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Abstract. A contact representation by triangles of a graph is a set of triangles
in the plane such that two triangles intersect on at most one point, each triangle
represents a vertex of the graph and two triangles intersects if and only if their
corresponding vertices are adjacent. de Fraysseix, Ossona de Mendez and Rosen-
stiehl proved that every planar graph admits a contact representation by triangles.
We strengthen this in terms of a simultaneous contact representation by triangles
of a planar map and of its dual.

A primal-dual contact representation by triangles of a planar map is a contact
representation by triangles of the primal and a contact representation by triangles
of the dual such that for every edge uv, bordering faces f and g, the intersec-
tion between the triangles corresponding to u and v is the same point as the
intersection between the triangles corresponding to f and g. We prove that every
3-connected planar map admits a primal-dual contact representation by triangles.
Moreover, the interiors of the triangles form a tiling of the triangle correspond-
ing to the outer face and each contact point is a node of exactly three triangles.
Then we show that these representations are in one-to-one correspondence with
generalized Schnyder woods defined by Felsner for 3-connected planar maps.

1 Introduction

A contact system is a set of curves (closed or not) in the plane such that two curves
cannot cross but may intersect tangentially. A contact point of a contact system is a
point that is in the intersection of at least two curves. A contact representation of a
graph G = (V, E) is a contact system C = {c(v) : v ∈ V }, such that two curves
intersect if and only if their corresponding vertices are adjacent.

The Circle Packing Theorem of Koebe [14] states that every planar graph admits a
contact representation by circles.

Theorem 1 (Koebe [14]). Every planar graph admits a contact representation
by circles.

Theorem 1 implies that every planar graph has a contact representation by convex poly-
gons, and de Fraysseix et al. [8] strengthened this by showing that every planar graph
admits a contact representation by triangles. A contact representation by triangles is
strict if each contact point is a node of exactly one triangle. de Fraysseix et al. [8]
proved the following:
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Fig. 1. A strict tiling primal-dual contact representation by triangles

Theorem 2 (de Fraysseix et al. [8]). Every planar graph admits a strict contact rep-
resentation by triangles.

Moreover, de Fraysseix et al. [8] proved that strict contact representations by triangles
of a planar triangulation are in one-to-one correspondence with its Schnyder woods
defined by Schnyder [17].

Andre’ev [1] strengthen Theorem 1 in terms of a simultaneous contact representa-
tion of a planar map and of its dual. The dual of a planar map G = (V, E) is noted
G∗ = (V ∗, E∗). A primal-dual contact representation (V ,F) of a planar map G is
two contact systems V = {c(v) : v ∈ V } and F = {c(f) : f ∈ V ∗}, such that V is
a contact representation of G, and F is a contact representation of G∗, and for every
edge uv, bordering faces f and g, the intersection between c(u) and c(v) is the same
point as the intersection between c(f) and c(g). A contact point of a primal-dual con-
tact representation is a contact point of V or a contact point of F . Andre’ev [1] proved
the following:

Theorem 3 (Andre’ev [1]). Every 3-connected planar map admits a primal-dual con-
tact representation by circles.

Our main result is an analogous strengthening of Theorem 2. We say that a primal-dual
contact representation by triangles is tiling if the triangles corresponding to vertices
and those corresponding to bounded faces form a tiling of the triangle corresponding
to the outer face (see Figure 1). We say that a primal-dual contact representation by
triangles is strict if each contact point is a node of exactly three triangles corresponding
to vertices or faces (see Figure 1). We prove the following :

Theorem 4. Every 3-connected planar map admits a strict tiling primal-dual contact
representation by triangles.
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In [12], Gansner et al. study representation of graphs by triangles where two vertices are
adjacent if and only if their corresponding triangles are intersecting on a side (touch-
ing representation by triangles). Theorem 4 shows that for 3-connected planar graphs,
the incidence graph between vertices and faces admits a touching representation by
triangles.

The tools needed to prove Theorem 4 are introduced in section 2. In section 2.1, we
present a result of de Fraysseix et al. [10] concerning the stretchability of a contact sys-
tem of arcs. In section 2.2, we define (generalized) Schnyder woods and present related
results obtained by Felsner [4]. In Section 3, we define a contact system of arc, based
on a Schnyder wood, and show that this system of arc is stretchable. When stretched,
this system gives the strict tiling primal-dual contact representation by triangles. In Sec-
tion 4, we show that strict tiling primal-dual contact representations by triangles of a
planar map are in one-to-one correspondence with its Schnyder woods. In Section 5,
we define the class of planar maps admitting a Schnyder wood and thus a strict tiling
primal-dual contact representation by triangles. In Section 6, we discuss possible im-
provements of Theorem 4.

2 Tools

2.1 Stretchability

An arc is a non-closed curve. An internal point of an arc is a point of the arc distinct
from its extremities. A contact system of arcs is strict if each contact points is internal to
at most one arc. A contact system of arcs is stretchable if there exists a homeomorphism
which transforms it into a contact system whose arcs are straight line segments. An
extremal point of a contact system of arcs is a point on the outer-boundary of the system
and which is internal to no arc.

We define in Section 3 a contact system of arcs such that when stretched it gives a
strict tiling primal-dual contact representation by triangles. To prove that our contact
system of arcs is stretchable, we need the following theorem of de Fraysseix et al. [10].

Theorem 5 (de Fraysseix et al. [10]). A strict contact system of arcs is stretchable if
and only if each subsystem of cardinality at least two has at least three extremal points.

2.2 Schnyder Woods

The contact system of arcs defined in Section 3 is constructed from a Schnyder wood.
Schnyder woods where introduced by Schnyder [17] and then generalized by Fel-

sner [4]. Here we use the definition from [4] except if explicitly mentioned. We refer
to classic Schnyder woods defined by Schnyder [17] or generalized Schnyder woods
defined by Felsner [4] when there is a discussion comparing both.

Given a planar map G. Let x0, x1, x2 be three distinct vertices occurring in clockwise
order on the outer face of G. The suspension Gσ is obtained by attaching a half-edge
that reaches into the outer face to each of these special vertices. A Schnyder wood rooted
at x0, x1, x2 is an orientation and coloring of the edges of Gσ with the colors 0, 1, 2
satisfying the following rules (see Figures 2 and 3):
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– Every edge e is oriented in one direction or in two opposite directions. We will
respectively say that e is uni- or bi-directed. The directions of edges are colored
such that if e is bi-directed the two directions have distinct colors.

– The half-edge at xi is directed outwards and colored i.
– Every vertex v has out-degree one in each color. The edges e0(v), e1(v), e2(v)

leaving v in colors 0, 1, 2, respectively, occur in clockwise order. Each edge en-
tering v in color i enters v in the clockwise sector from ei+1(v) to ei−1(v) (where
i + 1 and i − 1 are understood modulo 3).

– There is no interior face the boundary of which is a directed monochromatic cycle.

The difference with the original definition of Schnyder [17] it that edges can be oriented
in two opposite directions.

A Schnyder wood of Gσ defines a labelling of the angles of Gσ where every angle
in the clockwise sector from ei+1(v) to ei−1(v) is labeled i.

A Schnyder angle labellings of Gσ is a labeling of the angles of Gσ with the labels
0, 1, 2 satisfying the following rules (see Figures 2 and 3):

– The two angles at the half-edge of the special vertex xi have labels i + 1 and i − 1
in clockwise order.

– Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval of
2’s.

– Rule of faces: The labels of the angles at each interior face form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval of
2’s. At the outer face the same is true in counterclockwise order.

Felsner [5] proved the following correspondence:

(a)

1

02

2
2

1
1

1

0

0

0

0 1 1

2

2

2

0

(b)

0

1
2

0

(c)

2
0
1

0

(d)

Fig. 2. (a) Edge colored respectively with color 0, 1, and 2. We use distinct arrow types to
distinguish those colors. (b) Rules for Schnyder woods and angle labellings. (c) Example of
angle labelling around an uni-directed egde colored with color 0. (d) Example of angle labelling
around a bi-directed edge colored with colors 2 and 1.

Theorem 6 (Felsner [5]). Schnyder woods of Gσ are in one-to-one correspondence
with Schnyder angle labellings.
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Fig. 3. A Schnyder wood with its corresponding angle labeling

3 Mixing Tools

Given a planar map G and a Schnyder wood of G rooted at x0, x1, x2 we construct a
contact system of arcs A corresponding to the Schnyder wood by the following method
(see Figure 4):

Each vertex v is represented by three arcs a0(v), a1(v), a2(v), where the arc ai(v)
is colored i and represent the interval of angles labeled i of v. It may be the case that
ai(u) = ai(v) for some values of i, u and v. For every edge e of G, we choose a point
on its interior that we note p(e). There is also such a point on the half-edge leaving xi,
for i ∈ {0, 1, 2}. The points p(e) are the contact points of the contact system of arcs.

Actually the arcs of A are completely defined by the following subarcs : For each
angle labeled i at a vertex v in-between the edges e and e′, there is a subarc of ai(v)
going from p(e) to p(e′) along e and e′. Each contact point p(e) is the end of 4 such
subarcs. The Schnyder labelling implies that the three colors are represented at p(e) and
so the two subarcs with the same color are merged and form a longer arc.

One can easily see that this defines a contact system (there is no crossing arcs) of
arcs (there is no closed curve) whose contact points are the points p(e). It is also clear
that the arcs satisfy the following rules:

– For every edge e = vw uni-directed from v to w in color i: The arcs ai+1(v) and
ai−1(v) end at p(e) and the arc ai(w) goes through p(e).

– For every edge e = vw bi-directed, leaving v in color i and leaving w in color j:
Let k be such that {i, j, k} = {0, 1, 2}. The arcs aj(v) and ai(w) ends at p(e), and
the arcs ak(v) and ak(w) are equal and go through p(e).
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Fig. 4. A Schnyder wood with its corresponding angle labeling and contact system of arcs

The following lemma will be used to transform the contact system of arcs into a strict
tiling primal-dual contact representation by triangles.

Lemma 1. The contact system of arcs corresponding to a Schnyder wood is stretchable.

Proof. Let G be a planar map, given with a Schnyder wood rooted at x0, x1, x2. Let
A be the contact system of arcs corresponding to the Schnyder wood as defined before.
By definition of A, every point p(e), corresponding to an edge e uni- or bi-directed, is
interior to one arc and is the end of two other arcs, so the contact system of arcs A is
strict. By Theorem 5, we have to prove that each subsystem of A, of cardinality at least
two, has at least three extremal points. Let B be a subsystem of arcs of cardinality at
least two. We have to prove that B has at least three extremal points.

The rest of this technical proof is omitted due to lack of space.

4 One-to-One Correspondence

De Fraysseix et al. [8] already proved that strict contact representations by triangles of a
planar triangulation are in one-to-one correspondence with its Schnyder woods defined
by Schnyder [17]. In this section, we are going to prove a similar result for primal-dual
contact representations.

De Fraysseix et al. [9] proved that classic Schnyder woods of a planar triangulation
are in one-to-one correspondence with orientation of the edges of the graph where each
interior vertex has out-degree 3. This shows that it is possible to retrieve the coloring
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of the edges of a classic Schnyder wood from the orientation of all the edges of this
Schnyder wood.

For generalized Schnyder woods (with some edges bi-directed) such a property is
not true: it is not always possible to retrieve the coloring of the edges of a generalized
Schnyder wood from the orientation of the edges (see for example the graph of Figure 8
in [6]). But Felsner proved that a Schnyder wood of a planar map uniquely defines a
Schnyder wood of the dual and when both the orientation of the edges of the primal and
the dual are given, then the coloring of the Schnyder wood can be retrieved. We will
use this to obtain the one-to-one correspondence with strict tiling primal-dual contact
representations by triangles. To this purpose, we need to introduce some formalism
from [6].

The suspension dual Gσ∗ is obtained from the dual G∗ by the following: The dual-
vertex corresponding to the unbounded face is replaced by a triangle with vertices
y0, y1, y2. More precisely, let Xi be the set of edges on the boundary of the outer face
of G between vertices xj and xk, with {i, j, k} = {0, 1, 2}. Let Yi be the set of dual
edges to the edges in Xi, i.e. Y0∪Y1∪Y2 is the set of edges containing the vertex f∞ of
G∗ which corresponds to the unbounded face of G. Exchange f∞ by yi at all the edges
of Yi, add three edges y0y1, y1y2, y2y0, and finally add a half-edge at each yi inside the
face y0y1y2. The resulting graph is the suspension dual Gσ∗. Felsner [5,6] proved that
Schnyder woods of Gσ are in one-to-one correspondence with Schnyder woods of Gσ∗.

The completion of a plane suspension Gσ and its dual Gσ∗ is obtain by the following:
Superimpose Gσ and Gσ∗ so that exactly the primal dual pairs of edges cross (the half-
edge at xi cross the dual edge yjyk, for {i, j, k} = {0, 1, 2}). The common subdivision
of each crossing pair of edges is a new edge-vertex. Add a new vertex v∞ which is the
second endpoint of the six half-edges reaching into the unbounded face. The resulting
graph is the completion ˜Gσ .

A s-orientation of ˜Gσ is an orientation of the edges of ˜Gσ satisfying the following
out-degrees :

– d+(v) = 3 for all primal- and dual-vertices v
– d+(e) = 1 for all edge-vertices e.
– d+(v∞) = 0 for the special vertex v∞.

Felsner [6] proved the following:

Theorem 7 (Felsner [6]). Schnyder woods of Gσ are in one-to-one correspondence
with s-orientations of ˜Gσ .

We are now able to prove the following correspondence:

Theorem 8. The non-isomorphic strict tiling primal-dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.

Proof. Given a strict tiling primal-dual contact representation by triangles (V ,F) of a
graph G, one can associate a corresponding suspension Gσ , its suspension dual Gσ∗,
the completion ˜Gσ and a s-orientation of the completion. The three vertices x0, x1, x2

that define the suspension Gσ are, in clockwise order, the three triangles of V that share
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a node with the triangle corresponding to the outer face. We modify our contact system
by exchanging the triangle c(f∞), representing the outer face f∞, by three triangles
c(y0), c(y1), c(y2) each one representing y0, y1, y2 of the suspension dual. Each c(yi)
share a side with c(f∞) and two c(yi) have parallel and intersecting sides. The interiors
of the triangles of this new system still form a tiling of a triangle c(v∞) representing
the vertex v∞ of the completion. The edge-vertices of the completion corresponds to
the nodes of the triangles of the new system.

The s-orientation of ˜Gσ is obtained by the following. For a primal- or dual-vertex
v, represented by a triangle c(v), all edges ve of ˜Gσ are directed from v to e if e
corresponds to a node of c(v) and from e to v otherwise. For the special vertex v∞, all
its incident edges are directed towards itself. Clearly, for every primal- or dual-vertex
v, we have d+(v) = 3 as c(v) is a triangle and for v∞ we have d+(v∞) = 0. As the
primal-dual contact representation (V ,F) is strict, i.e. each contact point is a node of
exactly three triangles, we have d+(e) = 1 for every edge-vertex that is a contact point
of (V ,F). For edge-vertices between special vertices xi, yj and v∞ one can check that
the out-degree constraint is also satisfied.

One can remark that two non-isomorphic triangle contact systems representing the
same planar map G define two distinct orientations of ˜Gσ and thus two different Schny-
der woods of Gσ by Theorem 7.

Conversely, let G be a planar map, given with a Schnyder wood rooted at x0, x1,
x2 and the corresponding s-orientation of ˜Gσ . Let A be the contact system of arcs
corresponding to the Schnyder wood as defined in Section 3. For each vertex v ∈ V ,
we note c(v) the closed curve that is the union, for i ∈ {0, 1, 2}, of the part of the
arc ai(v) between the contact point with ai−1(v) and ai+1(v). The set of curves V =
(c(v))v∈V is a contact representation of G by closed curves. For each interior face F ,
the labels of its angles form a nonempty interval of 0’s, a nonempty interval of 1’s
and a nonempty interval of 2’s by Theorem 6. By definition of the arcs, each interval
of i’s corresponds to only one arc, noted ai(f). We note c(f) the closed curve that
is the union, for i ∈ {0, 1, 2}, of the part of the arc ai(f) between the contact point
with ai−1(f) and ai+1(f). For the outer face f∞, the curve c(f∞) is the union, for
i ∈ {0, 1, 2}, of ai+1(xi). The set of curvesF = (c(f))f∈V ∗ is a contact representation
of G∗ by closed curves.

By Lemma 1, the contact system of arcs A is stretchable. For each v ∈ V ∪ V ∗,
the closed curves c(v) is the union of three part of arcs of A, so when stretched it
becomes a triangle. Thus, we obtain a primal-dual contact representation by triangles
(V ,F) of G. By definition of (V ,F) the interiors of the triangles form a tiling of the
triangle corresponding to the outer face. Thus, the primal-dual contact representation
by triangles (V ,F) is tiling. By definition of A, every contact point, corresponding to
an uni- or bi-directed edge, is interior to one arc and is the extremity of two arcs. So
each contact point of (V ,F) is a node of exactly three triangles. Thus, the primal-dual
contact representation by triangles (V ,F) is strict. The strict tiling primal-dual contact
representation by triangles (V ,F) corresponds to the s-orientation of ˜Gσ and thus to
the Schnyder wood by Theorem 7.
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5 Internally 3-Connected Planar Maps

A planar map G is internally 3-connected if there exists three vertices on the outer face
such that the graph obtain from G by adding a vertex adjacent to the three vertices is
3-connected. Miller [16] proved the following (see also [4] for existence of Schnyder
woods for 3-connected planar maps and [3] were the following result is stated in this
form):

Theorem 9 (Miller [16]). A planar map admits a Schnyder wood if and only if it is
internally 3-connected.

As a corollary of Theorems 8 and 9, we obtain the following:

Corollary 1. A planar map admits a strict tiling primal-dual contact representation by
triangles if and only if it is internally 3-connected.

A 3-connected planar map is obviously internally 3-connected, so we obtain Theorem 4
as a consequence of Corollary 1.

6 Particular Types of Triangles

The construction given by de Fraysseix et al. [8] to obtain a strict contact representation
by triangles of a planar triangulation can be slightly modified to give a strict tiling
primal-dual contact representation by triangles (the three triangles corresponding to the
outer face have to be modified to obtain the tiling property). In de Fraysseix et al.’s
construction all the triangles have a horizontal side at their bottom and moreover it
is possible to require that all the triangles are right (with the right angle on the left
extremity of the horizontal side). This leads us to propose the following conjecture.

Conjecture 1. Every 3-connected planar map admits a strict tiling primal-dual contact
representation by right triangles where all triangles have a horizontal and a vertical
side and where the right angle is bottom-left for primal vertices and the outer face and
top-right otherwise.

One may wonder if further requirements can be asked. Is it possible to obtain primal-
dual contact representation by homothetic triangles ? The 4-connected planar triangu-
lation of Figure 5 has a unique contact representation by homothetic triangles (for a
fixed size of the external triangles). The central face corresponds to an empty triangle
and thus this graph has no primal-dual contact representation by homothetic triangles.
Moreover if one add a vertex in the central face adjacent to all the vertices of this face,
then, there is no contact representation by homothetic triangles. In this case, the planar
triangulation that is obtain is not 4-connected anymore. This leads Kratochvil [15] (see
also [2]) to conjecture that every 4-connected planar triangulation admits a contact rep-
resentation by homothetic triangles. Actually this conjecture holds by an application of
the following theorem of O. Schramm [18] that is a generalization of Theorem 1 (in the
sense that circle are replaced by convex bodies).
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Fig. 5. A contact representation by homothetic triangles

Theorem 10 (Convex Packing Theorem). Let T be a planar triangulation with out-
erface abc. Let C be a simple closed curve in the plane, and let Pa, Pb, Pc be three
arcs composing C, which are determined by three distinct points of C. For each ver-
tex v ∈ V (T ) \ {a, b, c}, let there be a prototype Pv , which is a convex set in the
plane containing more than one point. Then there is a contact system in the plane
Q = {Qv : v ∈ V (T )}, where Qa = Pa, Qb = Pb, Qc = Pc and each Qv (for
v ∈ V (T ) \ {a, b, c} is either a point or (positively) homothetic to Pv, and such that T
is a subgraph of the graph induced by Q.

This theorem makes an intersecting link between Theorem 1 and Theorem 2.

Theorem 11. Every 4-connected planar triangulation T admits a contact representa-
tion by homothetic triangles.

Proof. Indeed, in the Convex Packing Theorem if we let the prototypes be homothetic
triangles and the curves Pa, Pb, Pc be segments with appropriate slopes (in such a
way that those segment can be the sides of homothetic triangles added in the outer-
region), we obtain a contact system of homothetic triangles Q, where the triangles may
be reduced to a point, and that induces a graph G ⊇ T . Thus, to prove the theorem
we just have to show that (a) none of the triangles are reduced to a point and (b) that
E(G) = E(T ).

(a) If there was a vertex v such that its triangle Qv is reduced to a point p then by taking
a sufficiently small circle C around p we intersect at most three non-degenerated tri-
angles. Since a path P from x to y in H clearly corresponds to a curve in ∪z∈PQz

from Qx to Qy , the triangles intersecting C correspond to a set of vertices sep-
arating v to some u ∈ {a, b, c} in G, contradicting the 4-connectedness of G
and T .

(b) Since none of the triangles is degenerated, the contact points are either the inter-
section of two or three triangles. In those cases the contact point respectively corre-
spond to one or three edges of H . Then, since these contact points are respectively
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the nodes of at least one, or exactly three triangles, and according to the position of
the segments Pa, Pb and Pc, we have that |E(G)| ≤ 3 + 3(n − 3) = 3n − 6 =
|E(T )|. Thus E(G) = E(T ) and we are done.

It is still an open question to know whether these representations by homothetic trian-
gles are unique for a given 4-connected triangulation. These representations being not
strict (three triangles can meet at one point, see Figure 5) we can not always derive
a unique Schnyder wood as in [8]. However, we can define a set of Schnyder woods
corresponding to the representation as follow. All the triangles of the representation are
homothetic to a triangle with nodes colored 0, 1, 2 in clockwise order. The out-going
arc of color i of a vertex v corresponds to the contact point with the node i of its cor-
responding triangle. For the particular case where three triangles meet in one point we
have to choose arbitrarily the clockwise or anti-clockwise cycle. This set of Schnyder
woods can be embedded on an orthogonal drawing where edge-points are coplanar (by
allowing a degenerate patterns for each point that is the intersection of three triangles,
see Felsner and Zickfeld [7]). Another interesting conjecture concerning contact system
of triangles is the following.

Conjecture 2. Every planar graph has a contact representation by equilateral (not nec-
essarily homothetic) triangles.

Concerning intersection systems (not contact systems) of triangles, M. Kaufmann et
al. [13] proved that Max-tolerance graphs are exactly those graphs that have an in-
tersection representation by homothetic triangles. Then K. Lehmann conjectured that
every planar graph has such a representation. We can derive from Theorem 11 that her
conjecture holds.

Theorem 12. A graph G is planar if and only if it has an intersection representation
by homothetic triangles where no three triangles intersect.

It is interesting to notice that this theorem implies a result of Gansner et al. [11], that pla-
nar graphs have a representation by touching hexagons. Indeed consider an intersection
model of G by homothetic triangles where no three triangles intersect, and where two
intersecting triangles intersect in more than one point (inflate the triangles if necessary).
Then remove, for each pair of intersecting triangles T (u) and T (v) (where T (u) has a
node strictly inside T (v)), the triangle T (u) ∩ T (v) from T (u). However, Gansner et
al.’s construction also provides, for triangulations, a model of touching polygons (with
at most six sides) that form a tilling.
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J. Palladino, P., Patrignani, M., Trotta., F.: Homothetic triangle contact representations of
planar graphs. In: Proceedings of the 19th Canadian Conference on Computational Geometry
CCCG 2007, pp. 233–236 (2007)



Triangle Contact Representations and Duality 273

3. Bonichon, N., Felsner, S., Mosbah, M.: Convex Drawings of 3-Connected Plane Graphs.
Algorithmica 47, 399–420 (2007)

4. Felsner, S.: Convex Drawings of Planar Graphs and the Order Dimension of 3-Polytopes.
Order 18, 19–37 (2001)

5. Felsner, S.: Geodesic Embeddings and Planar Graphs. Order 20, 135–150 (2003)
6. Felsner, S.: Lattice structures from planar graphs. Electron. J. Combin. 11 (2004)
7. Felsner, S., Zickfeld, F.: Schnyder Woods and Orthogonal Surfaces. Discrete Comput.

Geom. 40, 103–126 (2008)
8. de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P.: On Triangle Contact Graphs. Com-

binatorics, Probability and Computing 3, 233–246 (1994)
9. de Fraysseix, H., Ossona de Mendez, P.: On topological aspects of orientations. Discrete

Mathematics 229, 57–72 (2001)
10. de Fraysseix, H., de Mendez, P.O.: Barycentric systems and stretchability. Discrete Applied

Mathematics 155, 1079–1095 (2007)
11. Gansner, E.R., Hu, Y., Kaufmann, M., Kobourov, S.G.: Optimal Polygonal Representation
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