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A b s t r a c t .  Triangle is a robust implementation of two-dimensional con- 

strained Delaunay triangulation and Ruppert's Delaunay refinement al- 
gorithm for quality mesh generation. Several implementation issues are 

discussed, including the choice of triangulation algorithms and data struc- 

tures, the effect of several variants of the Delaunay refinement algorithm 

on mesh quality, and the use of adaptive exact arithmetic to ensure ro- 

bustness with minimal sacrifice of speed. The problem of triangulating a 
planar straight line graph (PSLG) without introducing new small angles 
is shown to be impossible for some PSLGs, contradicting the claim that 
a variant of the Delaunay refinement algorithm solves this problem. 

1 Introduction 

Triangle is a C program for two-dimensional mesh generation and construction of 

Delaunay triangulations, constrained Delaunay triangulations, and Vorono'i di- 

agrams. Triangle is fast, memory-efficient, and robust; it computes Delaunay 

triangulations and constrained Delaunay triangulations exactly. Guaranteed- 

quality meshes (having no small angles) are generated using Ruppert's Delaunay 

refinement algorithm. Features include user-specified constraints on angles and 

triangle areas, user-specified holes and concavities, and the economical use of 

exact arithmetic to improve robustness. Triangle is freely available on the Web 

at "http://www.cs.cmu.edu/~quake/triangle.html" and from Netlib. This pa- 

per discusses many of the key implementation decisions, including the choice 

of triangulation algorithms and data structures, the steps taken to create and 

refine a mesh, a number of issues that arise in Ruppert's algorithm, and the use 

of exact arithmetic. 

2 Triangulation Algorithms and Data Structures 

A triangular mesh generator rests on the efficiency of its triangulation algorithms 

and data structures, so I discuss these first. I assume the reader is familiar with 

Delannay triangulations, constrained Delaunay triangulations, and the incre- 

mental insertion algorithms for constructing them. Consult the survey by Bern 

and Eppstein [2] for an introduction. 
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There are many Delaunay triangulation algorithms, some of which are sur- 

veyed and evaluated by Fortune [7] and Su and Drysdale [18]. Their results in- 

dicate a rough parity in speed among the incremental insertion algorithm of 

Lawson [11], the divide-and-conquer algorithm of Lee and Schachter [12], and 

the plane-sweep algorithm of Fortune [6]; however, the implementations they 

study were written by different people. I believe that Triangle is the first in- 

stance in which all three algorithms have been implemented with the same data 

structures and floating-point tests, by one person who gave roughly equal at- 

tention to optimizing each. (Some details of how these implementations were 

optimized appear in Appendix A.) 

Table i compares the algorithms, including versions that use exact arithmetic 

(see Sect. 4) to achieve robustness, and versions that use approximate arithmetic 

and are hence faster but may fail or produce incorrect output. (The robust 

and non-robust versions are otherwise identical.) As Su and Drysdale [18] also 

found, the divide-and-conquer algorithm is fastest, with the sweepline algorithm 

second. The incremental algorithm performs poorly, spending most of its time 

in point location. (Su and Drysdale produced a better incremental insertion 

implementation by using bucketing to perform point location, but it still ranks 

third. Triangle does not use bucketing because it is easily defeated, as discussed in 

the appendix.) The agreement between my results and those of Su and Drysdale 

lends support to their ranking of algorithms. 

An important optimization to the divide-and-conquer algorithm, adapted 

from Dwyer [5], is to partition the vertices with alternating horizontal and verti- 

cal cuts (Lee and Schachter's algorithm uses only vertical cuts). Alternating cuts 

speed the algorithm and, when exact arithmetic is disabled, reduce its likelihood 

of failure. One million points can be triangulated correctly in a minute on a fast 

workstation. 

All three triangulation algorithms are implemented so as to eliminate dupli- 

cate input points; if not eliminated, duplicates can cause catastrophic failures. 

The sweepline algorithm can easily detect duplicate points as they are removed 

from the event queue (by comparing each with the previous point removed from 

the queue), and the incremental insertion algorithm can detect a duplicate point 

after point location. The divide-and-conquer algorithm begins by sorting the 

points by their x-coordinates, after which duplicates can be detected and re- 

moved. This sorting step is a necessary part of the divide-and-conquer algo- 

rithm with vertical cuts, but not of the variant with alternating cuts (which 

must perform a sequence of median-finding operations, alternately by x and 

y-coordinates). Hence, the timings in Table 1 for divide-and=conquer with alter- 

nating cuts could be improved slightly if one could guarantee that no duplicate 

input points would occur; the initial sorting step would be unnecessary. 

Should one choose a data structure that uses a record to represent each edge, 

or one that uses a record to represent each triangle? Triangle was originally 

written using Guibas and Stolfi's quad-edge data structure [10] (without the 

Flip operator), then rewritten using a triangle-based data structure. The quad- 

edge data structure is popular because it is elegant, because it simultaneously 
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represents a graph and its geometric dual (such as a Delaunay triangulation and 

the corresponding VoronoY diagram), and because Guibas and Stolfi give detailed 

pseudocode for implementing the divide-and-conquer and incremental Delaunay 

algorithms using quad-edges. 

Despite the fundamental differences between the data structures, the quad- 

edge-based and triangle-based implementations of Triangle are both faithful to 

the Delaunay triangulation algorithms presented by Guibas and Stolfi [10] (I 

did not implement a quad-edge sweepline algorithm), and hence offer a fair 

comparison of the data structures. Perhaps the most useful observation of this 

Table 1. Timings for triangulation on a DEC 3000/700 with a 225 MHz Alpha pro- 
cessor, not including I/O. Robust and non-robust versions of the Delaunay algorithms 

triangulated points chosen from one of three different distributions: uniformly dis- 

tributed random points in a square, random approximately cocircular points, and a 

tilted 1000 x 1000 square grid. 

Delaunay triangulation timings (seconds) 

Number of points 10,000 

Point distribution Uniform Boundary 

Algorithm Random of Circle 

Div&Conq, alternating cuts 

robust 0.33 0.57 

non-robust 0.30 0.27 

Div&Conq, vertical cuts 

robust 0.47 1.06 

non-robust 0.36 0.17 

Sweepline 

non-robust 0.78 0.62 

Incremental 

robust 1.15 3.88 

non-robust 0.99 2.74 

Tilted 

Grid 

0.72 

0.27 

0.96 
failed 

0.71 

2.79 

failed 

100,000 

Uniform Boundary Tilted 

iRandom of Circle Grid 

4.5 

4.0 

5.3 5.5 

4.0 3.5 

6.2 9.0 7.6 
5.0 2.1 4.2 i 

10.8 8.6 10.5 

Number of points 1,000,000 

Point distribution Uniform Boundary Tilted 

Algorithm Random of Circle Grid 

Div&Conq, alternating cuts 

robust 58 61 58 

non-robust 53 56 44 

Div&Conq, vertical cuts 

robust 79 98 85 

non-robust 64 26 failed 

Sweepline 

non-robust 147 119 139 

[ncremental 
robust 545 1523 2138 

non-robust 486 1327 failed 

24.0 112.7 101.3 

21.3 94.3 failed 
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Fig. 1. A triangulation (top) and its corresponding representations with quad-edge and 
triangular data structures. Each quad-edge and each triangle contains six pointers. 

paper for practitioners is that  the divide-and-conquer algorithm, the incremental 

algorithm, and the Delaunay refinement algorithm for mesh generation were all 

sped by a factor of two by the triangular data  structure. (However, it is worth 

noting that  the code devoted specifically to triangulation is roughly twice as 

long for the triangular data structure.) A difference so pronounced demands 

explanation. 

First, consider the different storage demands of each data  structure, illus- 

trated in Fig. 1. Each quad-edge record contains four pointers to neighboring 

quad-edges, and two pointers to vertices (the endpoints of the edge). Each trian- 

gle record contains three pointers to neighboring triangles, and three pointers to 

vertices. Hence, both structures contain six pointers. 1 A triangulation contains 

roughly three edges for every two triangles. Hence, the triangular data  structure 

is more space-efficient. 

It  is difficult to ascertain with certainty why the triangular data  structure 

is superior in time as well as space, but one can make educated inferences. 

When a program makes structural changes to a triangulation, the amount of 

time used depends in part on the number of pointers that  have to be read and 

written. This amount is smaller for the triangular data  structure; more of the 

connectivity information is implicit in each triangle. Caching is improved by 

the fact that  fewer structures are accessed. (For large triangulations, any two 

adjoining quad-edges or triangles are unlikely to lie in the same cache line.) 

1 Both the quad-edge and triangle data structures must store not only pointers to 
their neighbors, but also the orientations of their neighbors, to make clear how they 
are connected. For instance, each pointer from a triangle to a neighboring triangle 
has an associated orientation (a number between zero and two) that indicates which 
edge of the neighboring triangle is contacted. An important space optimization is 
to store the orientation of each quad-edge or triangle in the bottom two bits of the 
corresponding pointer. Thus, each record must be aligned on a four-byte boundary. 
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Fig. 2. How the triangle-based divide-and-conquer algorithm represents an isolated 
edge (left) and an isolated triangle (right). Dashed lines represent ghost triangles. 
White vertices all represent the same "vertex at infinity"; only black vertices have 
coordinates. 

Because the triangle-based divide-and-conquer algorithm proved to be fast- 

est, it is worth exploring in some depth. At first glance, the algorithm and 

data structure seem incompatible. The divide-and-conquer algorithm recursively 

halves the input vertices until they are partitioned into subsets of two or three 

vertices each. Each subset is easily triangulated (yielding an edge, two collinear 

edges, or a triangle), and the triangulations are merged together to form larger 

ones. If one uses a degenerate triangle to represent an isolated edge, the resulting 

code is clumsy because of the need to handle special cases. One might partition 

the input into subsets of three to five vertices, but this does not help if the points 

in a subset are collinear. 

To preserve the elegance of Gnibas and Stolfi's presentation of the divide- 

and-conquer algorithm, each triangulation is surrounded with a layer of "ghost" 

triangles, one triangle per convex hull edge. The ghost triangles are connected 

to each other in a ring about a "vertex at infinity" (really just a null pointer). 

A single edge is represented by two ghost triangles, as illustrated in Fig. 2. 

Ghost triangles are useful for efficiently traversing the convex hull edges 

during the merge step. Some are transformed into real triangles during this step; 

two triangulations are sewn together by fitting their ghost triangles together like 

the teeth of two gears. (Some edge flips are also needed. See Fig. 3.) Each merge 

step creates only two new triangles; one at the bottom and one at the top of the 

seam. After all the merge steps are done, the ghost triangles are removed and 

the triangulation is passed on to the next stage of meshing. 

Precisely the same data structure, ghost triangles and all, is used in the 

sweepline implementation to represent the growing triangulation (which often 

includes dangling edges). Details are omitted. 

Augmentations to the data structure are necessary to support the constrained 

triangulations needed for mesh generation. Constrained edges are edges that may 

not be removed in the process of improving the quality of a mesh, and hence 

may not be flipped during incremental insertion of a vertex. One or more con- 

strained edges collectively represent an input segment. Constrained edges may 

carry additional information, such as boundary conditions for finite element sim- 

ulations. (A future version of Triangle may support curved segments this way.) 
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Fig. 3. Halfway through a merge step of the divide-and-conquer algorithm. Dashed 
lines represent ghost triangles and triangles displaced by edge flips. The dotted triangle 
at bottom center is a newly created ghost triangle. Shaded triangles are non-Delaunay 
and will be displaced by edge flips. 

The quad-edge structure supports such constraints easily; each quad-edge is sim- 

ply annotated to mark the fact that it is constrained, and perhaps annotated 

with extra information. It is more expensive to represent constraints with the 

triangular structure; I augment each triangle with three extra pointers (one for 

each edge), which are usually null but may point to shell edges, which represent 

constrained edges and carry additional information. This eliminates the space 

advantage of the triangular data structure, but not its time advantage. Triangle 

uses the longer record only if constraints are needed. 

3 Ruppert's Delaunay Refinement Algorithm 

Ruppert's algorithm for two-dimensional quality mesh generation [15] is perhaps 

the first theoretically guaranteed meshing algorithm to be truly satisfactory in 

practice. It produces meshes with no small angles, using relatively few trian- 

gles (though the density of triangles can be increased under user control) and 

allowing the density of triangles to vary quickly over short distances, as illus- 
trated in Fig. 4. (Chew [3] independently developed a similar algorithm.) This 

section describes Ruppert's Delaunay refinement algorithm as it is implemented 

in Triangle. 
Triangle's input is a planar straight line graph (PSLG), defined to be a collec- 
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Fig. 4. A demonstration of the ability of the Delannay refinement algorithm to achieve 
large gradations in triangle size while constraining angles. No angles are smaller than 

24 ~ . 

tion of vertices and segments (where the endpoints of every segment are included 

in the list of vertices). Figure 5 illustrates a PSLG defining an electric guitar. 

Although the definition of "PSLG" normally disallows segment intersections (ex- 

cept at segment endpoints), Triangle can detect segment intersections and insert 

vertices. 

The first stage of the algorithm is to find the Delannay triangulation of the 

input vertices, as in Fig. 6. In general, some of the input segments are missing 

from the triangulation; the second stage is to insert them. Triangle can force the 

mesh to conform to the segments in one of two ways, selectable by the user. The 

first is to insert a new vertex corresponding to the midpoint of any segment that 

does not appear in the mesh, and use Lawson's incremental insertion algorithm 

to maintain the Delannay property. The effect is to split the segment in half, and 

the two resulting subsegments may appear in the mesh. If not, the procedure is 

repeated recursively until the original segment is represented by a linear sequence 

of constrained edges in the mesh. 

The second choice is to simply use a constrained Delannay triangulation 

(Fig. 7). Each segment is inserted by deleting the triangles it overlaps, and retri- 

angulating the regions on each side of the segment. No new vertices are inserted. 

For reasons explained in Sect. 3.1, Triangle uses the constrained Delannay tri- 

angulation by default. 

The third stage of the algorithm, which diverges from Ruppert [15], is to 

remove triangles from concavities and holes (Fig. 8). A hole is simply a user- 

specified point in the plane where a "triangle-eating virus" is planted and spread 

by depth-first search until its advance is halted by Segments. (This simple mech- 

anism saves both the user and the implementation from a common outlook 

wherein one must define oriented curves whose insides are clearly distinguish- 

able from their outsides. Triangle's method makes it easier to treat holes and 

internal boundaries in a unified manner. 2) Concavities are recognized from un- 

2 I imagine computational geometers replying, "Of course," engineers responding, 
"Hmm," and solid modeling specialists recoiling in horror. 
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Fig. 5. Electric guitar PSLG. 

Fig. 6. Delaunay triangulation of vertices of PSLG. The triangulation does not conform 

to all of the input segments, 

Fig, 7. Constrained Delaunay triangulation of PSLG. 

F]g. 8. Triangles are removed from concavities and holes. 

Fig. 9. Conforming Delaunay triangulation with 20 ~ minimum angle. 



211 

Fig. 10. Segments are split recursively (while maintaining the Delaunay property) until 

no segments are encroached. 

Fig. 11. Each bad triangle is split by inserting a vertex at its circumcenter and main- 
taining the Delaunay property. 

constrained edges on the boundary of the mesh, and the same virus is used to 

hollow them out. 

The fourth stage, and the heart of the algorithm, refines the mesh by in- 

serting additional vertices into the mesh (using Lawson's algorithm to maintain 

the Delaunay property) until all constraints on minimum angle and maximum 

triangle area are met (Fig. 9). Vertex insertion is governed by two rules. 

- The diametral circle of a segment is the (unique) smallest circle that  contains 

the segment. A segment is said to be encroached if a point lies within its 

diametral circle. Any encroached segment that  arises is immediately split 

by inserting a vertex at its midpoint. The two resulting subsegments have 

smaller diametral circles, and may or may not be encroached themselves. See 

Fig. 10. 

- The circumcircle of a triangle is the unique circle that  passes through all 

three vertices of the triangle. A triangle is said to be bad if it has an an- 

gle too small or an area too large to satisfy the user's constraints. A bad 

triangle is split by inserting a vertex at its circumcenter (the center of its 

circumcircle); the Delannay property guarantees that  the triangle is elim- 

inated (see Fig. 11). If the new vertex encroaches upon any segment, the 

vertex is deleted (reversing the insertion process) and all the segments it 

encroached upon are split. 

Encroached segments are given priority over bad triangles. A queue of en- 

croached segments and a queue of bad triangles are initialized at the beginning of 
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Fig. 12. Demonstration of the refinement stage. The first two images are the input 

PSLG and its constrained Delannay triangulation. In each image, highlighted segments 

or triangles are about to be split, and highlighted vertices are about to be deleted. Note 

that the algorithm easily accommodates internal boundaries and holes. 

the refinement stage and maintained throughout;  every vertex insertion may  add 

new members  to either queue. The former queue rarely contains more than  one 

segment except at the beginning of the refinement stage, when it may  contain 

many. 

The refinement stage is illustrated in Fig. 12. Rupper t  [15] proves tha t  this 

procedure halts for an angle constraint of up to 20.7 ~ . In practice, the algori thm 

generally halts with an angle constraint of 33.8 ~ , but  often fails to te rminate  

given an angle constraint of 33.9 ~ . I t  would be interesting to discover why the 

cutoff falls there. 
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Fig. 13. Two variations of the Delaunay refinement algorithm with a 20 ~ minimum 
angle. Left: Mesh created using segment splitting and late removal of triangles. This 
illustration includes external triangles, just prior to removal, to show why overrefine- 
meat occurs. Right: Mesh created using constrained Delaunay triangulation and early 
removal of triangles. 

3.1 Selec ted  I m p l e m e n t a t i o n  Issues 

Triangle removes extraneous triangles from holes and concavities before the re- 

finement stage. This presents no problem for the refinement algorithm; the re- 

quirement that no segment be encroached and the Delannay property together 

ensure that the circumcenter of every triangle lies within the mesh. (Roundoff 

error might perturb a circumcenter to just outside the mesh, but it is easy to 

identify the conflicting edge and treat it as encroached.) An advantage of re- 

moving triangles before refinement is that computation is not wasted refining 

triangles that will eventually be deleted. 

A more important advantage is illustrated in Fig. 13. If extraneous trian- 

gles remain during the refinement stage, overrefinement can occur if very small 

features outside the object being meshed cause the creation of small triangles 

inside the mesh. Ruppert suggests solving this problem by using the constrained 

Delaunay triangulation, and ignoring interactions that take place outside the 

region being triangulated. Early removal of triangles provides a nearly effortless 

way to accomplish this effect. Segments that would normally be considered en- 

croached are ignored (Fig. 13, right), because encroached segments are diagnosed 

by noticing that they occur opposite an obtuse angle in a triangle. 

Another determinant of the number of triangles in the final mesh is the order 

in which bad triangles are split, especially when a strong angle constraint is used. 

Figure 14 demonstrates how sensitive the refinement algorithm is to the order. 

For this example with a 33 ~ minimum angle, a heap of bad triangles indexed by 

their smallest angle confers a 35% reduction in mesh size over a first-in first-out 

queue. (This difference is typical for large meshes with a strong angle constraint, 

but thankfully disappears for small meshes and small constraints.) The discrep- 

ancy probably occurs because circumcenters of very bad triangles are likely to 

split more bad triangles than circumcenters of mildly bad triangles. Unfortu- 

nately, a heap is slow for large meshes, especially when small area constraints 

force all of the triangles into the heap. Delannay refinement usually takes O(n) 
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Fig. 14. Two meshes with a 33 ~ minimum angle. The left mesh, with 290 triangles, 

was formed by always splitting the worst existing triangle. The right mesh, with 450 
triangles, was formed by using a first-come first-split queue of bad triangles. 

time in practice, but use of a heap increases the complexity to O(n log n). 

Triangle's solution, chosen experimentally, is to use 64 FIFO queues, each 

representing a different interval of angles. It is counterproductive (in practice) 

to order well-shaped triangles by their worst angle, so one queue is used for 

well-shaped but too-large triangles whose angles are all roughly larger than 39 ~ . 

Triangles with smaller angles are partitioned among the remaining queues. When 

a bad triangle is chosen for splitting, it is taken from the "worst" nonempty 

queue. This method yields meshes comparable with those generated using a 

heap, but is only slightly slower than using a single queue. During the refinement 

phase, about 21,000 new vertices are generated per second on a DEC 3000/700. 

These vertices are inserted using the incremental Delaunay algorithm, but are 

inserted much more quickly than Table 1 would suggest because a triangle's 

circumcenter can be located quickly by starting the search at the triangle. 

3.2 A Negative Result  on Quality Triangulations 

For any angle bound ~ > 0, there exists a PSLG P such that  it is not possible 

to triangulate P without creating a new corner (not present in ~v) having angle 

smaller than 8. Here, I discuss why this is true. 
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Fig. 15. In any triangulation with no angles smaller than 30 ~ the ratio b/a cannot 
exceed 27. 

Ruppert 's  proof that  his Delannay refinement algorithm terminates makes 

use of the assumption that  all interior angles axe 90 ~ or larger. This condition 

is often violated in practice, so he suggests handling small interior angles by 

surrounding each vertex of an acute angle with a ring of shield edges. As the 

negative result stated above suggests, there are PSLGs for which shield edges 

fail, and for which no construction can succeed. Fortunately, all such PSLGs I 

am aware of have an interior angle much smaller than 0, so failure is generally 

predictable. 

The reasoning behind the result is as follows. Suppose a segment in a con- 

forming triangulation has been split into two subsegments of lengths a and b, as 

illustrated in Fig. 15. Mitchell [13] proves that  if the triangulation has no angles 

smaller than 0, then the ratio b/a has an upper bound of (2 cos 0) 18~176176 (This 

bound is tight if 180~ is an integer; Figure 15 offers an example where the 

bound is obtained.) Hence any bound on the smallest angle of a triangulation 

imposes a limit on the gradation of triangle sizes along a segment (or anywhere 

in the mesh). 

A problem can arise if a small angle r occurs at the intersection point o of 

two segments of a PSLG, as illustrated in Fig. 16 (top). The small angle cannot 

be improved, of course, but one does not wish to create any new small angles. 

Assume that  one of the segments is split by a point p, which may be present in 

the input or may be inserted to help achieve the angle constraint elsewhere in 

the triangulation. The insertion of p forces part of the region between the two 

segments to be triangulated (Fig. 16, center), which can cause a new point q to 

be inserted on the segment containing p. Let a = IP-ql and b = I~ppl as illustrated. 

If the angle bound is maintained, the length a cannot be large; the ratio a/b is 

bounded below 
sin(O + r s ine  c o s ( 0 + r  

sine / 

If the region above the segments is part of the interior of the PSLG, the fan 

effect demonstrated in Fig. 15 may necessitate the insertion of another vertex 

r between o and p (Fig. 16, bottom); this circumstance is unavoidable if the 

product of the bounds on b/a and a/b given above is less than one. For an 

angle constraint of 0 = 30 ~ this condition occurs when r is about six tenths 

of a degree. Unfortunately, the new vertex r creates the same conditions as the 
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Fig. 16. Top: A ditficult PSLG with a small interior angle ~b. Center: The point p 
and the angle constraint necessitate the insertion of the point q. Bottom: The point q 
and the angle constraint necessitate the insertion of the point r. The process repeats 

eternally. 

vertex p, but closer to o; the process will cascade, eternally creating smaller and 

smaller triangles in an attempt to satisfy the angle constraint. No algorithm 

can produce a finite triangulation of such a PSLG without violating the angle 

constraint. (It is amusing to consider whether the angle constraint can be met 

if one is allowed an infinite number of triangles.) 

If some PSLGs do not have quality triangulations, what are the implications 

for shielding? Triangle implements a variant of shielding known as "modified 

segment splitting using concentric circular shells" (see Ruppert [15] for details), 

which is generally effective in practice for PSLGs that have small angles greater 
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than 5 ~ , and often for smaller angles. Shielding is useful even though it can- 

not solve all problems. On the other hand, the Delannay refinement algorithm 

does not know to use careful arrangements of triangles as in Fig. 15 to manage 

small input angles, and therefore can fail to terminate even on PSLGs for which 

a quality triangulation exists. Hence, Triangle prints a warning message when 

angles smaller than five degrees appear between input segments. The smaller 

an angle is, and the greater the number of small angles in a PSLG, the less 

likely Triangle is to terminate. An interesting question for future work is how 

to determine when and where it is wise to weaken the angle constraint so that 

termination can be ensured. 

This problem presents another motivation for removing triangles from holes 

and concavities prior to applying the Delaunay refinement algorithm. Holes with 

small angles might cause the algorithm to fail if triangles are not removed until 

after refinement. Concave objects can be particularly dastardly, because a very 

small angle may occur between a defining segment of the object and an edge of 

the convex hull. The user, unaware of the effect of the convex hull edge, would 

be mystified why the Delannay refinement algorithm fails to terminate on what 

appears to be a simple PSLG. (In fact, this is how the issues described in this 

section first became evident to me.) Early removal of triangles from concavities 

avoids this problem. 

4 C o r r e c t  A d a p t i v e  T e s t s  

The correctness of the incremental and divide-and-conquer algorithms depends 

on reliable orientation and incircle tests. The orientation test determines whether 

a point lies to the left of, to the right of, or on a line; it is used in many (perhaps 

most) geometric algorithms. The incircle test determines whether a point lies 

inside, outside, or on a circle. Inexact versions of these tests are vulnerable 

to roundoff error, and the wrong answers they produce can cause geometric 

algorithms to hang, crash, or produce incorrect output. Figure 17 demonstrates 

a real example of the failure of Triangle's divide-and-conquer algorithm. 

The easiest solution to many of these robustness problems is to use software 

implementations of exact arithmetic, albeit often at great expense. It is common 

to hear reports of implementations being slowed by factors of ten or more as a 

consequence. The goal of improving the speed of correct geometric calculations 

has received much recent attention [4, 8, 1], but the most promising proposals 

take integer or rational inputs, often of limited precision. These methods do not 

appear to be usable if it is convenient or necessary to use ordinary floating-point 

inputs. 

Triangle includes fast correct implementations of the orientation and incircle 

tests that take floating-point inputs. They owe their speed to two features. First, 

they employ new fast algorithms for arbitrary precision arithmetic that have a 

strong advantage over other software techniques in computations that manip- 

ulate values of extended but small precision. Second, they are adaptive; their 

running time depends on the degree of uncertainty of the result, and is usually 
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Fig. 17. Left: A Delaunay triangulation (two of the guitar's tuning screws). Right: An 
invalid triangulation created by Triangle with exact arithmetic disabled. 

small. For instance, the adaptive orientation test is slow only if the points being 

tested are nearly or exactly collinear. 

The orientation and incircle tests both work by computing the sign of a de- 

terminant. Fortune and Van Wyk [8] take advantage of the fact that only the 

sign is needed by using a floating-point filter, the determinant is first evaluated 

approximately, and only if forward error analysis indicates that the sign of the 

approximate result cannot be trusted does one use an exact test. Triangle's adap- 

tive implementations carry this suggestion to its logical extreme by computing a 

sequence of successively more accurate approximations to the determinant, stop- 

ping only when the accuracy of the sign is assured. To reduce computation time, 

some of these approximations can reuse previous, less accurate computations. 

Shewchuk [16] presents details of the arbitrary precision arithmetic algorithms 

and the adaptivity scheme, and provides empirical evidence that multiple-stage 

adaptivity can significantly improve on two-stage adaptivity when difficult point 

sets are triangulated. 

Using the adaptive tests, Triangle computes Delaunay triangulations, con- 

strained Delaunay triangulations, and convex hulls exactly, roundoff error not- 

withstanding. Table 1 shows that the robust tests usually incur only a 10% to 

30% overhead, though more time may be needed for points sets with many near- 

degeneracies. One exception is the divide-and-conquer algorithm with vertical 

cuts. Because this algorithm repeatedly merges tall, thinly separated triangula- 

tions, it performs many orientation tests on nearly-collinear points, and hence 

the robust version is much slower than the non-robust version. The variant that 

uses alternating cuts encounters nearly-collinear points less often; hence, its ro- 

bust version suffers a smaller speed handicap, and its non-robust version is less 

likely to fail. 

Of course, adaptive tests do not solve all robustness problems. Geometric 

computations that produce new vertices, including circumcenters and segment 

intersections, could be performed exactly in principle, but the results would have 

large bit complexity and would be inconvenient to manipulate and expensive to 
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store. Worse, vertices of arbitrarily large bit complexity could eventually be 

produced in a cascading effect when the Delaunay refinement algorithm inserts 

circumcenters of triangles whose vertices were themselves circumcenters. Hence, 

it is infeasible to make the algorithm perfectly robust. Fortunately, the Delannay 

refinement algorithm is naturally stable with regard to floating-point roundoff 

error. Problems arise only when triangles are refined to so small a size that it is 

no longer possible to construct a circumcenter that is distinct from its triangle's 

vertices. 

I have not produced a robust version of the sweepline algorithm for a some- 

what technical reason. The sweepline algorithm maintains a priority queue (nor- 

mally implemented as a heap) containing two types of events: site events, where 

the sweepline passes over an input point, and circle events, where the sweepline 

reaches the top of a circle defined by three consecutive vertices on the boundary 

of the triangulation. Unfortunately, the y-coordinate of such a circle top is ex- 

pensive to compute exactly, may be irrational, and has a somewhat complicated 

exact representation. A robust implementation must keep the events correctly 

ordered, and hence must replace the simple comparisons normally used to main- 

tain a priority queue with a test that correctly compares two circle tops. Even a 

fast adaptive version of such a test would be so much slower than simple compar- 

isons that event queue maintenance, which is a dominant cost of the sweepline 

algorithm, would become prohibitively expensive. 

A A d d i t i o n a l  I m p l e m e n t a t i o n  N o t e s  

The sweepline and incremental Delaunay triangulation implementations com- 

pared by Su and Drysdaie [18] each use some variant of uniform bucketing to 

locate points. Bucketing yields fast implementations on uniform point sets, but 

is easily defeated; a small, dense cluster of points in a large, sparsely populated 

region may all fail into a single bucket. I have not used bucketing in Triangle, 

preferring algorithms that exhibit good performance with any distribution of 

input points. As a result, Triangle may be slower than necessary when trian- 

gulating uniformly distributed point sets, but will not exhibit asymptotically 

slower running times on difficult inputs. 

Fortune's sweepline algorithm uses two nontriviai data structures in addi- 

tion to the triangulation: a priority queue to store events, and a balanced tree 

data structure to store the sequence of edges on the boundary of the mesh. 

Fortune's own implementation, available from Netlib, uses bucketing to perform 

both these functions; hence, an (.9(n log n) running time is not guaranteed, and 

Su and Drysdale [18] found that the original implementation exhibits (.0(n 3/2) 

performance on uniform random point sets. By modifying Fortune's code to use 

a heap to store events, they obtained (.9(n log n) running time and better perfor- 

mance on large point sets (having more than 50,000 points). However, bucketing 

outperforms a heap on small point sets. 

Triangle's implementation uses a heap as well, and also uses a splay tree [17] 

to store mesh boundary edges, so that an O(n log n) running time is attained, 
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regardless of the distribution of points. Not all boundary edges are stored in the 

splay tree; when a new edge is created, it is inserted into the tree with probability 

0.1. (The value 0.1 was chosen empirically to minimize the triangulation time 

for uniform random point sets.) At any time, the splay tree contains a random 

sample of roughly one tenth of the boundary edges. When the sweepline sweeps 

past an input point, the point must be located relative to the boundary edges; 

this point location involves a search in the splay tree, followed by a search on 

the boundary of the triangulation itself. 

Splay trees adjust themselves so that frequently accessed items are near the 

top of the tree. Hence, a point set organized so that many new vertices ap- 

pear at roughly the same location on the boundary of the mesh is likely to be 

triangulated quickly. This effect partly explains why Triangle's sweepline imple- 

mentation triangulates points on the boundary of a circle more quickly than 

the other point sets, even though there are many more boundary edges in the 

cocircular point set and the splay tree grows to be much larger (containing O(n) 
boundary edges instead of O(x/~)). 

Triangle's incremental insertion algorithm for Delannay triangulation uses 

the point location method proposed by Miicke, Saias, and Zhu [14]. Their jump- 
and-walk method chooses a random sample of O(n 1/3) vertices from the mesh 

(where n is the number of nodes currently in the mesh), determines which of 

these vertices is closest to the query point, and walks through the mesh from the 

chosen vertex toward the query point until the triangle containing that point 

is found. Miicke et al. show that the resulting incremental algorithm takes ex- 

pected O(n 4/3) time on uniform random point sets. Table 1 appears to confirm 

this analysis. Triangle uses a sample size of 0.45nl/3; the coefficient was chosen 

empirically to minimize the triangulation time for uniform random point sets. 

Triangle also checks the previously inserted point, because in many practical 

point sets, any two consecutive points have a high likelihood of being near each 

other. 

A more elaborate point location scheme such as that suggested by Guibas, 

Knuth, and Sharir [9] could be used (along with randomization of the insertion 

order) to obtain an expected O(n log n) triangulation algorithm, but the data 

structure used for location is likely to take up as much memory as the triangu- 

lation itself, and unlikely to surpass the performance of the divide-and-conquer 

algorithm; hence, I do not intend to pursue it. 

Note that all discussion in this paper applies to Triangle version 1.2; ear- 

lier versions lack the sweepline algorithm and many optimizations to the other 

algorithms. 
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