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TRIANGLE CENTERS AS FUNCTIONS

CLARK KIMBERLING

ABSTRACT. We consider a kind of problem that appears
to be new to Euclidean geometry, since it depends on an
understanding of a point as a function rather than a position
in a two-dimensional plane. Certain special points we call
centers, including the centroid, incenter, circumcenter, and
orthocenter. For example, the centroid, as a function of the
class of triangles with sidelengths in the ratio a1 : a2 : a3, is
given by the formula 1/a1 : 1/a2 : 1/a3. The kind of problem
introduced here leads to functional equations whose solutions
are centers.

1. Introduction. A triangle ∆A1A2A3 with respective sidelengths
a1, a2, a3 and angles α1, α2, α3 (as in Figure 1) is often studied by
means of homogeneous coordinates, as introduced by Möbius [6]; for
a historical account, see Boyer [1]. In many discussions of triangles,
homogeneous barycentric coordinates are preferred, but here we shall
use homogeneous trilinear coordinates instead. The main reason for
this choice is that our results depend on a formula for the distance
between two points, and this formula (4a) is much shorter in trilinears
than in barycentrics. Another reason is that a single reference (Carr
[2]) gives many useful formulas in terms of trilinears, whereas no
comparable reference seems to exist for barycentric formulas. Typical
representations in trilinears, written as x1 : x2 : x3 and defined in
Section 2, are the following:

centroid x1 : x2 : x3 = 1/a1 : 1/a2 : 1/a3

circumcenter x1 : x2 : x3 = a1(a2
2 + a2

3 − a2
1) : a2(a2

3 + a2
1 − a2

2) :
a3(a2

1 + a2
2 − a2

3) = cosα1 : cos α2 : cos α3

circumcircle a1/x1 + a2/x2 + a3/x3 = 0
Euler line x1 sin 2α1 sin(α2 − α3) + x2 sin 2α2 sin(α3 − α1)

+ x3 sin 2α3 sin(α1 − α2) = 0
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FIGURE 1. Triangle A1A2A3 with sidelengths a1, a2, a3 and angles α1, α2, α3.

Collinearity, perspectivity, and other relations are easily proved using
trilinears by showing that appropriate determinants vanish for all
a1, a2, a3. This algebraic approach suggests that (a1, a2, a3), (or, more
precisely, the similarity class, a1 : a2 : a3, of triangles with given
sidelength-ratios a1 : a2 and a2 : a3), be treated as a variable and
that geometric objects be treated as functions of a1 : a2 : a3. For
example, we define centroid as the function whose domain depends on
the set of all triangles (the set T in Section 2) and whose value at any
given ∆A1A2A3 is the point 1/a1 : 1/a2 : 1/a3. Now, there would seem
to be little point in regarding centroid and other geometric objects as
functions, unless

(1)
among such objects, there exist relationships that can be
understood only in terms of a functional meaning of point.

It is the purpose of this paper to present such relationships, as typified
by the following problem:

Problem X1X2X3. For any center X of a (variable) trian-
gle A1B1C1, let X, X1, X2, X3 be the values of X in the triangles
∆A1A2A3, ∆XA2A3, ∆A1XA3, ∆A1A2X, respectively. For what
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choices of X is ∆X1X2X3 perspective with ∆A1A2A3 in the sense that
the lines A1X1, A2X2, A3X3 concur in a point?

A1 A2

A3

X1X2

X3

X

FIGURE 2. Solutions X of Problem X1X2X3 include centroid, circumcenter,
and orthocenter, but not all the centers on the Euler line (See Section 5).

To see the significance of Problem X1X2X3, or more properly, the
significance of a large class of problems which it represents, consider
the fact that the geometry of special points in the plane of a triangle
∆A1A2A3 consists largely of theorems of the form “special point X
has property P.” For example, the centroid G of ∆A1A2A3 has the
following easily proved property: the centroids of the three triangles
GA2A3, A1GA3, A1A2G form a triangle that is perspective with
∆A1A2A3. Now, what other “points” have this property? or better
yet: what are necessary and sufficient conditions for a “point” X to have
this property? In order to answer this question, one must understand
the notion of “point” not as a single location but, instead, as a set of
rules or a formula that specifies a location. That is to say, a “point”
must be understood as a function.

The meaning of Problem X1X2X3 may be further clarified by an
attempt to state it without regarding X as a function, like this:
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Theorem X1X2X3. Let X be a point inside a triangle A = A1A2A3.
Let Bi be the triangle obtained by replacing vertex Ai by X but keeping
the other two vertices fixed. Let Xi be similarly placed in Bi as X is
in A; that is, Xi subdivides Bi into three triangles, the ratios of whose
areas are respectively proportional to the ratios of areas of triangles into
which X subdivides A. Then ∆X1X2X3 is perspective with A, and the
center of perspective is X.

To see that Theorem X1X2X3 (which is easy to prove) is quite different
from Problem X1X2X3, consider any point inside A that does not solve
Problem X1X2X3, such as the Fermat point. The Fermat point of Bi

subdivides Bi into triangles whose areas are not proportional to those
into which the Fermat point of A subdivides A. Thus, the point X of
Problem X1X2X3 differs from the point X of Theorem X1X2X3.

For another example, consider the incenter, which does happen to
solve Problem X1X2X3, but alas: ∆X1X2X3 �= ∆X1X2X3, and also,
the two centers of perspective differ.

2. Definitions: Point and Center. Following [3] and [4], we
represent the set of all triangles as

T = {(a1, a2, a3) : 0 < a1 < a2 +a3, 0 < a2 < a3 +a1, 0 < a3 < a1 +a2}
and let√

P = (1/4)
√

(a1+a2+a3)(a2+a3−a1)(a3+a1−a2)(a1+a2−a3),

this being the area of the triangle A1A2A3 having sidelengths a1, a2, a3.
Let (R, +, ·) be the ring of polynomial functions in a1, a2, a3,

√P over
the real number field, and let (F, +, ·) be the quotient field of (R, +, ·).
A point , P , is an equivalence class of ordered triples (f1, f2, f3) of
functions fi in F, at least one of which is not the zero function, where
two such triples (f1, f2, f3) and (g1, g2, g3) are equivalent if the following
two conditions hold:

gi = 0 iff fi = 0 for i = 1, 2, 3; and f1/g1 = g2/g2 = f3/g3

on all of T except the zero-set of g1g2g3. Note that P has infinitely
many representatives (f, g, h) in R3. For any such (f, g, h) in F3, we
write P with colons instead of commas, like this:

P = f(a1, a2, a3) : g(a1, a2, a3) : h(a1, a2, a3).
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Thus, for example, sin α1 : sin α2 : sin α3 and a1 : a2 : a3 are identical,
whereas (sin α1, sin α2, sin α3) and (a1, a2, a3) are distinct, in the same
way that 3/6 = 1/2 even though (3, 6) �= (1, 2).)

The expression on the right-hand side of the above equation will
be called trilinears for P . This is short for homogeneous trilinear
coordinates, namely, any triple x1, x2, x3 of numbers proportional to the
directed distances from P to the sides A2A3, A3A1, A1A2, respectively,
of the refernece triangle ∆A1A2A3. The actual trilinear distances are
kx1, kx2, kx3, where k = 2

√P/(a1x1 + a2x2 + a3x3).

A point f̂(x1, x2, x3) : ĝ(x1, x2, x3) : ĥ(x1, x2, x3) is a center if there
exists a function f(x1, x2, x3) in R such that the following conditions
hold:

(F1) f̂(x1, x2, x3) : ĝ(x1, x2, x3) : ĥ(x1, x2, x3) = f(x1, x2, x3) :
f(x2, x3, x1) : f(x3, x1, x2);

(F2) f(x1, x3, x2) = f(x1, x2, x3);

(F3) f(x1, x2, x3) is homogeneous in x1, x2, x3; that is, f(tx1, tx2, tx3)
= tnf(x1, x2, x3) for some nonnegative integer n and all t > 0.

The fact that this definition of “center” is more algebraic than geo-
metric calls for some explanation. We shall see that each of the three
algebraic properties (substitution, symmetry, homogeneity) matches a
geometric property that is shared by familiar examples of triangle cen-
ters.

First, consider the geometric meaning of cyclic substitution. Long
ago, we learned how to “keep doing the same thing in different places”
in order to construct the centroid, incenter, or circumcenter. For the
circumcenter, for example, we first draw the perpendicular bisector of
side A2A3, and then repeat, but this time for the side A3A1, and then
once again, for the side A1A2. Such “cyclic repetition” occurs in the
construction of most of the named special points in the plane of a
triangle.

The symmetry of f(a1, a2, a3) in a2 and a3 corresponds to interchang-
ing the roles of A2 and A3 (or a2 and a3; or α2 and α3) when carrying
out a construction relative to the vertices in the order A1, A2, A3. For
example, when drawing the perpendicular bisector of the segment from
A2 to A3, we get the same thing if we go from A3 to A2.
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Finally, homogeneity ensures that similar triangles have similarly
situated centers. For, if a triangle T = B1B2B3 is similar to the
reference triangle A1A2A3, then, for some t > 0, the sidelengths of T
are ta1, ta2, ta3. Suppose X is a center, and let f be a center function
for X. Then the value of X in A1A2A3 is

f(x1, x2, x3) : f(x2, x3, x1) : f(x3, x1, x2),

and the value of X in T is

f(tx1, tx2, tx3) : f(tx2, tx3, tx1) : f(tx3, tx1, tx2),

which by homogeneity equals f(x1, x2, x3) : f(x2, x3, x1) : f(x3, x1, x2).
That is, the ratios of distances from X to the sidelines remain un-
changed.

3. Derived triangles and coordinate transformations. Any
three points Pi = fi(a1, a2, a3) : gi(a1, a2, a3) : hi(a1, a2, a3), i = 1, 2, 3,
determine a triangle with vertices P1, P2, P3. The triangle can be
represented as a matrix:

(2) M =

⎛
⎝ f1(a1, a2, a3) g1(a1, a2, a3) h1(a1, a2, a3)

f2(a1, a2, a3) g2(a1, a2, a3) h2(a1, a2, a3)
f3(a1, a2, a3) g3(a1, a2, a3) h3(a1, a2, a3)

⎞
⎠ .

Let Fi, Gi, Hi denote the functions satisfying

(3) M−1 =
1

|M |

⎛
⎝ F1(a1, a2, a3) G1(a1, a2, a3) H1(a1, a2, a3)

F2(a1, a2, a3) G2(a1, a2, a3) H2(a1, a2, a3)
F3(a1, a2, a3) G3(a1, a2, a3) H3(a1, a2, a3)

⎞
⎠ .

It will be convenient to refer to a matrix such as M as a matrix-triangle.
Note that every triangle is represented by many matrix-triangles, since
the rows, as trilinears, are determined only up to multiplication by an
element of F.

Theorem 1. Suppose M and M−1 are as in (2) and (3), and
x1, x2, x3 are actual trilinear distances with respect to ∆A1A2A3 for
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a point X. Let x′
1, x

′
2, x

′
3 be actual trilinear distances with respect to M

for X. Then

(4) (x1, x2, x3) = (x′
1, x

′
2, x

′
3)DM/|M |,

where

D =

⎛
⎝ D1 0 0

0 D2 0
0 0 D3

⎞
⎠ ,

where

D1 =
√

F 2
1 +F 2

2 +F 2
3 −2F2F3 cos α1−2F3F1 cos α2−2F1F2 cos α3

D2 =
√

G2
1+G2

2+G2
3−2G2G3 cos α1−2G3G1 cos α2−2G1G2 cos α3

D3 =
√

H2
1 +H2

2 +H2
3−2H2H3 cos α1−2H3H1 cos α2−2H1H2 cos α3.

Proof. We use the notation t1 : t2 : t3 for a variable point in trilinears.
An equation for A2A3 is then

∣∣∣∣ g2 h2

g3 h3

∣∣∣∣ t1 +
∣∣∣∣ h2 f2

h3 f3

∣∣∣∣ t2 +
∣∣∣∣ f2 g2

f3 g3

∣∣∣∣ t3 = 0,

which is F1t1 + F2t2 + F3t3 = 0. The directed distance from X to this
line is

(4a) x′
1 =

x1F1 + x2F2 + x3F3

D1

(e.g., Carr [2, Article 4624]) and similarly for x′
2 and x′

3. Consequently,

(x′
1, x

′
2, x

′
3) = (x1, x2, x3)

⎛
⎝F1 G1 H1

F2 G2 H2

F3 G3 H3

⎞
⎠

⎛
⎝ 1/D1 0 0

0 1/D2 0
0 0 1/D3

⎞
⎠

= (x1, x2, x3)|M |M−1D−1,

and (4) follows.
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Corollary 1. Let M be a matrix triangle as in (2), and let x1 : x2 : x3

be coordinates (not necessarily actual trilinear distances) with respect
to ∆A1A2A3 for a point X. Let x′

1 : x′
2 : x′

3 be coordinates with respect
to the triangle M for X. Then

(4′) x1 : x2 : x3 = (x′
1 : x′

2 : x′
3)DM.

Before continuing with our primary concern, expressed in (1), we
note that Corollary 1 yields useful special cases that are difficult
to find in the literature. These involve five much studied triangles:
medial (the vertices are the points where the medians of ∆A1A2A3

meet the sides of ∆A1A2A3), orthic (where the altitudes meet the
sides), anticomplementary (the triangle whose medial is ∆A1A2A3), the
tangential formed by the lines tangent to the circumcircle of ∆A1A2A3

at A1, A2, A3, and the tritangent (the vertices are the excenters of
∆A1A2A3); its orthic is ∆A1A2A3).

Example 1.1. If x1 : x2 : x3 are trilinears for a point P with respect
to ∆A1A2A3 and x′

1 : x′
2 : x′

3 are trilinears for P with respect to the
medial triangle M given by

M =

⎛
⎝ 0 1/a2 1/a3

1/a1 0 1/a3

0 1/a2 1/a3

⎞
⎠ ,

then (4′) leads to

x′
1 : x′

2 : x′
3 = (−a1x1+a2x2+a3x3)/a1 : (−a2x2+a3x3+a1x1)/a2 :

(−a3x3+a1x1+a2x2)/a3,

and

x1 : x2 : x3 = (a2x
′
2+a3x

′
3)/a1 : (a3(x′

3+a1x
′
1)/a2 : (a1x

′
1 + a2x

′
2)/a3.

Example 1.2. If x1 : x2 : x3 are trilinears for a point P with respect
to ∆A1A2A3 and x′

1 : x′
2 : x′

3 are trilinears for P with resepct to the
orthic triangle M given by

M =

⎛
⎝ 0 secα2 sec α3

sec α1 0 sec α3

sec α1 secα2 0

⎞
⎠ ,
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then

x′
1 : x′

2 : x′
3 = −x1 cos α1 + x2 cos α2 + x3 cos α3 :

− x2 cos α2 + x3 cos α3 + x1 cos α1 :
− x3 cos α3 + x1 cos α1 + x2 cos α2,

and

x1 : x2 : x3 = (x′
2 + x′

3) secα1 : (x′
3 + x′

1) secα2 : (x′
1 + x′

2) secα3.

Example 1.3. If x1 : x2 : x3 are trilinears for a point P with respect
to ∆A1A2A3 and x′

1 : x′
2 : x′

3 are trilinears for P with respect to the
anticomplementary triangle M given by

M =

⎛
⎝−1/a1 1/a2 1/a3

1/a1 −1/a2 1/a3

1/a1 1/a2 −1/a3

⎞
⎠ ,

then

x′
1 : x′

2 : x′
3 = (a2x2 + a3x3)/a1 : (a3x3 + a1x1)/a2 : (a1x1 + a2x2)/a3,

and

x1 : x2 : x3 = (−a1x
′
1 + a2x

′
2 + a3x

′
3)/a1 : (−a2x

′
2 + a3x

′
3 + a1x

′
1)/a2 :

(−a3x
′
3 + a1x

′
1 + a2x

′
2)/a3.

Example 1.4. if x1 : x2 : x3 are trilinears for a point P with respect
to ∆A1A2A3 and x′

1 : x′
2 : x′

3 are trilinears for P with respect to the
tangential triangle M given by

M =

⎛
⎝−a1 a2 a3

a1 −a2 a3

a1 a2 −a3

⎞
⎠ ,
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then

x′
1 : x′

2 : x′
3 = (a3x2+a2x3)/a1 : (a1x3+a3x1)/a2 : (a2x1+a1x2)/a3,

and

x1 : x2 : x3 = a1(−a2
1x

′
1+a2

2x
′
2+a2

3x
′
3) : a2(−a2

2x
′
2+a2

3x
′
3+a2

1x
′
1) :

a3(−a2
3x

′
3 + a2

1x
2
1x

′
1 + a2

2x
′
2).

Example 1.5. If x1 : x2 : x3 are trilinears for a point P with respect
to ∆A1A2A3 and x′

1 : x′
2 : x′

3 are trilinears for P with respect to the
tritangent triangle M given by

M =

⎛
⎝−1 1 1

1 −1 1
1 1 −1

⎞
⎠ ,

then

x′
1 : x′

2 : x′
3 = (x2+x3) cscα1/2 : (x3+x1) cscα2/2 : (x1+x2) cscα3/2,

and

x1 : x2 : x3 = −x′
1 sin α1/2 + x′

2 sin α2/2 + x′
3 sin α3/2 :

− x′
2 sin α2/2 + x′

3 sin α3/2 + x′
1 sin α1/2 :

− x′
3 sin α3/2 + x′

1 sin α1/2 + x′
2 sin α2/2.

4. Two-triangle problems. The designation two-triangle problem
means any problem whose statement necessarily refers to two but not
more than two triangles, with respect to which points, as functions, are
specified. More generally, we speak of n-triangle problems. The solution
of such a problem will often entail n − 1 applications of formula (4).

Examples 1.1 1.5 are two-triangle problems. We shall consider here a
somewhat different two-triangle problem:
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Problem A1XX1. For any center X of a variable triangle A1A2A3, let
X be the value of X in ∆A1A2A3, and let X1 be its value in ∆XA2A3.
For what choices of X are A1, X, X1 collinear?

Theorem 4. Let X = x : y : z = f(a1, a2, a3) : f(a2, a3, a1) :
f(a3, a1, a2) be a center. Let X be its value in ∆A1A2A3 and X1 its
value in ∆XA2A3. Let

r1 = |A2A3|, r2 = |A3X|, r3 = |XA2|

(in ∆XA2A3, the side opposite vertex A3 is XA2),

X1 = x1 : y1 : z1

(with respect to ∆A1A2A3),

X1 = x̂1 : ŷ1 : ẑ1 = f(r1, r2, r3) : f(r2, r3, r1) : f(r3, r1, r2)

(with respect to ∆XA2A3). Then

(5) x1 : y1 : z1 = xx̂1 : yx̂1 + s3ŷ1 : zx̂1 + s2ẑ1

where

(6)
s1 =

√
y2+z2+2yz cos α1, s2 =

√
z2+x2+2zx cos α2,

s3 =
√

x2+y2+2xy cos α3

are the sidelengths of the pedal triangle of X with respect to ∆A1A2A3.
(See Figure 3.)

Proof. Equation (5) results directly from (4) using the matrix for
∆XA2A3 given by

M =

⎛
⎜⎝

x y z

0 2
√P/a2 0

0 0 2
√P/a3

⎞
⎟⎠ , where

√
P=area of ∆A1A2A3.
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A1 A2

A3

X1

S2
X

S1

S3

FIGURE 3. Triangles A1A2A3, XA2A3 and the pedal triangle of X1.

Corollary 4.1. X solves Problem A1XX1 if and only if f solves the
functional equation

(7) s2f(a2, a3, a1)f(r3, r1, r2) = s3f(a3, a1, a2)f(r2, r3, r1).

Proof. Collinearity of the points A1, X, X1 is equivalent (e.g., Carr [2,
Article 4615]) to yz1 = zy1, and (7) now follows by substituting from
(5).

Equation (7) is far from simple, since (e.g., Carr [2, Article 4602])

r2
2 =

a1a2a3

4P
(

a1(kf(a1, a2, a3))2 cos α1+a2(kf(a2, a3, a1))2 cos α2

+ a3

(
kf(a3, a1, a2) − 2

√P
a3

)2

cos α3

)

where

k =
2
√P

a1f(a1, a2, a3)+a2f(a2, a3, a1)+a3f(a3, a1, a2)
,
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and similarly for r3. Nevertheless, (7) is easily sampled by computer.
Among the well-known triangle centers, only those two which are ob-
vious solutions centroid and orthocenter have been found to satisfy
(7). Are there others?

5. A four-triangle problem.

Problem X1X2X3. For any center X of a (variable) triangle A1A2A3,
let X, X1, X2, X3 be the values of X in the triangles ∆A1A2A3,
∆XA2A3, ∆A1XA3, ∆A1A2X, respectively. For what choices of X
is ∆X1X2X3 perspective with ∆A1A2A3?

Theorem 5. In the notation of Problem X1X2X3, let X = x : y : z =
f(a1, a2, a3) : f(a2, a3, a1) : f(a3, a1, a2),

X1 = x1 : y1 : z1 (with respect to ∆A1A2A3)

= x̂1 : ŷ1 : ẑ1 (with respect to ∆XA2A3)

X2 = x2 : y2 : z2 (with respect to ∆A1A2A3)

= x̂2 : ŷ2 : ẑ2 (with respect to ∆A1XA2)

X3 = x3 : y3 : z3 (with respect to ∆A1A2A3)

= x̂3 : ŷ3 : ẑ3 (with respect to ∆XA1A2),

and let s1, s2, s3 be as in (6). Then X solves Problem X1X2X3 if and
only if

(8)
s1xx̂1(zŷ2ŷ3 − yẑ2ẑ3) + s2yŷ2(xẑ3ẑ1 − zx̂3x̂1) + s3zẑ3(yx̂1x̂2 − xŷ1ŷ2)

+ s2s3(yx̂2ẑ3ẑ1 − zx̂3ŷ1ŷ2) + s3s1(zŷ3x̂1x̂2 − xŷ1ẑ2ẑ3)
+ s1s2(xẑ1ŷ2ŷ3 − yẑ2x̂3x̂1) + s1s2s3(x̂2ŷ3ẑ1 − x̂3ŷ1ẑ2) = 0.

Proof. Just as in the proof of Theorem 4, we find

(5) x1 : y1 : z1 = xx̂1 : yx̂1 + s3ŷ1 : zx̂1 + s2ẑ1
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(9) x2 : y2 : z2 = xŷ2 + s3x̂2 : yŷ2 : zŷ2 + s1ẑ2

(10) x3 : y3 : z3 = xẑ3 + s2x̂3 : yẑ3 + s1ŷ3 : zẑ3

Triangles ∆X1X2X3 and ∆A1A2A3 are perspective if and only if the
lines A1X1, A2X2, A3X3 concur, and this is equivalent to

(11) x2y3z1 = x3y1z2.

Equation (8) now follows by substituting from (5), (9), (10) into (11)
and simplifying.

Corollary 5.1. Suppose h ∈ F and h is a function of a1 only (so
that we write h(a1)). Then the center X = h(a1) : h(a2) : h(a3) solves
Problem X1X2X3. (In particular, solutions include centroid, incenter,
and symmedian point, for which h(a1) = 1/a1, 1, a1, respectively.)

Proof. In the notation of Theorem 5,

x̂1 : ŷ1 : ẑ1 = h(a1) : h(s3) : h(s2)
x̂2 : ŷ2 : ẑ2 = h(s3) : h(a2) : h(s1)
x̂3 : ŷ3 : ẑ3 = h(s2) : h(s1) : h(a3),

where s1, s2, s3 are the distances from X to A1, A2, A3, respectively.
Substitution of these into (8) leads quickly to zero for each expression
between parentheses in (8), so that X is a solution, by Theorem 5.

Corollary 5.2. The following centers are solutions of Problem
X1X2X3: circumcenter, orthocenter, and center of the nine-point cir-
cle.

Proof. Substitute into the left-hand side of (8). Simplification is best
carried out by computer.

6. Thinlines. In order to account more fully for solutions to Problem
X1X2X3, it will be expedient to define lines and thinlines as follows. A
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line is the set of points (as defined in Section 2) x1 : x2 : x3 satisfying
∣∣∣∣∣∣

x1 x2 x3

x11 x12 x13

x21 x22 x23

∣∣∣∣∣∣ = 0

for all (a1, a2, a3) in T, for some pair of points

(12) P = x11 : x12 : x13 and Q = x21 : x22 : x23.

Equivalently, a line L consists of all points of the form

(13) s(a1, a2, a3)x11 + t(a1, a2, a3)x21 :
s(a1, a2, a3)x12 + t(a1, a2, a3)x21 : s(a1, a2, a3)x13 + t(a1, a2, a3)x31

where s(a1, a2, a3) and t(a1, a2, a3) are in F and are not both zero. By
a thinline, we mean the set of points of the form (13) in the special case
that s(a1, a2, a3) and t(a1, a2, a3) range only through all pairs of real
numbers s and t satisfying st �= 0. Note that this definition depends
on the six particular functions x11, x12, x13 and x21, x22, x23, so that
appropriate notation is

L(x11, x12, x13; x21, x22, x23).

Any thinline through P and Q we call a PQ-thinline. In accord with
Theorem 6 below, for any P and Q, there are infinitely many PQ-
thinlines. To distinguish one from another, for given functions as in (12)
we call L(x11, x12, x13; x21, x22, x23) the thinline based on the functions
x11, x12, x13 and x21, x22, x23). If P and Q have the form

f(a1, a2, a3) : f(a2, a3, a1) : f(a3, a1, a2)

and

g(a1, a2, a3) : g(a2, a3, a1) : g(a3, a1, a2)

then we speak of the thinline based on (f(a1, a2, a3), f(a2, a3, a1),
f(a3, a1, a2)) and (g(a1, a2, a3), g(a2, a3, a1), g(a3, a1, a2)) as the thin-
line based on f and g, and we write L(f, g). In particular, this shorter
notation applies to all pairs P, Q of centers.
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Theorem 6. Distinct PQ-thinlines L1 and L2 have only two points
in common.

Proof. Let (xi1, xi2, xi3), for i = 1, 2, 3, 4, be functions for which L1 =
L(x11, x12, x13; x21, x22, x23) and L2 = L(x31, x32, x33; x41, x42, x43).
There exist functions d = d(a1, a2, a3) and e = e(a1, a2, a3) in F such
that

(14a) x31 = dx11, x32 = dx12, x33 = dx13

and

(14b) x41 = ex21, x42 = ex22, x43 = ex23.

Clearly both P and Q lie on both L1 and L2. Suppose R is yet another
point common to L1 and L2. Then

R = sx11 + tx21 : sx12 + tx22 : sx13 + tx23

= udx11 + vex21 : udx12 + vex22 : udx13 + vex23

for some numbers s, t, u, v satisfying stuv �= 0. But then

(sx11 + tx21)(udx12 + vex22) = (sx12 + tx22)(udx11 + vex21),

which leaves (sve − tud)(x22x11 − x12x21) = 0. Likewise, (sve −
tud)(x23x11 − x13x21) = 0. These imply sve = tud, since if not then
x22x11 = x12x21 and x23x11 = x13x21, contrary to the distinctness of
x11 : x12 : x13 and x21 : x22 : x23. Thus x41 = kdx21, x42 = kdx22,
x43 = kdx23, where k is the real number tu/sv. These with (14a) imply
L2 = L1, contrary to the hypothesis. Therefore, no such R exists.

Corollary 5.3. Every point on the thinline L(cos α1, cosα2 cos α3)
solves Problem X1X2X3.

Proof. Substitute into the left-hand side of (8) and simplify via a
computer algebra system.
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A2

A3

I

S

A1

Euler line of A1IA3

Euler line of A1A2I
Euler line of A1A2A3

Euler line of IA2A3

FIGURE 4. Four Euler lines concur in the Schiffler point, S.

Conjecture. The only points on the Euler line that solve Problem
X1X2X3 are the points

E(s, t) = s cos α1 + t cosα2 cos α3 : s cosα2 + t cosα3 cos α1 :
s cos α3 + t cosα1 cos α2.

Concerning this conjecture we note that the thinline E(s, t) includes
the circumcenter, orthocenter, centroid, center of the nine-point circle,
the de Longchamps point, and a point on the line at infinity, as these
correspond respectively to (s, t) = (1, 0), (0, 1), (1, 1), (1, 2), (1,−1), (1,
−2). (In case coordinates for the de Longchamps point A have not
appeared earlier in the literature, we note that Example 1.3 applies,
since A is the orthocenter of the anticomplementary triangle.)

7. Conclusion. Problem X1X2X3 typifies a wide range of problems
involving derived triangles of a variable reference triangle. These
problems are new in the sense that their statements and solutions
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depend on a functional meaning of triangle center and on the notion
of thinlines. Many problems of the traditional sort generalize naturally
to the new sort of problem. We conclude with an example:

Schiffler Problem (original). Let I be the incenter of a triangle
A1A2A3. The Euler lines of the triangles A1A2A3, IA2A3, A2IA3,
A1A2I concur in a point. (For a solution, see [7]).

Schiffler Problem (new). For any centers, X,Y,Z, let X, X1, X2,
X3 be the values of X relative to the triangles A1A2A3, XA2A3,
A1XA3, A1A2X, and similarly for Y, Y1, Y2, Y3 and Z, Z1, Z2, Z3. For
what choices of X,Y,Z do the three lines YiZi (or these together with
Y Z) concur?
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