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Trials, Tribulations, and Trends in Tumor Modeling in Mice

JOANN C. L. SCHUH

Applied Veterinary Pathobiology, Bainbridge Island, Washington 98110-3663, USA

ABSTRACT

Selection of mouse models of cancer is often based simply on availability of a mouse strain and a known compatible tumor. Frequently this results
in use of tumor models long on history but short on homology and quality control. Other factors including genetics, sex, immunological status, method
and site of tumor implantation, technical competence, biological activity of the tumor, protocol sequence and timing, and selection of endpoints interact
to produce outcomes in tumor models. Common reliance on survival and tumor burden data in a single mouse model often skews expectations towards
high remission and cure rates; a finding seldom duplicated in clinical trials. Inherent limitations of tumor models coupled with the advent of new
therapeutic targets reinforce need for careful attention to design, conduct, and stringent selection of in vivo and ex vivo endpoints. Preclinical efficacy
testing for anti-tumor therapies should progress through a series of models of increasing sophistication that includes incorporation of genetically
engineered animals, and orthotopic and combination therapy models. Pharmacology and safety testing in tumor-bearing animals may also help to
improve predictive value of these models for clinical efficacy. Trends in bioinformatics, genetic refinements, and specialized imaging techniques are
helping to maintain mice as the most scientifically and economically powerful model of malignant neoplasms.

Keywords. Preclinical efficacy testing; tumor models; study design; xenograft; orthotopic tumors; genetically engineered mice; bioinformatics;
bioimaging.

INTRODUCTION

Malignant neoplasms rank second as the leading cause
of death in the United States and ranked first in those aged
45–74 (Anderson, 2002). As a result, anti-cancer therapies
are a frequent focus for startup companies and represent ma-
jor therapeutic classes for pharmaceutical, biopharmaceuti-
cal, medical device and drug delivery manufacturers. Despite
the effort applied to cancer targets, the number of successful
new therapies for treating human malignancies is discour-
agingly low. This is surprising in that many trials are now
conducted using novel agents with specificity for molecu-
lar pathways and cellular components rather than broad tar-
geting of chemotherapy and radiation to normal and neo-
plastic cells. Failures in clinical trials are multifactorial with
lack of efficacy an important cause. Conversely, modulating
and curing experimental cancer in mice is a relatively easy
process. Many commonly used mouse models of neoplasia
have proven to be biased towards false positive results and
preclinical studies have not accurately predicted clinical re-
sponses. Therefore, unconditional acceptance of limited data
from mouse models has to be avoided to prevent premature
movement of development programs into clinical testing. In-
creasingly, the plethora of novel strategies undergoing test-
ing requires greater attention to proper design and conduct
of preclinical efficacy studies. Rationale design of preclinical
efficacy studies requires understanding the biology of tumors
and implantation techniques, selection of in vivo and ex vivo
endpoints, and a willingness to integrate new and often costly
testing strategies that more appropriately mimic the biology
of human neoplasms.

Address correspondence to: JoAnn C. L. Schuh, Applied Veterinary
Pathobiology, 1752 Lewis Place NW, Bainbridge Island, Washington
98110-3663, USA; e-mail: schuhj@bainbridge.net

BIOMEDICAL MODELS OF NEOPLASIA
FOR PRECLINICAL TESTING

Spontaneous and Environmental Carcinogenesis Models
Historically, spontaneous, chemical, ultraviolet (UV),

oncogene, and viral infection models helped to define many
aspects of carcinogenesis (Harrison, 2002) and therapeutic
intervention (Boone et al., 1992) and helped to promote de-
velopment of inbred strains of mice (Corbett et al., 2002).
Despite the significance of spontaneous and environmental
models to biomedical research, the long latency of most of
these models makes them impractical for most preclinical
studies of tumor modulation. Spontaneous, chemical and UV
and viral infected or transformed tumors are of greatest im-
portance as the source of many cells lines used for in vitro
studies and in vivo transplantation models.

Transplantation Models
There are many immortalized cell lines of human and

murine origin available from commercial sources and pri-
vately held by research organizations that have been tested
for tumorigenicity in mice (Giard et al., 1973; Gershwin et al.,
1977; Fogh et al., 1977; Trainer et al., 1988). In addition to
availability, these tumorigenic cell lines are generally easy to
maintain, selectable for unique mutations in vitro and backed
by numerous publications on in vivo behavior in immunodefi-
cient (nude, beige, nude/beige, C.B -17 severe combined im-
munodeficient [SCID], nonobese diabetic [NOD]/SCID), im-
munosuppressed (thymectomized or corticosteroid treated),
humanized (hu)-SCID or hu-NOD/SCID and immunocom-
petent strains of mice. However, quality control is an is-
sue. Many cell lines have undocumented source and pas-
sage histories, poorly characterized receptor and oncogene
expression and cellular secretions, and inconsistent designa-
tions in publications. Features that make these tumor lines
suitable for transplantation may affect experimental design
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because of the need for specific mouse strains, sex speci-
ficity, and altered host immunity. Furthermore, spontaneous
mutations in vitro that allow selection of tumor cell line
subclones with unique behaviors can also result in point
mutations that lead to changes in histomorphology, sensi-
tivity, and behavior of these tumors in vivo. Dissociated
solid tumors and fragments of tumors (explants) that retain
histomorphology relationships of the tumor and associated
stroma are also suitable for implantation (Gershwin et al.,
1977). Tumor cells from cell lines and solid masses of both
human and mouse origin may require handling as biohaz-
ardous material due to their histogenesis by viral transfor-
mation or inadvertent contamination (Hay, 1991; Nicklas
et al., 1993). The literature on tumors that have been used
in mice to model important therapeutic targets in humans is
vast. Due to the rapidly changing nature of biomedical re-
search, a thorough and current literature search is warranted
prior to selecting the most appropriate models for any ther-
apeutic development program. A selection of representative
mouse models (transplantation and genomic-based) for ma-
lignant neoplasms causing death in humans is provided in
Table 1.

Criteria other than historical usage, and availability of the
tumor line and a suitable mouse host need to be considered
when testing efficacy of tumor modulation with therapeu-
tics (Skipper, 1968; Huseby, 1969; Klausner, 1999). Even
with genetically engineered models, multistep progression
and clonal derivation of tumors in humans are difficult to
model in mice. Therefore, foibles of these models need to be
understood to prevent overinterpretation of positive or nega-
tive results.

CONSIDERATIONS IN SELECTING TUMOR MODELS IN MICE

It is well recognized that our understanding of modeling
of tumor biology and therapeutic intervention is constrained
by many factors (Siemann, 1987; Rew, 2000a; Rew, 2000b).
However, validation studies of these model systems for their
ability to adequately predict therapeutic responses in patients
have been rare (Hann and Balmain, 2001). Consequently, de-
sign and interpretation of preclinical studies for tumor mod-
eling must be undertaken carefully.

TABLE 1.—Rank order of deaths due to malignant neoplasms in the United States in 2001 (Arias and Smith, 2003) and selected published reviews on applicable
mouse models of these neoplasms.

Rank Malignant Neoplasms Cases Selected Mouse Models

1 Lung—trachea 156,005 Tuveson and Jacks, 1999; Malkinson, 2001; Liu and Johnston, 2002
2 Colon—rectum 56,799 Heyer et al., 1999; Kobaek-Larsen et al., 2000; Horig et al., 2001; Boivin et al., 2003
3 Lymphoid—hematopoietic 56,350 Dykes and Waud, 2002; Uckun and Sensel, 2002; Vanderkerken et al., 2003
4 Breast 41,844 Hutchinson and Muller, 2000; Cardiff, 2001; Rosner et al., 2002; Clarke, 2002
5 Prostate 30,714 Royal et al., 1996; Navone et al., 1999; Abate-Shen and Shen, 2002; Nyska et al., 2002
6 Pancreas 29,723 Fu et al., 1992; Hotz et al., 2000; Standop et al., 2001; Bardeesy et al., 2001
7 Ovary 14,361 Rahman et al., 1998; Rahman and Huhtaniemi, 2001; Orsulic et al., 2002
8 Liver 13,263 Fausto, 1999; Feitelson and Larkin, 2001
9 Brain—meninges 12,567 Holland, 2001; Reilly and Jacks, 2001; Begemann et al., 2002; Gutmann et al., 2003

10 Esophagus 12,509 Opitz et al., 2002
11 Stomach 12,340 Furukawa et al., 1993b
12 Bladder 12,115 Eto et al., 2000; Bonfil et al., 2002
13 Kidney 12,084 Naito et al., 1987b; An et al., 1999; Hillman, 2002
14 Oral 7,638 Waters et al., 1998; Myers et al., 2002
15 Skin 7,543 Alvarez, 2002; Eccles, 2002; Carson III and Walker, 2002
16 Uterus 6,835 Couse et al., 1997; Keshavarzi et al., 2002
17 Cervix 4,064 Herber et al., 1996
18 Larynx 3,826 Chen et al., 2001; Kennel et al., 2002

Study Design
Candidate anti-tumor agents can be identified and selected

using a broad panel of in vivo tumors (Atassi et al., 1988)
but false positive and negative results may occur due to in-
compatible host-tumor-therapeutic interactions or technical
incompetence. In efficacy studies, greater depth needs to be
achieved through evaluation of at least several subtypes of
the tumor representative of the clinical target, and through
use of different models systems in mice (transplantation, ge-
netically engineered, and orthotopic models) as well as use
of models in other appropriate species. Conduct of animal
studies that mimic expected exposure, scheduling, and du-
ration of therapeutic and posttreatment periods of clinical
studies are valuable designs prior to initiating clinical trials.
Optimization of therapeutic dose and schedule through phar-
macokinetic studies are also important early procedures that
should be evaluated in one or more model systems. Efficacy
studies should also incorporate histopathology endpoints to
confirm expected therapeutic target and to help refine dose
scheduling relative to growth and cell loss fractions.

Investigators need to be aware that many historical and
commonly used model systems in mice were originally estab-
lished and optimized for use in mechanistic studies (Burger,
2000). Conduct of efficacy testing in such systems has not
been optimized and inadvertent selection of systems with
excess curability, spontaneous regressions or failure to estab-
lish adequate tumor burden (Corbett et al., 2002) can lead
to overly optimistic projections of clinical success. Bias in
the selection of the model(s) may also arise from experience,
knowledge base and objectives of the investigator. Whereas
pharmacologists, immunobiologists or cell biologists may
consider direct intratumoral injection of therapeutics accept-
able, needle tracks and pressure-induced necrosis (compart-
ment syndrome) may interfere with adequate evaluation of
such models by a histopathologist. Conversely, intratumoral
administration of light activated substances is a common
and appropriate route for photodynamic therapy of tumors
(Casas et al., 1999). Design of efficacy studies for combina-
tion protocols is often difficult. However, such studies can
provide important efficacy data for the transition between
novel therapies and standard treatment practices that may
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include a combination of surgery, chemotherapy or radiation,
and other supportive therapies (Bogden et al., 1974; Corbett
et al., 1979). In designing tumor model systems, investigators
must guard against template designs that ignore inherent dif-
ferences in model systems, and in using insufficient animals
per group. This is particularly important in investigational
new drug (IND) enabling studies where more animals per
group and few groups may be required to adequately con-
trol for variation in tumor burden and therapeutic responses.
Consultation with a biostatistician to assist in determination
of sample size appropriate to each model system is highly
recommended.

Context of the Study and Available Resources
Therapeutic intervention conducted in tumor-bearing an-

imals may occur as proof of principal studies for discovery,
target validation, and in vivo pharmacology, or as investiga-
tions for therapeutic efficacy, safety, and interactions. These
types of studies often need to be designed and conducted
differently than studies focusing on mechanistic studies. Ad-
ditionally, an available supply of suitable strains of mice and
investigators capable of providing necessary manipulations
(injections, surgery, polytherapy, evaluations, and pathology
services) may materially affect both quantity and quality of
data that can be generated from selected models.

Lack of Quality Control
Investigators using cell lines should develop and maintain

in-house databases that allow ready access to known features
for tumor cell lines in their collections. A minimum list might
include all applicable information that defines origin (human
or animal), sex and strain of original host, treatment history
(particularly human lines), name and subclone of the tumor
line, source (commercial or private), passage history of all
aliquots, species, strain and sex and routes susceptible to im-
planted tumors, in vitro and in vivo growth characteristics,
growth rate to maximum humanely accepted and lethal sizes,
histomorphological characteristics, metastatic potential and
method, immunogenicity, receptor and oncogene expression,
cellular products, microbiological screening history, biohaz-
ard potential (generally viral) and unique characteristics. This
information is invaluable for preventing and investigating
problems such as implantation failures, excess curability,
microbial contamination, mislabeled or cross-contaminated
stocks, and alterations in histomorphology and behavior that
may arise from haphazard use of cell lines (Corbett et al.,
2002). With rare exception (Rosner et al., 2002), thorough
characterization of comparative histology of tumor models
using authenticated stocks has not been adequate. Addition-
ally, microbial and cross-species contamination of cell lines
has lead to erroneous conclusions in tumor biology (Moseley
et al., 2003; Drexler et al., 2003). These problems are com-
pounded by lack of source and passage history information
reported by most laboratories conducting either mechanistic
or efficacy studies. This is not a trivial problem, as the his-
tomorphology and behavior of tumors grown from stocks in
different laboratories may eventually differ from historical
photomicrographs and behavior descriptions of the original
tumor and its cell line (Schuh, unpublished data). Although
the original passage history may not be known, investigators
should strive to use contaminant free tumor lines of a con-

sistent number of passages from an authenticated stock for
preclinical testing. In addition to providing a known in-house
passage history, testing from a stock provides a baseline and
helps to reduce the potential for point mutations that may
cause inter-study variation or erroneous test results.

Paraneoplastic Syndromes
Paraneoplastic syndromes typically result in clinical

manifestations of altered physiological responses to au-
tochthonous (spontaneous) neoplasms. These syndromes in
mouse models of neoplasia have been seldom described
(Liebelt et al., 1974) even though they exist. This oversight
is brought on by the focused and short-term nature of most
studies. Unlike safety studies where a complete set of tis-
sues are collected and a clinical pathology examination con-
ducted, efficacy studies are often completed without bene-
fit of histopathology and clinical pathology examinations.
This type of study design neglects important interactions
of the host with tumor receptor expression and secretions
produced by tumor cells or by stimulation of host cells by
the tumor. Paraneoplastic syndromes include extramedullary
hematopoiesis, bone marrow hyperplasia, peripheral granu-
locytosis and leukocytosis (leukemoid reactions), thrombo-
cytosis, anemia, altered lipid metabolism, hypercalcemia of
malignancy, hypoglycemia, cachexia and organomegaly in
nontumor-bearing tissues (Liebelt et al., 1974; Castillo et al.,
1982; Yoneda et al., 1991; Tanaka et al., 1996; Diament et al.,
1998, Schuh, unpublished data). Paraneoplastic syndromes
represent potential models for similar syndromes in humans
but causation are poorly characterized and effects of these
syndromes on pharmacology, safety, and efficacy studies us-
ing experimental tumors are unknown.

Transplantation Protocols: Sites of Implantation Can Affect
Study Outcome

Autogeneic or autochthonous tumors are seldom practical
for tumor modeling for therapeutic intervention. Most trans-
plantable tumors are placed heterotopically (ectopically) in
syngeneic (same species, genetically identical), allogeneic
(same species, genetically different) or xenogeneic (differ-
ent species and genetics) host systems. Tumor lines in use
have been specifically selected for mutations that allow het-
erotopic growth in mice. Although these tumors will grow
and respond to therapeutics, heterotopic sites are not ideal
and selection of the transplantation site may modulate tumor
growth (Naito et al., 1987a; Corbett et al., 2002) and success
of therapeutic intervention (Averbook et al., 2002).

Subcutaneous (SQ) and less frequently intradermal ar-
eas are used for primary tumors for reasons of accessibil-
ity, lack of distress and interference with mobility in mice,
and visibility for monitoring. Generally, SQ refers to place-
ment by injection or surgical implantation in the flank, a re-
gion referring to the posterior lateral abdominal quadrant.
Some investigators erroneously include the hindlimb, back
and axillary region in their description of the flank. Place-
ment is generally done in fat and mammary gland tissues
near popliteal, inguinal or accessory axillary lymph nodes.
Despite the common use of SQ sites, it is important to note
that even large tumors rarely, if ever, metastasize after im-
plantation in this site (Gershwin et al., 1977; Eccles, 2002).
Implantation in the hindlimb (including popliteal lymph node
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fat) is sometimes considered superior to placement near body
cavities for improved visualization and avoidance of acciden-
tal intra-peritoneal or -thoracic implantation. Rarely, tumors
may not be viable after SQ implantation and other sites may
be required. Implantation of tumors into footpads is generally
not acceptable for humane considerations (UKCCCR, 1998;
Wallace, 2000). Intramuscular implantation is not common
as cell lines and tumor explants may not grow well in muscle
compared to SQ, leg mobility is restricted by large masses,
expansion space is limited, measurements with calipers are
more difficult and this site appears to be more prone to self-
mutilation and a target for cage mate aggression. Fat pads
other than classic SQ sites, including retroperitoneal, epi-
didymal, intrascapular and mediastinal/thymic sites are also
valuable locations for injection and surgical implantation to
provide a highly vascular milieu that appears to assist in es-
tablishment of xenogeneic tumors. A comparison of tumor
viability in brown fat in interscapular areas, compared to the
predominate white fat in other fat pads does not appear to
have been made.

Primary and sometimes metastatic models are also es-
tablished by direct surgical or percutaneous intra-organ in-
jections into spleen, liver, lymph nodes, mammary gland,
prostate, base of the tongue (head and neck carcinoma), in-
traluminal (bronchial, urinary bladder, thorax), cecal wall im-
plantation (colorectal metastases), and kidney capsule. Injec-
tion into brain and eye are often not considered acceptable
by institutional animal care and use committees (IACUC)
(UKCCCR, 1998; Wallace, 2000).

Metastatic and sometimes primary tumor models are cre-
ated by intravenous, intracardiac (ventricle), intraosseous in-
jections or intravascular injections proximal to organs (e.g.,
portal vein for liver neoplasms). Despite careful preparation
to reduce cell clumps and to inject slowly, such tumors are
embolic and may grow in unintended sites. Most tumors show
selective tissue tropisms, but tumors with broad tropism (e.g.,
lymphoma/leukemia) may grow within all tissues and result
in large unmonitorable tumor burdens (Schuh, unpublished
data). Investigators rarely evaluate tissues for metastases out-
side of their specific area of interest (most often lung and
bone) so that characterization of additional tumor burdens
and thromboembolism of tumor cells on validity of these tu-
mor models is lacking. Intraperitoneal injections of tumors,
once a common route for leukemias and metastatic mod-
els, have humane considerations that need to be considered
(UKCCCR, 1998; Wallace, 2000).

Implantation techniques must be practiced, as accidental
injection into muscle masses or visceral cavities, and post-
surgical inflammation can cause intra-study variability and
lack of interstudy reproducibility. Migration through SQ tis-
sues or leakage of cell suspensions is generally not an issue
with proper technique and minimal volumes injected with a
small gauge needle. Interstudy reproducibility of implanted
tumor burdens may be affected by extent of cell separation,
particularly for disruption of in vitro cultures or solid tu-
mors (An et al., 1999). In some efficacy studies, surgical
implantation of hollow fibers (Sadar et al., 2002), matrigel
and discs (Eccles, 2002), polymers (Righi et al., 2003), li-
posomes (Kunstfeld et al., 2003), and transparent windows
(Dellian et al., 1996; Li et al., 2000; Jain et al., 2002) can
provide a tightly contained tumor environment to optimize

reproducibility for certain endpoints such as angiogenesis.
Inflammation and interference with tumor biology must be
considered when utilizing surgically implanted devices for
containment of tumor masses.

Other Host-Tumor-Therapeutic Interactions
Differences in tumor burden potential, angiogenic and ther-

apeutic response have been shown to be due to differences in
strains of mice tested (Naito et al., 1987b), primary implan-
tation site and interval between tumor implantation and ther-
apeutic manipulations (Wilmanns et al., 1992; Chakrabarty
et al., 1994; Averbook et al., 2002; Monsky et al., 2002), and
metastatic microenvironments (Averbook et al., 2002; Seki
et al., 2003). For xenogeneic and syngeneic tumors that re-
quire immunodeficient mice, differences in immunological
defects between these strains should be understood. Simi-
larly, immunogenicity of tumors in immunocompetent hosts
may be an important modifying factor. Other factors that
can affect tumor growth in vivo include concurrent manip-
ulations such as surgery, radiation or concurrent treatments
that produce inflammation and inhibit establishment of tumor
cells. Conversely, stress and seasonal effects may increase
tumor burden and distribution (Giraldi et al., 2000). Finally,
for long standing tumors, tumor-induced cachexia may sup-
press tumor growth and enhance efficacy (Laster et al., 1961;
Chakrabarty et al., 1994; Mukherjee et al., 2002), similar to
delays in tumor development found with intentional caloric
restriction in rodents (Suttie et al., 2003). Therapeutic efficacy
is also modulated through tissue specific and immunologic
modifiers, and differences in drug metabolism and disposi-
tion (Gershwin et al., 1977; Naito et al., 1987a; Wilmanns
et al., 1992; Averbook et al., 2002; Seki et al., 2003).

Specific strains of mice used for tumor models are usually
matched to origin of the transplanted tumor. Where multi-
ple tumor cell lines are available to model certain tumors,
unique characteristics of these tumors such as host origin,
oncogenes, receptors and secretions, and tumor stage may
be an important consideration. However, these parameters
are often difficult to match to comparable stages in humans
(Harrison, 2002). With these limitations in available models,
selection of or reporting only on tumors that are dramatically
and positively affected by test therapeutics should be avoided.
Testing therapeutic interventions on similar tumor types de-
rived from multiple cell lines provides a test situation that
partially addresses heterogeneity of tumors in humans. That
some of these tumors may not be modulated by the test ther-
apeutic should be expected, and these nonresponders should
not be treated as preclinical failures or dismissed. Rather,
both negative and positive tumor responses can provide in-
vestigators with a more realistic expectation of therapeutic
potential in humans, and the totality of the response across
several models provides superior insight into activity of
therapeutics.

ENDPOINTS AND EVALUATION CRITERIA FOR TUMOR
MODELS IN VIVO

Critical host-tumor-therapeutic interactions, dose-
response, treatment protocol design, and selection of
endpoints interact to produce outcomes in tumor modeling
(Skipper, 1990; Kerbel, 1999). The goal in clinical oncology
is regulation to improve survival and quality of life, and
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to prevent recurrent disease rather than to cure/kill cancer
(Schipper et al., 1995). More stringent criteria than curability
of experimental tumors in mice need to be assessed to deter-
mine therapeutic efficacy. Counts of tumor bearing animals
and measurement of tumor burden are the easiest and most
frequently used outcomes of efficacy in preclinical studies.
In reality, endpoints need to be matched to type of tumor
(solid, leukemia or metastatic), context of the study, acces-
sibility of the implantation site, type of implantation, and
therapeutic class. Simplistic criteria used in mouse models
do not match criteria of partial and complete responses used
in clinical oncology, and they contribute to the conflicting
opinions about the relevance and predictability of mouse
models. Therefore, use of other metrics, and evaluations
of angiogenesis, immunomodulation, metastases, and
detailed histopathology need to be incorporated into most
study designs for preclinical testing. Despite the technical
difficulty, labor-intensive nature, and expense commonly
cited as limitations for detailed examinations, the utility
of mouse models is improved by multiple and appropriate
endpoints (Table 2).

In Vivo Endpoints
Tumor growth inhibition studies where treatment is pro-

phylactically administered before or on the day of tumor in-
duction are not realistic for preclinical evaluation of clini-
cal responses. Typically, preclinical efficacy studies utilize
tumor growth delay in which tumors are induced by injec-
tion or surgical implantation and allowed to establish for
a number of days prior to initiation of treatment. Solid tu-

TABLE 2.—Endpoints to evaluate preclinical efficacy of tumor models in mice.

Endpoint Comment Formulaa

In vivo
Tumor onset Day of palpable tumor mass of preselected size
Tumor progression Daily plot of tumor burden
Number of tumor-bearing animals Tumor free assumes cure
Tumor burden—in vivo Measured (mm2) Length × width

Volume estimated (mm3)—2-dimensional measurement Length × (width × 2)b

Length × (width2) × 0.5
Tumor growth delay Delay to reach specific volume T − C in days
Tumor cell kill 1) Log10 total tumor cell kill 1) (T − C in days)/3.32 × Td

2) Net Log 10 tumor cell kill 2) (T − C) (duration of treatment in days)/3.32 × Td
Survival – life span or long-term Increase in mean or median lifespan or long-term survivors T/C (%)

Ex Vivo
Survival—number alive 1) Treatment termination

2) Posttreatment
Tumor burden—gross pathology 1) Volume estimated (mm3)—2- or 3-dimensional measurements Length × width × depth

2) Absolute weight (mass in mg as water displacement or wet weight)
3) Tumor weight relative to body weight Tumor weight/body weight
4) Ulceration
5) Invasion or tissue distribution and gross lesions (e.g., infarction)

Hematology 1) Complete blood count
2) Differential blood count
3) Bone marrow differential

Histopathology 1) Hematoxylin and eosin
a. Confirm histogenesis and differentiation
b. Identify invasion and metastases
c. Confirm expected therapeutic activity
d. Necrosis—characteristics and estimate percentage
e. Evaluate angiogenesis, hemorrhage, edema, and immune and

stromal responses
2) Morphometrics
3) Immunohistochemistry and in situ hybridization
4) Molecular pathology

aT = test; C = control; Td = doubling time; 3.32 = doublings to increase 1 log10 unit.
bFormulas used for volume estimates vary.

mors in accessible sites are amenable to a variety of met-
rics that are not applicable to primary and metastatic tumors
of internal organs and hematologic neoplasms. A count of
tumor-bearing animals assumes that nontumor-bearing ani-
mals represent tumor regression or cures. Spontaneous re-
gressions, failure of tumors to become established or dis-
placed tumor mass into adjacent body cavities may account
for a small percentage of false cures. For this reason, tumor
onset and progression should be monitored daily to ensure
adequate and similar tumor masses prior to treatment and
monitor onset of regression in each group. In models with
log-phase tumor growth, animals can be randomized into
treatment groups after a predictable period of development,
usually 3–14 days. Conversely, less well-developed tumor
models may require enrollment of individual animals into
the study when the tumor burden reaches a minimum size.
Such enrollment studies are difficult to evaluate. Allowing
extra days for tumor growth may be as misleading as starting
treatment on small tumor masses that have not established
and show enhanced regression after onset of treatment. In
vivo progression of tumor burden should be evaluated on
a daily basis, excluding tumor free animals as they appear.
Burden is commonly measured with calipers and volume es-
timated from measurement of two (length and width) dimen-
sions (Corbett et al., 2002; Teicher, 2002). Estimates of tu-
mor weight (length[width2]/2) using the typically inaccurate
measurements derived from tumors of varying shapes and
boundaries is not recommended. Tumor growth delay mea-
sures the difference in days for the mean or median tumors in
test and control animals to reach a specific volume, usually
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0.5–1.0 cm3. This value has been suggested to mimic clinical
endpoints and disease progression, but this measure is often
incorrectly applied. A 50% reduction in tumor mass as a mea-
sure of cytoreduction used to gauge clinical responsiveness is
not equivalent to 50% inhibition of tumor growth commonly
used as a measure of preclinical efficacy (Corbett et al., 2002;
Teicher, 2002). Tumor cell kill (net and total) for leukemic
or solid tumors requires tumor titration using 10-fold dilu-
tions to determine doubling time, and comparison to tumor
growth delay and duration of treatment. Despite the value and
more exact nature of these determinations, extra time and ad-
ditional test animals required generally result in infrequent
use of these endpoints (Corbett et al., 1999; Harrison, 2002;
Teicher, 2002). Survival data should not be mistaken for mor-
tality, an unacceptable endpoint (UKCCCR, 1998; Wallace,
2000). An increase in percentage mean or median survival
may be measured for the lifespan or in long-term survivors.
Clinically, posttreatment survival is a valuable endpoint that
evaluates treatment efficacy during and after treatment. Sur-
vival at study termination is inadequate due to the short dura-
tion of most assays and lack of posttreatment data. For many
tumors, a log-linear growth cannot be assumed, and more
importantly, regrowth of tumors post-treatment may esca-
late due to increased doubling times (Gunduz et al., 1979;
Teicher, 2002). Retention of a subset of animals for several
weeks after treatment ends may demonstrate a rapid regrowth
of tumor at the efficacious dose that quickly parallels mor-
bidity of controls and lower dose groups. In spite of a delay
in tumor growth over the treatment period, a rebound ef-
fect post-treatment would be an indication of lower overall
efficacy.

Ex Vivo Endpoints
At study termination, volume measurements similar to

those performed in vivo can be made at gross pathology,
but mass (water displacement) or absolute wet weight ex
vivo is more exacting. Volume measurements at termination
may show significant disparity from final in vivo measure-
ments. Irregular shapes, small or multilobular masses and
necrosis, edema, and hemorrhage all contribute to variation
in estimates of tumor burden measurements. Relative tumor
to body weight ratios are often useful to gauge therapeutic ef-
ficacy in slow growing tumors and when cachexia is present.
The relative ratio can reduce or expand differences between
controls and treated animals and is a valuable and easily ob-
tained supplement to absolute tumor weight. Visualization
and quantification of metastases is particularly difficult to
monitor as multifocal and occult tumor burdens are frequent.
Flooding of airways with India ink to highlight lung masses
for counting, “bread loafing” of the target organ for metastatic
counts and organ weight differences compared to controls are
inexact measurements prone to intra- and inter-study vari-
ability. Such models are better served by tagged tumors and
advanced imaging technologies. Gross pathology examina-
tion should evaluate presence or absence of ulceration, ex-
tent of intentional or inadvertent invasion, tissue distribution
beyond the primary implant site, and identify other gross le-
sions. Accidental implantation of tumors into body cavities
can skew results by partial growth of tumor at the intended
site that responds to treatment, along with a large internal
tumor burden that is unresponsive to treatment. Hematology

(complete blood count and differential) and bone marrow dif-
ferentials (smears or fluorescent activated cell sorting anal-
ysis) can provide data about paraneoplastic syndromes and
toxicity. However, hematology and histopathology endpoints
are often considered elective. Histologic screening of tumors
is valuable to confirm histogenesis and state of differentia-
tion of tumors for quality control and to identify and separate
local invasion from metastasis. Characteristics of the tumor
such as necrosis, angiogenesis, hemorrhage and immune cell
and stromal responses should be monitored. More impor-
tantly, histology should confirm the expected activity and
target of the therapeutic class. Novel therapeutics currently
under development are driving the need for additional ex vivo
studies such as morphometry to evaluate angiogenesis and
apoptosis, immunohistochemistry, in situ hybridization and
molecular pathology to evaluate changes in macromolecules,
immunophenotypes and nucleic acids.

Pharmacology and Safety Endpoints
in Tumor-Bearing Animals

Toxicokinetic (TK), and absorption, distribution,
metabolism, and excretion (ADME) studies are generally
performed early in drug discovery (Lin et al., 2003) and are
often incorporated into anti-tumor protocols to determine
dose and scheduling. Conversely, safety testing is almost
exclusively performed in nontumor-bearing animals. Con-
sidering the altered homeostasis of most tumor-bearing
animals and humans, safety in a tumor-bearing host should
be considered to fully evaluate the therapeutic response and
potential. Adverse events can be monitored using a standard
safety protocol in tumor and a non-tumor-bearing mouse
model, but tolerability of treatment is more difficult to
monitor. Limited resources and economic restraints would
not support conduct of a full safety program in tumor-bearing
animals, but examination of a full panel of tissues from at
least one model may be useful to identify adverse effects,
modulation of paraneoplastic syndromes, and tolerability
issues. Although safety information is generally collected in
immunocompetent animals, use of immunodeficient strains
may be a better predictor of TK/ADME and safety as a
mimic of immune dysfunction after chemotherapy, radia-
tion therapy, surgery (Wichmann et al., 2003), infections
and paraneoplastic syndromes (Tanaka et al., 1996). A
modified safety study can be incorporated into an efficacy
study by collecting a complete or selected list of tissues
from tumor-bearing animals and by including treated but
non-tumor-bearing animals as additional controls. Although
safety information in tumor-bearing animals may be incom-
plete, this data supplements efficacy, TK and ADME data
and can provide needed redirection in dosage and scheduling
for subsequent studies.

Humane Considerations
Therapeutic intervention trials may use both short-term

and long-term tumor growth models depending on growth
rate and aggressiveness of the tumor. Mortality should not be
used as an endpoint. Commonly used endpoints such as tumor
burden should be limited according to absolute values and
relative to body weight. Therefore, careful monitoring and
humane endpoints need to be developed in conjunction with
the IACUC. Ulceration, tissue and body cavity distension,
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inanition, cachexia, anemia, increased intracranial pressure,
self-mutilation, cannibalism, and metastases also contribute
to premature death of study animals and may require a limited
protocol or modified study design (UKCCCR, 1998; Wallace,
2000).

TRENDS IN TUMOR MODELING

Bioinformatics and Mouse Models of Cancer
The evolution of new mouse models of cancer is tightly

bound to knowledge gained from sequencing of human and
mouse genomes, and compilation and dissemination of this
knowledge on the World Wide Web. Important databases
for tumor modeling include the Mouse Tumor Biology
Database at 〈http://tumor.informatics.jax.org〉 (Naf et al.,
2002), databases accessible through the National Center of
Biotechnology 〈http://www.ncbi.nlm.nih.gov〉 including hu-
man and mouse genomes (Wheeler et al., 2003) and The
Whole Mouse Catalog 〈http://www.rodentia.com/wmc/〉.

Technical Trends in Tumor Modeling
Technical advances in tumor modeling have included use

of skin fold and transparent windows (Dellian et al., 1996; Li
et al., 2000; Jain et al., 2002), matrigel (Eccles, 2002), poly-
mers (Righi et al., 2003), liposomes (Kunstfeld et al., 2003),
chambers (Dvorak et al., 1987) and hollow fibers (Sadar et al.,
2002) to contain tumor growth and monitor angiogenesis. Ex
vivo perfusion (Kristjansen, 2002) and intravital microscopy
are providing insights into drug metabolism, angiogenesis
and in situ tumor responses (Jain et al., 2002).

Improved imaging of tumors has revolutionized nonin-
vasive monitoring of distribution, growth, metastasis and
morphometrics of tumor models in mice. Available sys-
tems include micro positron electromagnetic imaging (Ray
et al., 2003; Yang et al., 2003), magnetic resonance imag-
ing (Berr et al., 2003; Nelson et al., 2003), in situ visualiza-
tion of primary and metastatic tumors and occult metastases
(Menon and Teicher, 2002), using improved fluorochromes
(Rosenberg et al., 2003) and quantum dots (Watson et al.,
2003), green fluorescent protein (GFP) (Hoffman, 2002), and
luciferase (Edinger et al., 1999; Burgos et al., 2003). Im-
proved fluorochromes, GFP, and LacZ (Kruger et al., 1999;
Culp et al., 2001) are also retained within tissues and al-
low microscopic evaluation by fluorescent microscopy and
histochemical or immunohistochemical staining of tumor
tissues. Laser capture microdissection is a proven technol-
ogy for identification of genetic heterogeneity of tumors that
continues to expand our knowledge of tumor biology (Culp
et al., 2001; Hoon et al., 2002). Specialized microscopy us-
ing confocal (Paddock, 1999) and deconvolution (Maierhofer
et al., 2003) microscopes are also positioned to provide op-
tical sectioning for identification of 3-dimensional distribu-
tion of tumor elements and drug distribution within tumors
(Manivasager et al., 2002). While many of these improve-
ments are expensive and impractical for incorporation into
preclinical studies, selective use of advanced technologies
in drug discovery, pharmacology and preclinical studies can
provide minimally invasive and detailed information about
host-tumor-therapeutic interactions in vivo at multiple time-
points.

Biological Trends: Genetically Engineered Mice
Neoplastic transformation and progression requires a se-

ries of genetic alterations that disrupt the balance of cellu-
lar mechanisms involving cellular growth and deletion. Mice
have played an important role in defining the genetic mech-
anisms of carcinogenesis. Thus, it is no surprise that genet-
ically engineered mice (GEM) are beginning to take their
rightful place as models that show accelerated tumor devel-
opment and recapitulate the genetics and behavior of hu-
man cancer states and cancer resistance (Mickisch et al.,
1991; Pitot, 2001; Klatt and Serrano, 2003). Selected target
genetic events allow creation of gene-driven gain of func-
tion transgenic, loss of function deletion (Reilly and Jacks,
2001; Meuwissen et al., 2001; Resor et al., 2001; Balmain,
2002; Jackson-Grusby, 2002; Herzig and Christofori,
2002; Tuveson and Jacks, 2002; van Dyke and Jacks,
2002), conditional function (Jonkers and Berns, 2002), clones
(Rideout III et al., 2000) and phenotypically-driven N -ethyl-
N -nitrosourea mutants (Justice et al., 1999; Balmain, 2002).
Although genetically engineered mice have been advocated
for preclinical testing (Feitelson and Larkin, 2001; Horig
et al., 2001), problems associated with these models include
discordance in etiology and histogenesis between human and
mouse tumors, multifocal tumors due to multi-tissue dele-
tions or promotor promiscuity, failure to metastasize, vari-
able penetrance of transgenes, long latency (Rosenberg and
Bortner, 1999; Moore and Nagle, 2000), limited availability,
lack of extensive historical pathology databases for founder
strains (FVB, 129 strains, BALB/c), and costs and effort in
creating and maintaining specialized GEM animal colonies.
Regardless, the ability to use GEM to genetically, anatomi-
cally, pathophysiologically and histologically mimic tumors
found in humans is becoming a reality. As more logistical
problems are overcome, these genomic-derived models will
likely become more consistently incorporated into preclinical
testing. Compared to transplantation models, GEM will be
particularly useful to create tumor states that were previously
difficult to model including nervous system (Gutmann et al.,
2003), pancreas (Hotz et al., 2000; Bardeesy et al., 2001),
lung (Tuveson and Jacks, 1999; Liu and Johnston, 2002),
breast (Hutchinson and Muller, 2000), ovarian (Rahman
et al., 1998; Rahman and Huhtaniemi, 2001; Orsulic et al.,
2002), prostate (Sharma and Schreiber-Agus, 1999; Navone
et al., 1999), oral (Opitz et al., 2002), liver (Fausto,
1999; Feitelson and Larkin, 2001; Koike, 2002), hema-
tologic malignancies (Bernardi et al., 2002; Herzig and
Christofori, 2002), pediatric tumors (Beltinger and Debatin,
2001; Houghton et al., 2002), gene-environment interactions
(Hursting, 1997), and metastases (McClatchey, 1999; Herzig
and Christofori, 2002), and to test interventional feasibility
for novel therapeutics against bone metastasis (Fausto, 1999),
cell adhesion dysfunction (Herzig and Christofori, 2002),
telomere dysfunction (Goytisolo and Blasco, 2002; Artandi,
2002; Granger et al., 2002), ribosomal RNA modification
(Ruggero et al., 2003), and DNA hypomethylation (Good-
man and Watson, 2002; Gaudet et al., 2003). Despite these
ongoing advances in model systems, disease states associated
with tumors such as minimal residual disease (Teicher, 1997;
Wetterwald et al., 2002), concurrent opportunistic infections,
and treatments such as surgical debulking and combination
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therapy will continue to resist modeling in mice for practical
and humane concerns.

Biological Trends: Modified Immunodeficient Mice
Nude (athymic) and C.B-17 SCID (T and B cell deficient

mice) fail to reject engraftment with a variety of human and
mouse tumor cells (Pettaway et al., 1996; Lapidot et al., 1997;
Bankert et al., 2002; Giovanella, 2002; Uckun and Sensel,
2002) by virtue of their T and B cell defects. The presence of
innate immunity, particularly natural killer (NK) cell activ-
ity is probably an important factor in limiting tumorigenesis
and metastases in these models. The nude mutation results in
a mouse that is T cell deficient and has B cell maturational
defects, but with intact innate immunity including tumori-
cidal macrophages and an increase in NK cells. This muta-
tion has been introduced into many mouse strains. Introduc-
tion of the beige mutation blocks NK and myeloid-derived
cell activity and additional B cell defects result by crossing
with the X-linked immunodeficiency mouse. The Chédiak–
Higashi syndrome (hypopigmentation, bleeding diathesis and
recurrent bacterial infections) in mice or hybrids with the
beige anomaly limits their usefulness in surgical, including
orthotopic models (Clarke, 2002). The T and B cell defi-
cient SCID mouse has been particularly amenable to fur-
ther manipulation and modifications involving expanded im-
munodeficiencies and “humanization.” These mice are useful
for mechanistic studies and for evaluating anti-tumor thera-
pies on human xenografts (Bankert et al., 2001). However,
NK cell activity and the tendency of some SCID mice to
become “leaky” and develop active T and B cells, and early
onset lymphoproliferative diseases can be problematic. Intro-
duction of the nonobese diabetic (NOD) mutation and recom-
bination activating gene (Rag) deficiency are useful modifiers
for the SCID mutation (Clarke, 2002; Eccles, 2002). The
NOD mouse is a complex model of immune defects that in-
cludes autoimmune mediated type-1 diabetes and sialitis, and
Rag-1 and Rag-2 null state produces a severe combined im-
munodeficiency. Combination of these mutations with SCID
defects results in mice that are no longer leaky and NK
cell activity is reduced while retaining the ability to support
xenografts (Bankert et al., 2001).

SCID or NOD-SCID mice made chimeric with implanted
human lymphoid tissues, peripheral blood cells or bone mar-
row cells are the most commonly used “humanized” mouse
models. These models have been generated to provide surro-
gate human microenvironments and to test immunotherapies
(Bankert et al., 2001). Anti-tumor responses in humanized
mouse models have not been extensively validated and their
use supplements rather than supplants other mouse models
for antitumor testing.

Biological Trends: Orthotopic Models
Less than ideal growth and behavior of heterotopic im-

plants has lead to development and characterization of surgi-
cal and cellular orthotopic implants (Manzotti et al., 1993).
Both normal and neoplastic cells (individual or clusters) and
histologically intact tissues, of fetal and adult origin can be
used in syngeneic and xenogeneic orthotopic mouse systems.
Normal tissues can be implanted and mice injected with tu-
mor cells to produce an improved metastatic model, and us-
ing tumor cells with a reporter gene allows enhanced imaging

capabilities. Implantation of tumor tissue into anatomically
correct tissue for the histogenesis of the tumor (i.e., kidney
tumor in kidney) rather than heterotopic implantation pro-
motes improved tumor growth and metastases (Naito et al.,
1987a, 1987b; Menon and Teicher, 2002). Orthotopic mod-
els also allow correlation of experimental responses with the
original tumor in the host (Steel, 1987).

Although orthotopic models have been utilized for many
years, the need for surgical manipulation in many of the mod-
els and need for a fresh source of human tissues (normal or
neoplastic) adds to the difficulty and expense of this type of
implantation. Regardless, orthotopic models provide a useful
model for establishing tumors previously difficult to model
(Fu et al., 1992; Furukawa et al., 1993a, 1993b; An et al.,
1999; Myers et al., 2002) and can be used alone or in combina-
tion with humanized mice (Klausner, 1999; Kunstfeld et al.,
2003). Orthotopic models allow efficacy testing for tumor
inhibition and metastases (Menon and Teicher, 2002; Zhang
et al., 2002; Boyd et al., 2003) and appear to be better predic-
tors of clinical success than heterotopic models (Kuo et al.,
1993; Manzotti et al., 1993; Killion et al., 1999; Hoffman,
1999; Bloomston et al., 2002).

Other Animal Models for Preclinical Efficacy Studies
Their size, fecundity, ease of handling, relatively eco-

nomical production and care (excluding genetically altered
mice), strain selection, and short gestation backed by massive
databases of susceptibilities, genetics, immunology, physiol-
ogy, pathology, and microbiology make mice an ideal candi-
date for tumor biology and preclinical efficacy studies. Rats
and hamsters are also useful for biological and therapeutic
modulation because of their propensity to develop a vari-
ety of spontaneous tumors, their amenability to tumor im-
plantation, availability of cell lines (Schwartz and Gu, 2002;
Thompson and Sporn, 2002), and recent development of ge-
netically altered rats lacking suppressor genes linked to breast
and ovarian cancer (Zan et al., 2003). Beyond rodents, a lim-
ited number of spontaneous neoplasms in companion and do-
mestic animals (Vail and MacEwen, 1997; Knapp and Waters,
1997; Dewhirst et al., 2002) and other species including ge-
netically altered fish (Vanchieri, 2001; Spitsbergen and Kent,
2003) also have some potential value in preclinical efficacy
testing. Dogs, particularly older males provide a very use-
ful model of prostatic disease (Waters and Bostwick, 1997;
Waters et al., 1998; Strandberg, 2000) and dogs larger than
purpose-bred Beagles are often the only relevant model to test
medical devices or device/drug combinations for anti-tumor
applications.

TOWARDS AN IDEAL PRECLINICAL EFFICACY
TESTING PROGRAM

In order to transition into clinical trials, regulatory agen-
cies must be provided with evidence that the new therapeu-
tic has an improved safety and/or efficacy profile compared
to current therapies. Therefore, selection of tumor models
in mice is best approached by using specific criteria that
match biologic (multistage, clonal, progression, histomor-
phology, and metastasis), genetic (multiple mutations, altered
chromosomes and cell signaling, genetic expression profile
and susceptibility), inductive etiology (chemicals, UV light,
diet, hormones and viral), immunogenicity and therapeutic
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FIGURE 1.—A guide for preclinical efficacy testing of anti-tumor therapeutics. In addition to toxicokinetics (TK) and absorption, distribution, metabolism and
excretion (ADME) studies, development programs should progress through an increasingly complex series of tumors in one or more mouse models, genetically
engineered mice (GEM) and suitable models in other species. Once a probable level of efficacy is established by use of stringent endpoints in multiple models,
an investigational new drug (IND) application may be feasible. Safety studies in tumor-bearing mice should be considered to evaluate toxicity during altered host
homeostasis. If insufficient efficacy is established, additional studies utilizing orthotopic models, GEM and combination therapy models may be necessary to provide
sufficient evidence of probable clinical efficacy. Well-characterized orthotopic and GEM models may be biologically superior to testing in other models and may
provide a shortcut (dotted line) to demonstrating efficacy.

potential (target and predictivity for clinical success) between
mice and humans (Siemann, 1987; Hann and Balmain, 2001;
Balmain, 2002). Although a generic program is not advo-
cated, in vivo preclinical efficacy programs for anti-tumor
therapeutics should follow a guide for testing similar to that
outlined in Figure 1. After selecting the appropriate dose
and scheduling, an efficacy program most economically pro-
gresses from simple to more complex tumor model systems.
Use of one or more simple models alone to determine possi-
ble clinical efficacy is contrary to the complexity and issues
associated with tumor models in mice and the variation in
accepted therapeutic protocols in clinical oncology. Utilizing
multiple surrogate models (cells and explants, different stains
of mice and/or additional species, different tumor stages),
transplants using variants of the target tumor, and tumor test-
ing in genetically altered animals begins to provide sufficient
efficacy data that can support an IND application. This ef-
ficacy data should be accompanied by results from PK and
ADME studies that evaluate kinetics in one or more tumor
model systems. The IND application can also be strength-
ened by conducting safety studies in tumor-bearing animals
as a model to mimic altered homeostasis in tumor-bearing
humans.

Ideally, the IND should only be filed after completion of
additional preclinical studies that match the genetic hetero-
geneity of human tumors (multiple animal and tumor mod-
els), at least partially match tumor prone genetic profiles in a
tumor-bearing host (genetically altered animals), match tis-
sue tropism (orthotopic models), and match the most accepted

therapeutic protocols (combination therapy models). In some
cases, the most appropriate models will be GEM or orthotopic
models and a limited number of studies in standard mouse
models are justified. Incorporation of multiple levels of ef-
ficacy testing along with careful selection of endpoints will
lead to a development program that most closely matches
molecular targets, therapeutic protocols and outcomes en-
countered in the clinic. Testing through all tiers may not be
applicable or warranted and completion of all steps is not
a guarantee of correlation with clinical efficacy. However, a
thorough preclinical efficacy program provides greater assur-
ance of potential therapeutic efficacy and safety than tumor
modeling restricted to one or two implanted tumors in a sin-
gle strain of mouse. The expense of comprehensive model-
ing and additional time spent in preclinical testing is modest
compared to failure in phase II and phase III clinical trials.

SUMMARY

Transitions from in vitro to preclinical and then to clini-
cal testing for tumor modulation remain difficult with a low
rate of clinical entry for most therapeutic classes. Increased
understanding of mechanisms of neoplasia through macro-
molecular biology, genomics and bioinformatics is helping
to address treatment bottlenecks such as lack of specificity,
low efficacy, toxicity and drug resistance, and helping to
identify critical targets for clinical exploitation. In addition
to cytotoxic, hormonal, adjunct, and medical device thera-
pies, numerous novel strategies for enhanced and targeted
drug deliver, anti-angiogenesis (inhibitors and enhanced
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permeation), immunotherapy (vaccines, monoclonal anti-
bodies, toxin conjugates, prodrug activators, cytokine antag-
onists), small molecules (inhibitors of growth, matrix and
adhesion), apoptosis (enhancers, inducers, proteasome in-
hibitors, reverse DNA methylation), anti-sense and gene ther-
apy (tumor suppressor genes) and cell cycle alterations (in-
hibitors) are being developed for the anti-tumor market. How-
ever, our ability to model and accurately predict clinical ef-
ficacy is limited. Despite historical significance and ongoing
utility, tumor models in mice used for preclinical therapeutic
intervention often error towards false positive results and cur-
ing cancer in mice. The inadequacy of classic transplantation
models for anti-tumor therapy is helping to drive development
and use of new models based on genetic and technical mod-
ifications. However, underlying limitations of tumor models
reinforce the need for careful attention to design (applying
correct models to the question), conduct (using multiple mod-
els) and interpretation (recognizing limitations and applying
stringent criteria to outcomes) of efficacy studies for tumor
modulation. Animal models can provide quick answers but
application of these results to predicting clinical outcomes is
often undertaken prematurely. New strategies and techniques,
and continued improvements in stringency and consistency
of criteria used for evaluating outcomes will be necessary to
ensure that tumor models in mice remain a useful tool for
development of anticancer agents and devices.
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