment (»from the null hypothesis being true follows that

the result of the trial is unlikely«), is equivalent with the

statement: (»from the trial result being likely follows that

the null hypothesis is false«). If the probability that the

trial result has emerged from a true null hypothesis is

regarded as »unlikely«, when the P-value is lower than a

certain level of significance, the null hypothesis can be

rejected.

Wetterslev et al. BMC Medical Research Methodology  (2017) 17:39 Page 15 of 18



The statistical concepts used in this article

The null hypothesis (H0) is the hypothesis that the mean

or the occurence of a certain outcome is precisely the

same in the groups compared.

The alternative hypothesis (HA) is the assumed magni-

tude of the difference between the means or the occur-

ence of a certain outcome in the groups compared.

The P-value is the probability (P) that a specific data-

set (D), or something even more extreme, would appear

if the null hypothesis is true, that is: P = P(D|H0) which

shold be read as: the P-value is equal to the probability

of getting the dataset, given the null hypothesis is true.

The P-value is intuitively difficult to understand and is

often wrongly interpreted. In Bayesian statistic, one can

obtain results much easier to understand, and the clin-

ical significance of a result from a trial or a meta-

analysis may, therefore, be easier to achieve. One can

present, e.g., the »reverse« probability, being how large

is the probability that the null hypothesis is true given a

specific dataset (D) from a trial or a meta-analysis:

P(H0|D). Furthermore, how large is the probability that

an alternative hypothesis is true given a specific dataset

from a trial or a meta-analysis can be expressed as the

‘alternative’ P-value: P(HA|D).

Bayes factor (BF) is the ratio between the P-value and

the alternative P-value: BF = P(D|H0)/P(D|HA).

Due to Bayes theorem, we have:

PðH0

�

�DÞ ¼ PðD
�

�H0Þ⋅PðH0Þ=PðDÞ:

A cumulative meta-analysis is a meta-analysis where

the result data from the last conducted trial are added to

the result data from all the previous trials and tested on

the accumulated number of participants.

The Z-value is the general name for the test statistics,

e.g., the t-value in a student’s t-test or a χ2-test statistic

in a χ2-test or the Mantel-Haenszels test statistic. When

the theoretical distribution of the test statistic is known,

the Z-value can be converted into a P-value.

A cumulative Zi-value is the test statistic calculated

after addition of the data from the i-th trial.
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