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Abstract

A Triangle Generative Adversarial Network (∆-GAN) is developed for semi-
supervised cross-domain joint distribution matching, where the training data con-
sists of samples from each domain, and supervision of domain correspondence
is provided by only a few paired samples. ∆-GAN consists of four neural net-
works, two generators and two discriminators. The generators are designed to
learn the two-way conditional distributions between the two domains, while the
discriminators implicitly define a ternary discriminative function, which is trained
to distinguish real data pairs and two kinds of fake data pairs. The generators
and discriminators are trained together using adversarial learning. Under mild
assumptions, in theory the joint distributions characterized by the two generators
concentrate to the data distribution. In experiments, three different kinds of do-
main pairs are considered, image-label, image-image and image-attribute pairs.
Experiments on semi-supervised image classification, image-to-image translation
and attribute-based image generation demonstrate the superiority of the proposed
approach.

1 Introduction

Generative adversarial networks (GANs) [1] have emerged as a powerful framework for learning
generative models of arbitrarily complex data distributions. When trained on datasets of natural
images, significant progress has been made on generating realistic and sharp-looking images [2, 3].
The original GAN formulation was designed to learn the data distribution in one domain. In practice,
one may also be interested in matching two joint distributions. This is an important task, since
mapping data samples from one domain to another has a wide range of applications. For instance,
matching the joint distribution of image-text pairs allows simultaneous image captioning and text-
conditional image generation [4], while image-to-image translation [5] is another challenging problem
that requires matching the joint distribution of image-image pairs.

In this work, we are interested in designing a GAN framework to match joint distributions. If paired
data are available, a simple approach to achieve this is to train a conditional GAN model [4, 6],
from which a joint distribution is readily manifested and can be matched to the empirical joint
distribution provided by the paired data. However, fully supervised data are often difficult to acquire.
Several methods have been proposed to achieve unsupervised joint distribution matching without
any paired data, including DiscoGAN [7], CycleGAN [8] and DualGAN [9]. Adversarially Learned
Inference (ALI) [10] and Bidirectional GAN (BiGAN) [11] can be readily adapted to this case as
well. Though empirically achieving great success, in principle, there exist infinitely many possible
mapping functions that satisfy the requirement to map a sample from one domain to another. In
order to alleviate this nonidentifiability issue, paired data are needed to provide proper supervision to
inform the model the kind of joint distributions that are desired.

This motivates the proposed Triangle Generative Adversarial Network (∆-GAN), a GAN frame-
work that allows semi-supervised joint distribution matching, where the supervision of domain
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Figure 1: Illustration of the Triangle Generative Adversarial Network (∆-GAN).

correspondence is provided by a few paired samples. ∆-GAN consists of two generators and two
discriminators. The generators are designed to learn the bidirectional mappings between domains,
while the discriminators are trained to distinguish real data pairs and two kinds of fake data pairs.
Both the generators and discriminators are trained together via adversarial learning.

∆-GAN bears close resemblance to Triple GAN [12], a recently proposed method that can also be
utilized for semi-supervised joint distribution mapping. However, there exist several key differences
that make our work unique. First, ∆-GAN uses two discriminators in total, which implicitly defines
a ternary discriminative function, instead of a binary discriminator as used in Triple GAN. Second,
∆-GAN can be considered as a combination of conditional GAN and ALI, while Triple GAN
consists of two conditional GANs. Third, the distributions characterized by the two generators in
both ∆-GAN and Triple GAN concentrate to the data distribution in theory. However, when the
discriminator is optimal, the objective of ∆-GAN becomes the Jensen-Shannon divergence (JSD)
among three distributions, which is symmetric; the objective of Triple GAN consists of a JSD term
plus a Kullback-Leibler (KL) divergence term. The asymmetry of the KL term makes Triple GAN
more prone to generating fake-looking samples [13]. Lastly, the calculation of the additional KL
term in Triple GAN is equivalent to calculating a supervised loss, which requires the explicit density
form of the conditional distributions, which may not be desirable. On the other hand, ∆-GAN is
a fully adversarial approach that does not require that the conditional densities can be computed;
∆-GAN only require that the conditional densities can be sampled from in a way that allows gradient
backpropagation.

∆-GAN is a general framework, and can be used to match any joint distributions. In experiments,
in order to demonstrate the versatility of the proposed model, we consider three domain pairs:
image-label, image-image and image-attribute pairs, and use them for semi-supervised classification,
image-to-image translation and attribute-based image editing, respectively. In order to demonstrate
the scalability of the model to large and complex datasets, we also present attribute-conditional image
generation on the COCO dataset [14].

2 Model

2.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [1] consist of a generator G and a discriminator D that
compete in a two-player minimax game, where the generator is learned to map samples from an
arbitray latent distribution to data, while the discriminator tries to distinguish between real and
generated samples. The goal of the generator is to “fool” the discriminator by producing samples that
are as close to real data as possible. Specifically, D and G are learned as

min
G

max
D

V (D,G) = Ex∼p(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] , (1)

where p(x) is the true data distribution, and pz(z) is usually defined to be a simple distribution, such
as the standard normal distribution. The generator G implicitly defines a probability distribution
pg(x) as the distribution of the samples G(z) obtained when z ∼ pz(z). For any fixed generator
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G, the optimal discriminator is D(x) = p(x)
pg(x)+p(x) . When the discriminator is optimal, solving this

adversarial game is equivalent to minimizing the Jenson-Shannon Divergence (JSD) between p(x)
and pg(x) [1]. The global equilibrium is achieved if and only if p(x) = pg(x).

2.2 Triangle Generative Adversarial Networks (∆-GANs)

We now extend GAN to ∆-GAN for joint distribution matching. We first consider ∆-GAN in the
supervised setting, and then discuss semi-supervised learning in Section 2.4. Consider two related
domains, with x and y being the data samples for each domain. We have fully-paired data samples
that are characterized by the joint distribution p(x,y), which also implies that samples from both the
marginal p(x) and p(y) can be easily obtained.

∆-GAN consists of two generators: (i) a generator Gx(y) that defines the conditional distribution
px(x|y), and (ii) a generator Gy(x) that characterizes the conditional distribution in the other
direction py(y|x). Gx(y) and Gy(x) may also implicitly contain a random latent variable z as input,
i.e., Gx(y, z) and Gy(x, z). In the ∆-GAN game, after a sample x is drawn from p(x), the generator
Gy produces a pseudo sample ỹ following the conditional distribution py(y|x). Hence, the fake data
pair (x, ỹ) is a sample from the joint distribution py(x,y) = py(y|x)p(x). Similarly, a fake data
pair (x̃,y) can be sampled from the generator Gx by first drawing y from p(y) and then drawing
x̃ from px(x|y); hence (x̃,y) is sampled from the joint distribution px(x,y) = px(x|y)p(y). As
such, the generative process between px(x,y) and py(x,y) is reversed.

The objective of ∆-GAN is to match the three joint distributions: p(x,y), px(x,y) and py(x,y). If
this is achieved, we are ensured that we have learned a bidirectional mapping px(x|y) and py(y|x)
that guarantees the generated fake data pairs (x̃,y) and (x, ỹ) are indistinguishable from the true
data pairs (x,y). In order to match the joint distributions, an adversarial game is played. Joint pairs
are drawn from three distributions: p(x,y), px(x,y) or py(x,y), and two discriminator networks
are learned to discriminate among the three, while the two conditional generator networks are trained
to fool the discriminators.

The value function describing the game is given by

min
Gx,Gy

max
D1,D2

V (Gx, Gy, D1, D2) = E(x,y)∼p(x,y)[logD1(x,y)] (2)

+ Ey∼p(y),x̃∼px(x|y)

[

log
(

(1−D1(x̃,y)) ·D2(x̃,y)
)]

+ Ex∼p(x),ỹ∼py(y|x)

[

log
(

(1−D1(x, ỹ)) · (1−D2(x, ỹ))
)]

.

The discriminator D1 is used to distinguish whether a sample pair is from p(x,y) or not, if this
sample pair is not from p(x,y), another discriminator D2 is used to distinguish whether this sample
pair is from px(x,y) or py(x,y). D1 and D2 work cooperatively, and the use of both implicitly
defines a ternary discriminative function D that distinguish sample pairs in three ways. See Figure 1
for an illustration of the adversarial game and Appendix B for an algorithmic description of the
training procedure.

2.3 Theoretical analysis

∆-GAN shares many of the theoretical properties of GANs [1]. We first consider the optimal
discriminators D1 and D2 for any given generator Gx and Gy. These optimal discriminators then
allow reformulation of objective (2), which reduces to the Jensen-Shannon divergence among the
joint distribution p(x,y), px(x,y) and py(x,y).

Proposition 1. For any fixed generator Gx and Gy, the optimal discriminator D1 and D2 of the
game defined by V (Gx, Gy, D1, D2) is

D∗
1(x,y) =

p(x,y)

p(x,y) + px(x,y) + py(x,y)
, D∗

2(x,y) =
px(x,y)

px(x,y) + py(x,y)
.

Proof. The proof is a straightforward extension of the proof in [1]. See Appendix A for details.

Proposition 2. The equilibrium of V (Gx, Gy, D1, D2) is achieved if and only if p(x,y) =
px(x,y) = py(x,y) with D∗

1(x,y) =
1
3 and D∗

2(x,y) =
1
2 , and the optimum value is −3 log 3.

3



Proof. Given the optimal D∗
1(x,y) and D∗

2(x,y), the minimax game can be reformulated as:

C(Gx, Gy) = max
D1,D2

V (Gx, Gy, D1, D2) (3)

= −3 log 3 + 3 · JSD
(

p(x,y), px(x,y), py(x,y)
)

≥ −3 log 3 , (4)

where JSD denotes the Jensen-Shannon divergence (JSD) among three distributions. See Appendix
A for details.

Since p(x,y) = px(x,y) = py(x,y) can be achieved in theory, it can be readily seen that the
learned conditional generators can reveal the true conditional distributions underlying the data, i.e.,
px(x|y) = p(x|y) and py(y|x) = p(y|x).

2.4 Semi-supervised learning

In order to further understand ∆-GAN, we write (2) as

V =Ep(x,y)[logD1(x,y)] + Epx(x̃,y)[log(1−D1(x̃,y))] + Epy(x,ỹ)[log(1−D1(x, ỹ))]
︸ ︷︷ ︸

conditional GAN

(5)

+Epx(x̃,y)[logD2(x̃,y)] + Epy(x,ỹ)[log(1−D2(x, ỹ))]
︸ ︷︷ ︸

BiGAN/ALI

. (6)

The objective of ∆-GAN is a combination of the objectives of conditional GAN and BiGAN. The
BiGAN part matches two joint distributions: px(x,y) and py(x,y), while the conditional GAN part
provides the supervision signal to notify the BiGAN part what joint distribution to match. Therefore,
∆-GAN provides a natural way to perform semi-supervised learning, since the conditional GAN part
and the BiGAN part can be used to account for paired and unpaired data, respectively.

However, when doing semi-supervised learning, there is also one potential problem that we need
to be cautious about. The theoretical analysis in Section 2.3 is based on the assumption that the
dataset is fully supervised, i.e., we have the ground-truth joint distribution p(x,y) and marginal
distributions p(x) and p(y). In the semi-supervised setting, p(x) and p(y) are still available but
p(x,y) is not. We can only obtain the joint distribution pl(x,y) characterized by the few paired data
samples. Hence, in the semi-supervised setting, px(x,y) and py(x,y) will try to concentrate to the
empirical distribution pl(x,y). We make the assumption that pl(x,y) ≈ p(x,y), i.e., the paired
data can roughly characterize the whole dataset. For example, in the semi-supervised classification
problem, one usually strives to make sure that labels are equally distributed among the labeled dataset.

2.5 Relation to Triple GAN

∆-GAN is closely related to Triple GAN [12]. Below we review Triple GAN and then discuss the
main differences. The value function of Triple GAN is defined as follows:

V =Ep(x,y)[logD(x,y)] + (1− α)Epx(x̃,y)[log(1−D(x̃,y))] + αEpy(x,ỹ)[log(1−D(x, ỹ))]

+Ep(x,y)[− log py(y|x)] , (7)

where α ∈ (0, 1) is a contant that controls the relative importance of the two generators. Let Triple
GAN-s denote a simplified Triple GAN model with only the first three terms. As can be seen, Triple
GAN-s can be considered as a combination of two conditional GANs, with the importance of each
condtional GAN weighted by α. It can be proven that Triple GAN-s achieves equilibrium if and
only if p(x,y) = (1− α)px(x,y) + αpy(x,y), which is not desirable. To address this problem, in
Triple GAN a standard supervised loss RL = Ep(x,y)[− log py(y|x)] is added. As a result, when the
discriminator is optimal, the cost function in Triple GAN becomes:

2JSD
(

p(x,y)||((1− α)px(x,y) + αpy(x,y))
)

+KL(p(x,y)||py(x,y)) + const. (8)

This cost function has the good property that it has a unique minimum at p(x,y) = px(x,y) =
py(x,y). However, the objective becomes asymmetrical. The second KL term pays low cost
for generating fake-looking samples [13]. By contrast ∆-GAN directly optimizes the symmet-
ric Jensen-Shannon divergence among three distributions. More importantly, the calculation of
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Ep(x,y)[− log py(y|x)] in Triple GAN also implies that the explicit density form of py(y|x) should
be provided, which may not be desirable. On the other hand, ∆-GAN only requires that py(y|x) can
be sampled from. For example, if we assume py(y|x) =

∫
δ(y −Gy(x, z))p(z)dz, and δ(·) is the

Dirac delta function, we can sample y through sampling z, however, the density function of py(y|x)
is not explicitly available.

2.6 Applications

∆-GAN is a general framework that can be used for any joint distribution matching. Besides
the semi-supervised image classification task considered in [12], we also conduct experiments on
image-to-image translation and attribute-conditional image generation. When modeling image pairs,
both px(x|y) and py(y|x) are implemented without introducing additional latent variables, i.e.,
px(x|y) = δ(x−Gx(y)), py(y|x) = δ(y −Gy(x)).

A different strategy is adopted when modeling the image-label/attribute pairs. Specifically, let x
denote samples in the image domain, y denote samples in the label/attribute domain. y is a one-hot
vector or a binary vector when representing labels and attributes, respectively. When modeling
px(x|y), we assume that x is transformed by the latent style variables z given the label or attribute
vector y, i.e., px(x|y) =

∫
δ(x−Gx(y, z))p(z)dz, where p(z) is chosen to be a simple distribution

(e.g., uniform or standard normal). When learning py(y|x), py(y|x) is assumed to be a standard
multi-class or multi-label classfier without latent variables z. In order to allow the training signal
backpropagated from D1 and D2 to Gy , we adopt the REINFORCE algorithm as in [12], and use the
label with the maximum probability to approximate the expectation over y, or use the output of the
sigmoid function as the predicted attribute vector.

3 Related work

The proposed framework focuses on designing GAN for joint-distribution matching. Conditional
GAN can be used for this task if supervised data is available. Various conditional GANs have been
proposed to condition the image generation on class labels [6], attributes [15], texts [4, 16] and
images [5, 17]. Unsupervised learning methods have also been developed for this task. BiGAN [11]
and ALI [10] proposed a method to jointly learn a generation network and an inference network
via adversarial learning. Though originally designed for learning the two-way transition between
the stochastic latent variables and real data samples, BiGAN and ALI can be directly adapted to
learn the joint distribution of two real domains. Another method is called DiscoGAN [7], in which
two generators are used to model the bidirectional mapping between domains, and another two
discriminators are used to decide whether a generated sample is fake or not in each individual
domain. Further, additional reconstructon losses are introduced to make the two generators strongly
coupled and also alleviate the problem of mode collapsing. Similiar work includes CycleGAN [8],
DualGAN [9] and DTN [18]. Additional weight-sharing constraints are introduced in CoGAN [19]
and UNIT [20].

Our work differs from the above work in that we aim at semi-supervised joint distribution matching.
The only work that we are aware of that also achieves this goal is Triple GAN. However, our model is
distinct from Triple GAN in important ways (see Section 2.5). Further, Triple GAN only focuses on
image classification, while ∆-GAN has been shown to be applicable to a wide range of applications.

Various methods and model architectures have been proposed to improve and stabilize the training
of GAN, such as feature matching [21, 22, 23], Wasserstein GAN [24], energy-based GAN [25],
and unrolled GAN [26] among many other related works. Our work is orthogonal to these methods,
which could also be used to improve the training of ∆-GAN. Instead of using adversarial loss, there
also exists work that uses supervised learning [27] for joint-distribution matching, and variational
autoencoders for semi-supervised learning [28, 29]. Lastly, our work is also closely related to the
recent work of [30, 31, 32], which treats one of the domains as latent variables.

4 Experiments

We present results on three tasks: (i) semi-supervised classification on CIFAR10 [33]; (ii) image-
to-image translation on MNIST [34] and the edges2shoes dataset [5]; and (iii) attribute-to-image
generation on CelebA [35] and COCO [14]. We also conduct a toy data experiment to further
demonstrate the differences between ∆-GAN and Triple GAN. We implement ∆-GAN without
introducing additional regularization unless explicitly stated. All the network architectures are
provided in the Appendix.
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(a) real data                         (b) Triangle GAN (c) Triple GAN

Figure 2: Toy data experiment on ∆-GAN and Triple GAN. (a) the joint distribution p(x, y) of real data. For
(b) and (c), the left and right figure is the learned joint distribution px(x, y) and py(x, y), respectively.

Table 1: Error rates (%) on the par-
tially labeled CIFAR10 dataset.

Algorithm n = 4000

CatGAN [36] 19.58 ± 0.58

Improved GAN [21] 18.63 ± 2.32

ALI [10] 17.99 ± 1.62

Triple GAN [12] 16.99 ± 0.36

∆-GAN (ours) 16.80 ± 0.42

Table 2: Classification accuracy (%) on the MNIST-to-
MNIST-transpose dataset.

Algorithm n = 100 n = 1000 All

DiscoGAN − − 15.00± 0.20

Triple GAN 63.79 ± 0.85 84.93 ± 1.63 86.70 ± 1.52

∆-GAN 83.20± 1.88 88.98± 1.50 93.34± 1.46

4.1 Toy data experiment

We first compare our method with Triple GAN on a toy dataset. We synthesize data by drawing
(x, y) ∼ 1

4N (µ1,Σ1) +
1
4N (µ2,Σ2) +

1
4N (µ3,Σ3) +

1
4N (µ4,Σ4), where µ1 = [0, 1.5]⊤, µ2 =

[−1.5, 0]⊤, µ3 = [1.5, 0]⊤, µ4 = [0,−1.5]⊤, Σ1 = Σ4 = ( 3 0
0 0.025 ) and Σ2 = Σ3 = ( 0.025 0

0 3 ). We
generate 5000 (x, y) pairs for each mixture component. In order to implement ∆-GAN and Triple
GAN-s, we model px(x|y) and py(y|x) as px(x|y) =

∫
δ(x−Gx(y, z))p(z)dz, py(y|x) =

∫
δ(y−

Gy(x, z))p(z)dz where both Gx and Gy are modeled as a 4-hidden-layer multilayer perceptron
(MLP) with 500 hidden units in each layer. p(z) is a bivariate standard Gaussian distribution. Triple
GAN can be implemented by specifying both px(x|y) and py(y|x) to be distributions with explicit
density form, e.g., Gaussian distributions. However, the performance can be bad since it fails to
capture the multi-modality of px(x|y) and py(y|x). Hence, only Triple GAN-s is implemented.

Results are shown in Figure 2. The joint distributions px(x, y) and py(x, y) learned by ∆-GAN
successfully match the true joint distribution p(x, y). Triple GAN-s cannot achieve this, and can only
guarantee 1

2 (px(x, y) + py(x, y)) matches p(x, y). Although this experiment is limited due to its
simplicity, the results clearly support the advantage of our proposed model over Triple GAN.

4.2 Semi-supervised classification

We evaluate semi-supervised classification on the CIFAR10 dataset with 4000 labels. The labeled
data is distributed equally across classes and the results are averaged over 10 runs with different
random splits of the training data. For fair comparison, we follow the publically available code of
Triple GAN and use the same regularization terms and hyperparameter settings as theirs. Results
are summarized in Table 1. Our ∆-GAN achieves the best performance among all the competing
methods. We also show the ability of ∆-GAN to disentangle classes and styles in Figure 3. ∆-GAN
can generate realistic data in a specific class and the injected noise vector encodes meaningful style
patterns like background and color.

4.3 Image-to-image translation

We first evaluate image-to-image translation on the edges2shoes dataset. Results are shown in
Figure 4(bottom). Though DiscoGAN is an unsupervised learning method, it achieves impressive
results. However, with supervision provided by 10% paired data, ∆-GAN generally generates more
accurate edge details of the shoes. In order to provide quantitative evaluation of translating shoes to
edges, we use mean squared error (MSE) as our metric. The MSE of using DiscoGAN is 140.1; with
10%, 20%, 100% paired data, the MSE of using ∆-GAN is 125.3, 113.0 and 66.4, respectively.

To further demonstrate the importance of providing supervision of domain correspondence, we
created a new dataset based on MNIST [34], where the two image domains are the MNIST images
and their corresponding tranposed ones. As can be seen in Figure 4(top), ∆-GAN matches images
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Figure 3: Generated CIFAR10 samples, where
each row shares the same label and each column
uses the same noise.

-GANDiscoGAN

Input:

GT Output:

DiscoGAN:

-GAN:

Input:

Output:

Input:

Output:

Figure 4: Image-to-image translation experiments
on the MNIST-to-MNIST-transpose and edges2shoes
datasets.
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Figure 5: Results on the face-to-attribute-to-face experiment. The 1st row is the input images; the 2nd row is
the predicted attributes given the input images; the 3rd row is the generated images given the predicted attributes.

Table 3: Results of P@10 and nDCG@10 for attribute predicting on CelebA and COCO.

Dataset CelebA COCO

Method 1% 10% 100% 10% 50% 100%

Triple GAN 40.97/50.74 62.13/73.56 70.12/79.37 32.64/35.91 34.00/37.76 35.35/39.60
∆-GAN 53.21/58.39 63.68/75.22 70.37/81.47 34.38/37.91 36.72/40.39 39.05/42.86

betwen domains well, while DiscoGAN fails in this task. For supporting quantitative evaluation,
we have trained a classifier on the MNIST dataset, and the classification accuracy of this classifier
on the test set approaches 99.4%, and is, therefore, trustworthy as an evaluation metric. Given an
input MNIST image x, we first generate a transposed image y using the learned generator, and then
manually transpose it back to normal digits yT , and finally send this new image y

T to the classifier.
Results are summarized in Table 2, which are averages over 5 runs with different random splits of the
training data. ∆-GAN achieves significantly better performance than Triple GAN and DiscoGAN.

4.4 Attribute-conditional image generation

We apply our method to face images from the CelebA dataset. This dataset consists of 202,599
images annotated with 40 binary attributes. We scale and crop the images to 64 × 64 pixels. In
order to qualitatively evaluate the learned attribute-conditional image generator and the multi-label
classifier, given an input face image, we first use the classifier to predict attributes, and then use
the image generator to produce images based on the predicted attributes. Figure 5 shows example
results. Both the learned attribute predictor and the image generator provides good results. We further
show another set of image editing experiment in Figure 6. For each subfigure, we use a same set of
attributes with different noise vectors to generate images. For example, for the top-right subfigure,
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1st row + pale skin = 2nd row

1st row + mouth slightly open = 2nd row

1st row + eyeglasses = 2nd row

1st row + wearing hat = 2nd row

Figure 6: Results on the image editing experiment.

Input  Predicted attributes Generated images Input Predicted attributes Generated images 
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table, desk 

 

!
Figure 7: Results on the image-to-attribute-to-image experiment.

all the images in the 1st row were generated based on the following attributes: black hair, female,
attractive, and we then added the attribute of “sunglasses” when generating the images in the 2nd row.
It is interesting to see that ∆-GAN has great flexibility to adjust the generated images by changing
certain input attribtutes. For instance, by switching on the wearing hat attribute, one can edit the face
image to have a hat on the head.

In order to demonstrate the scalablility of our model to large and complex datasets, we also present
results on the COCO dataset. Following [37], we first select a set of 1000 attributes from the caption
text in the training set, which includes the most frequent nouns, verbs, or adjectives. The images in
COCO are scaled and cropped to have 64× 64 pixels. Unlike the case of CelebA face images, the
networks need to learn how to handle multiple objects and diverse backgrounds. Results are provided
in Figure 7. We can generate reasonably good images based on the predicted attributes. The input
and generated images also clearly share a same set of attributes. We also observe diversity in the
samples by simply drawing multple noise vectors and using the same predicted attributes.

Precision (P) and normalized Discounted Cumulative Gain (nDCG) are two popular evaluation
metrics for multi-label classification problems. Table 3 provides the quantatitive results of P@10 and
nDCG@10 on CelebA and COCO, where @k means at rank k (see the Appendix for definitions). For
fair comparison, we use the same network architecures for both Triple GAN and ∆-GAN. ∆-GAN
consistently provides better results than Triple GAN. On the COCO dataset, our semi-supervised
learning approach with 50% labeled data achieves better performance than the results of Triple GAN
using the full dataset, demonstrating the effectiveness of our approach for semi-supervised joint
distribution matching. More results for the above experiments are provided in the Appendix.

5 Conclusion

We have presented the Triangle Generative Adversarial Network (∆-GAN), a new GAN framework
that can be used for semi-supervised joint distribution matching. Our approach learns the bidirectional
mappings between two domains with a few paired samples. We have demonstrated that ∆-GAN may
be employed for a wide range of applications. One possible future direction is to combine ∆-GAN
with sequence GAN [38] or textGAN [23] to model the joint distribution of image-caption pairs.
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