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Abstract. For a given triangle T and a real number ρ we define Ceva’s triangle Cρ(T )
to be the triangle formed by three cevians each joining a vertex of T to the point which
divides the opposite side in the ratio ρ ∶ (1 − ρ). We identify the smallest interval MT ⊂ R
such that the family Cρ(T ), ρ ∈ MT , contains all Ceva’s triangles up to similarity. We
prove that the composition of operators Cρ, ρ ∈ R, acting on triangles is governed by a
certain group structure on R. We use this structure to prove that two triangles have the
same Brocard angle if and only if a congruent copy of one of them can be recovered by
sufficiently many iterations of two operators Cρ and Cξ acting on the other triangle.
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1. Introduction

A median of a triangle is a line segment connecting a vertex to the midpoint of the
opposite side. To each vertex of a triangle corresponds exactly one median. A classical
theorem in triangle geometry states that the three medians of a given triangle form a
triangle. This new triangle is called the median triangle. Moreover, the area of the median
triangle is 3/4 of the area of the host triangle. Two existence proofs of the median triangle
and a connection to a Heron-type formula for medians are revisited in [1]; see also [4] and
the references therein. A less well known result is that the median triangle of the median
triangle is similar to the given triangle in the ratio 3/4. This property is recalled by Scott
in [10] where it is referred to as the binary similarity of the sequence of median triangles.

The binary similarity property of the sequence of median triangles was reformulated and
extended by Griffiths [3] as a statement about a special class of linear operators mapping the
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2 TRIANGLES AND GROUPS VIA CEVIANS

three dimensional Euclidean space into itself. Griffiths refers to these operators as being of
cyclically symmetrical type; they are simply those operators whose matrix representations
with respect to the standard basis are left-circulant matrices with orthogonal rows. This
nice connection with matrix algebra can be used to produce an infinite number of such
binary sequences, see [3, Proposition 2]. We will return to this observation shortly, since it
turns out to be closely connected to our work.

A median of a triangle is just a special cevian. For a given triangle T and a real number ρ,
instead of the medians we can consider three cevians, each joining a vertex of T to the point
which divides the opposite side in the ratio ρ ∶ (1−ρ). Three such cevians also form a triangle.
With a particular choice of order of these cevians, we call the triangle formed in this way
Ceva’s triangle of T and denote it by Cρ(T ). With a different order of sides, such triangles are
considered by Hajja in [4, 5], where they are called s-median or generalized median triangles.
By analogy with the iterative procedure for median triangles that leads to binary similarity,
it is natural to ask whether the same holds for other sequences of nested triangles. The
limiting behavior, in shape, of various nested sequences of triangles constructed iteratively
was considered by many authors; more recently by Ismailescu and Jacobs in [7] where
one can find other references. This work has motivated Hajja [4, 5] to do the same for the
sequence of generalized median triangles. Using a suitable shape function written in terms of
the side lengths of the original triangle, [5, Theorem 3.1] reveals a delicate limiting behavior
of the sequence of generalized median triangles. Similar results were obtained for a related
iteration process on triangles in the remarkable paper of Nakamura and Oguiso [9] by using
moduli space of the similarity classes of triangles. And so, it might seem that this is the
end of the story as far as the iterated sequence of generalized median triangles is concerned.
However, returning to Griffiths’ observation regarding cyclical symmetry, it turns out that
the intricate behavior of the sequence of generalized median triangles introduced in [4, 5]
depends precisely on one detail of its definition. Indeed, the order of the sides matters in
the iteration process. With our definition, we do have the binary similarity property of the
sequence of Ceva’s triangles, which is completely analogous to that of the median triangles.

The goal of this article is to provide a complete understanding of the family of Ceva’s
triangles. A common thread throughout this work is the presence of a special group struc-
ture on the extended real line related to the family of Ceva’s triangles. We elaborate on
the observation made in [3] and explain how linear algebra is connected to the group struc-
ture we alluded to before. These connections allow us, for example, to show that we can
iterate Ceva’s triangles with different parameters ρ and calculate the parameter of the new
Ceva’s triangle obtained this way. We prove that the family Cρ(T ), ρ ∈ [0,1), contains all
Ceva’s triangles of T up to direct similarity. In fact, we can identify the smallest interval
MT ⊂ [0,1) such that the family Cρ(T ), ρ ∈MT , contains all Ceva’s triangles up to similarity.
Incidentally, we also discover a new shape function which is closely related to the one intro-
duced by Hajja in [5], as well as a characterization of the equality of the Brocard angles of
two triangles in terms of their respective families of Ceva’s triangles which extends the one
in [5, Theorem 3.1]. This characterization of equality of the Brocard angles of two triangles
is closely related to a theorem of Stroeker [11, page 183]. Lastly, returning to the generic
question about the behavior of some iterative geometric process, we prove that, given two
triangles having the same Brocard angle, we can recover a congruent copy of one of them
by a sufficiently long iteration of two Ceva’s operators acting on the other triangle.
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2. Basic notions

A triangle is a set of three noncollinear points and the three line segments joining each pair
of these points. The triangle determined by three noncollinear points A,B,C is denoted by
ABC. The points A,B,C are called vertices and the line segments a = BC, b = CA, c = AB

are called sides of the triangle ABC. Notation used for line segments will also stand for
their lengths. In particular, symbols a, b, c denote the lengths of the corresponding sides as
well. We will always label the vertices of a triangle counterclockwise. This convention is
essential in the definition of Ceva’s triangle in the next section. Also, in this way the sides

become the oriented line segments
Ð→
BC,

Ð→
CA,
Ð→
AB. A triangle with such imposed orientation

we call an oriented triangle. Notice that the counterclockwise order is also imposed on the
lengths of the sides which we write as an ordered triple (a, b, c) of positive real numbers.
The adjective oriented will be omitted if it is clearly implied by the context in which a
related triangle appears.

An ordered triple (u, v,w) is increasing (decreasing) if u < v < w (respectively, u > v > w).
If ABC is a scalene triangle with side lengths a, b, c, then we have the following dichotomy:
the set

(2.1) {(a, b, c), (b, c, a), (c, a, b)}
either contains a decreasing or an increasing triple. To justify this, we can assume that
a = min{a, b, c}. Then, c > b or b > c. If c > b, then (a, b, c) is increasing. If b > c, then(b, c, a) is decreasing. A scalene oriented triangle ABC for which the set (2.1) contains an
increasing (decreasing, respectively) triple is called an increasing (decreasing) triangle. For
non-equilateral isosceles triangles we introduce the following intuitive terminology: if its
legs are longer than its base we called it a narrow triangle; if its legs are shorter than its
base call it a wide triangle. For two oriented non-equilateral triangles we say that they have
the same orientation if they are both increasing, or they are both decreasing, or they are
both wide, or they are both narrow.

We recall the definitions of similarity and congruence for oriented triangles. Oriented
triangles ABC and XYZ are directly similar if

a

x
=
b

y
=
c

z
or

a

y
=
b

z
=
c

x
or

a

z
=
b

x
=
c

y
.

If ABC and XYZ are directly similar with a/x = b/y = c/z = l, then we will write (a, b, c) =
l(x, y, z).

Oriented triangles ABC and XYZ are reversely similar if

a

z
=
b

y
=
c

x
or

a

y
=
b

x
=
c

z
or

a

x
=
b

z
=
c

y
.

The common ratio of sides of two similar triangles ABC and XYZ is called the ratio
of similarity. If the ratio of similarity is 1, then directly (reversely, respectively) similar
triangles are said to be directly (reversely) congruent. Notice that a triangle and its reflection
are reversely congruent.

3. Ceva’s triangles

Let ABC be an oriented triangle and let ρ be a real number. Define the points Aρ,Bρ

and Cρ on the lines BC,CA, and AB, respectively, by

Ð→
ACρ = ρ

Ð→
AB,

Ð→
CBρ = ρ

Ð→
CA, and

Ð→
BAρ = ρ

Ð→
BC.
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When ρ ∈ (0,1), the point Aρ is in the interior of the line segment BC while the cases
ρ > 1 and ρ < 0 refer to positions of the point exterior to the line segment BC. Also,
C0 = A,B0 = C,A0 = B and C1 = B,B1 = A,A1 = C. A similar comment applies to the
points Bρ and Cρ. In this way we obtain three cevians: AAρ,BBρ, and CCρ. For ρ = 1/2,
they are medians.

For an oriented triangle ABC and for an arbitrary ρ ∈ R, the cevians CCρ,BBρ, and
AAρ form a triangle, see [4, Theorem 3.3] and [5, Theorem 2.7]. Here is a different, simple

proof using vector algebra. Define the vectors a =
Ð→
BC, b =

Ð→
CA, and c =

Ð→
AB and xρ =

ÐÐ→
CCρ,

yρ =
ÐÐ→
BBρ, zρ =

ÐÐ→
AAρ. Then

xρ = b + ρc, yρ = a + ρb and zρ = c + ρa.
Since a + b + c = 0, we have

xρ + yρ + zρ = b + ρc + a + ρb + c + ρa = (1 + ρ)(a +b + c) = 0.
Therefore, there exists an oriented triangle XYZ whose sides have the lengths xρ ∶= YZ =
CCρ, yρ = ZX = BBρ, and zρ = XY = AAρ. Here, as always in this paper, the vertices
X,Y,Z are labeled counterclockwise.

For ρ ∈ (0,1), there is a natural geometric construction of the oriented triangle made by
the three cevians which is worth recalling here since it is a straightforward modification of
the one for the median triangle. Let D denote the point in the plane of ABC such that
the quadrilateral ABCD is a parallelogram having the diagonals AC and BD. The point
Aρ on the segment BC is such that BAρ = ρBC. Let A′ρ be the point on CD such that

CA′ρ = ρCD. The sides of the triangle AAρA
′
ρ are clearly equal to the three given cevians,

see Figure 1. We recognize the oriented triangle XYZ as a reflection of the copy produced
by Hajja in [4, Theorem 3.3].

Z

Y

X B Aρ

Cρ

A

Bρ

C

A′ρ

D

Fig. 1. Ceva’s triangle Cρ(T ) with ρ = 1/3
Using the classic theorem known as Stewart’s theorem (see for example [2, Exercise 4

of Section 1.2]), or simply applying the law of cosines, it is easy to calculate the lengths
xρ, yρ, zρ:

xρ = CCρ =
√
ρa2 + (1 − ρ)b2 + ρ(ρ − 1)c2,(3.1)

yρ = BBρ =
√(1 − ρ)a2 + ρ(ρ − 1)b2 + ρc2,(3.2)

zρ = AAρ =
√
ρ(ρ − 1)a2 + ρb2 + (1 − ρ)c2.(3.3)
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Thus, starting with an ordered triple of sides (a, b, c) and ρ ∈ R, the ordered triple (xρ, yρ, zρ)
is uniquely determined. We define Ceva’s operator Cρ by

Cρ(a, b, c) ∶= (xρ, yρ, zρ).
The oriented triangle (xρ, yρ, zρ) we call Ceva’s triangle of T . The difference between our
definition and the corresponding definition in [4, 5] is in the order of sides. There, the
generalized median operator was defined by

Hρ(a, b, c) = (zρ, yρ, xρ).
This innocent detail, however, creates problems in the iterative process investigated in
[4, 5]. Our Ceva’s operator behaves better precisely due to the cyclical symmetry property
observed in [3, Propositions 1 and 2]. As we shall soon see, the operator Cρ produces a
binary sequence of triangles, while Hρ does not. Indeed, this is because Hρ○Hρ = Cρ ○ C1−ρ.
Here, ○ denotes composition of functions. We set C1ρ ∶= Cρ and recursively Cn+1ρ ∶= Cnρ ○Cρ for
all n ∈ N.

We often use capital letters T,V, . . . to denote oriented triangles. Then Cρ(T ),Cρ(V ), . . .
denote corresponding Ceva’s triangles. We immediately note that, if T is an equilat-
eral triangle with side-length a, then Cρ(T ) is also an equilateral triangle of side-length

a
√
1 − ρ + ρ2. Because of this, the discussion below will only be concerned with non-

equilateral triangles.
Notice that C0(a, b, c) = (b, a, c) and C1(a, b, c) = (a, c, b). For completeness, we also defineC∞(a, b, c) = (c, b, a). As a consequence, the triangles C0(T ),C1(T ) and C∞(T ) are directly

congruent to each other, and each is reversely congruent to T . We will see later that the set
S ∶= {0,1,∞} will play an important role whenever we encounter direct similarity. Another
important set is the unit interval I ∶= [0,1).

To summarize, we have defined Ceva’s operator Cρ for any ρ ∈ R ∪ {∞}. For a subset J
of R ∪ {∞}, we will write CJ(T ) for the family {Cρ(T ) ∶ ρ ∈ J}.

4. The cone

In this section, we show that a triple (a, b, c) of positive numbers represents the side-
lengths of an triangle if and only if (a2, b2, c2) ∈ Q, where Q is the interior in the first octant
of the cone

x2 + y2 + z2 − 2(xy + yz + zx) = 0.
That is,

Q = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
x

y

z

⎤⎥⎥⎥⎥⎥⎦
∶ x, y, z > 0, x2 + y2 + z2 < 2(xy + yz + zx)⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

This fact was already observed in [3] in connection with Heron’s area formula. For com-

pleteness, we give a direct proof that ∣a − b∣ < c < a + b if and only if [a2 b2 c2]⊺ ∈ Q. We
have the following equivalences:

∣a − b∣ < c < a + b ⇔ a2 + b2 − 2ab < c2 < a2 + b2 + 2ab
⇔ ∣a2 + b2 − c2∣ < 2ab
⇔ (a2 + b2 − c2)2 < 4a2b2
⇔ a4 + b4 + c4 < 2a2b2 + 2b2c2 + 2c2a2(4.1)
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⇔ [a2 b2 c2]⊺ ∈ Q.
The inequality in (4.1) is further equivalent to

(4.2) 2(a4 + b4 + c4) < (a2 + b2 + c2)2.
Now, taking the square root of both sides, we adjust the last inequality to look like an
inequality for the dot product of two unit vectors:

(4.3)
a2 ⋅ 1 + b2 ⋅ 1 + c2 ⋅ 1√

a4 + b4 + c4
√
3
>

√
2

3
.

Denote by γ
T
the angle between the vectors [a2 b2 c2]⊺ and [1 1 1]⊺. Then the last inequality

yields that cos(γ
T
) >√2/3. In other words, (a, b, c) are the side-lengths of a triangle if and

only if the vector [a2 b2 c2]⊺ is inside the cone centered around the diagonal x = y = z and

with the angle at the vertex equal to arccos
√
2/3 = arctan(1/√2). We will call the angle

γ
T
∈ [0,arctan(1/√2)) the cone angle of the triangle T .

P

ω
T

ω
T

ω
T

B

A

C

Fig. 2. The Brocard angle ω
T
of T = ABC

In the next proposition we prove that the cone angle of T uniquely determines another
important angle of T , its Brocard angle, and vice versa. To define the Brocard angle of an
oriented triangle T = ABC one first proves that there exists a unique point P such that
the angles PAB,PBC and PCA (marked in gray in Figure 2) are equal to each other.
This common angle is called the Brocard angle of T ; it is denoted by ω

T
. For more on this

topic we refer to [8, Chapters XVI and XVII] as a classical reference, or the more recent [6,
Chapter Ten].

Proposition 4.1. Let T be a triangle, let γ
T
be its cone angle, and let ω

T
be its Brocard

angle. Then

(4.4) 3(tanω
T
)2 + 2(tan γ

T
)2 = 1.

Let V also be a triangle. Then γ
T
= γ

V
if and only if ω

T
= ω

V
.
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Proof. Let T = (a, b, c). Following [5, Theorem 2.4], we set

k =
a4 + b4 + c4

a2b2 + b2c2 + c2a2
.

Using (4.3) and the definition of γ
T
, we calculate (tan γ

T
)2 = (2k − 2)/(k + 2). This and

the identity (tanω
T
)2 = (2 − k)/(k + 2) from [5, Theorem 2.4] yield (4.4). Since by the

Cauchy-Schwarz inequality and (4.1), 1 ≤ k < 2, we have 0 < (tanω
T
)2 ≤ 1/3. Therefore,

ω
T
, ω

V
∈ (0, π/6]. As we already observed that γ

T
, γ

V
∈ [0,arctan(1/√2)), the second claim

in the proposition follows from (4.4). �

5. Reflection matrices

Let ρ ∈ R. Set LρM ∶=
√
1 − ρ + ρ2, L∞M ∶= 1, and consider the left-circulant orthogonal

matrices

(5.1) Mρ =
1

LρM2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ 1 − ρ ρ(ρ − 1)
1 − ρ ρ(ρ − 1) ρ

ρ(ρ − 1) ρ 1 − ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and M∞ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

We note that it can be shown that {Mρ,−Mρ ∶ ρ ∈ R∪{∞}} is the family of all left-circulant
orthogonal 3 × 3 matrices.

It follows from (3.1),(3.2),(3.3) that the squares of the side-lengths of Ceva’s triangleCρ(T ) are related to the squares of the side-lengths of the original oriented triangle T in
the following simple way:

(5.2)

⎡⎢⎢⎢⎢⎢⎢⎣

x2ρ

y2ρ

z2ρ

⎤⎥⎥⎥⎥⎥⎥⎦
= LρM2Mρ

⎡⎢⎢⎢⎢⎢⎢⎣

a2

b2

c2

⎤⎥⎥⎥⎥⎥⎥⎦
, ρ ∈ R ∪ {∞}.

The fact that for every triangle T , Cρ(T ) is also a triangle is equivalent to the statement
that the matrix Mρ maps Q into Q. We proved this geometrically at the beginning of the
paper and it is proved as a matrix statement in [3, Propositions 1 and 2]. However, to fully
understand the family of triangles Cρ(T ), ρ ∈ R∪{∞}, we need deeper understanding of the
family of matrices in (5.1). This and the following three sections provide that understanding.

For an arbitrary ρ ∈ R ∪ {∞}, the matrix Mρ is symmetric and orthogonal. Hence its
eigenvalues are 1 and −1 and there is an orthonormal basis consisting of eigenvectors of Mρ.
To find such a basis, we first observe that the row sums of each Mρ are equal to 1 making
the vector [1 1 1]⊺ an eigenvector corresponding to the eigenvalue 1. We normalize the
opposite of this vector and calculate the orthonormal positively oriented eigenvectors of Mρ

corresponding to the eigenvalues 1, −1, 1, respectively, to be

pρ ∶=
1√
6 LρM

⎡⎢⎢⎢⎢⎢⎢⎣
1 + ρ

1 − 2ρ

ρ − 2

⎤⎥⎥⎥⎥⎥⎥⎦
, qρ ∶=

1√
2 LρM

⎡⎢⎢⎢⎢⎢⎢⎣

1 − ρ

−1

ρ

⎤⎥⎥⎥⎥⎥⎥⎦
, r ∶=

−1√
3

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
.
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The corresponding eigenvectors of M∞ are

p∞ ∶=
1√
6

⎡⎢⎢⎢⎢⎢⎣

−1
2
−1

⎤⎥⎥⎥⎥⎥⎦
, q∞ ∶=

1√
2

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦
, r ∶=

−1√
3

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
.

Consequently, the matrix Mρ, ρ ∈ R ∪ {∞}, induces the reflection with respect to the plane
spanned by the vectors pρ and r. Thus, Mρ is a reflection matrix.

Remark 5.1. The reflection planes corresponding to M∞,M0 and M1 are given by the
equations x = z, x = y, and y = z, respectively. Therefore, the triples in the intersection
of these planes with Q correspond to isosceles triangles. Moreover, the triples that are
in Q and in the quadrants determined by −r and each of p∞,p0,p1 correspond to wide
triangles and the triples that are in Q and in the quadrants determined by −r and each of
−p∞,−p0,−p1 are narrow.

Next, we will prove that an arbitrary reflection across a plane which contains the vector r
is in the family (5.1). Such a plane is uniquely determined by its trace in the plane spanned
by the vectors p0,q0. In turn, this trace is uniquely determined by its angle ϑ ∈ [−π

3
, 2π

3
)

with the vector p0.
Denote by ϑρ the angle between pρ and p0. Then,

cosϑρ = pρ ⋅ p0 =
2 − ρ

2 LρM
, sinϑρ = pρ ⋅ q0 =

√
3ρ

2 LρM
, and tanϑρ =

√
3ρ

2 − ρ
.

Solving the last equation for ρ we get

ρ =
2 tanϑρ√
3 + tanϑρ

=

√
3

2
tan(ϑρ −

π

6
) + 1

2
=

sinϑρ

cos(ϑρ −
π
6
) .

We define now

Φ(ϑ) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if ϑ = −π
3
,

sinϑ

cos(ϑ − π
6
) if ϑ ∈ (−π

3
, 2π

3
).

Clearly, Φ is an increasing bijection between (−π
3
, 2π

3
) and R. The inverse of the function

Φ is, see Figures 3 and 4,

Φ−1(ρ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−
π
3

if ρ =∞,

arctan( 2√
3
(ρ − 1

2
)) + π

6
if ρ ∈ R.

Since the function Φ is a bijection between [−π
3
, 2π

3
) and R∪{∞}, that is since the range

of Φ−1 is the interval [−π
3
, 2π

3
), all the reflections across planes containing the vector r are

represented in the family (5.1).

6. Three special groups

The interval [−π
3
, 2π

3
) with the addition modulo π, which we denote by ⊕, is a commu-

tative group. The identity element is 0. The inverse of ϑ ∈ [−π
3
, π
3
] is −ϑ and the inverse of

ϑ ∈ (π
3
, 2π

3
) is π − ϑ. The bijection Φ then induces a natural group structure on R ∪ {∞}.

We denote by ◻ the operation of this group. We have

ρ ◻ τ ∶= Φ(Φ−1(ρ) +Φ−1(τ)), ρ, τ ∈ R ∪ {∞}.
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−
π
3

−
π
6

π
3

π
6

π
2

2π
3

−2 −1
1

2
1 2

Fig. 3. The function Φ−1

π
3

π
6

0 1

2
1

Fig. 4. Φ−1 on I

Let ρ, τ ∈ R ∖ {2} be such that ρτ ≠ 1. Set ϑρ = Φ
−1(ρ), ϑτ = Φ

−1(τ). Then,

ρ ◻ τ = Φ(ϑρ + ϑτ)
=

2 tan(ϑρ + ϑτ)√
3 + tan(ϑρ + ϑτ)

=

2
tanϑρ + tanϑτ

1 − (tanϑρ)(tanϑτ)√
3 +

tanϑρ + tanϑτ

1 − (tanϑρ)(tanϑτ)
=

2(tanϑρ + tanϑτ)√
3(1 − (tanϑρ)(tanϑτ)) + tanϑρ + tanϑτ

=
2
√
3ρ

2−ρ + 2
√
3τ

2−τ√
3 −
√
3
√
3ρ

2−ρ

√
3τ

2−τ +
√
3ρ

2−ρ +
√
3τ

2−τ

=
2ρ(2 − τ) + 2τ(2 − ρ)

(2 − ρ)(2 − τ) − 3ρτ + ρ(2 − τ) + τ(2 − ρ)
=

4ρ + 4τ − 4ρτ

4 − 2ρ − 2τ + ρτ − 3ρτ + 2ρ + 2τ − 2ρτ

=
ρ + τ − ρτ

1 − ρτ
.

The other values of ρ, τ ∈ R ∪ {∞} are treated similarly to get

ρ ◻ τ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+τ−ρτ
1−ρτ if ρ, τ ∈ R, ρτ ≠ 1,

∞ if ρ, τ ∈ R, ρτ = 1,

1 − 1

ρ
if ρ ∈ R ∖ {0}, τ =∞,

∞ if ρ = 0, τ =∞ or ρ =∞, τ = 0,

1 − 1

τ
if ρ =∞, τ ∈ R ∖ {0},

1 if ρ =∞, τ =∞.
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0

1

−2 −1 0 1

2
1 2 3

Fig. 5. The function p

The set R∪ {∞} with the operation ◻ is a commutative group with the identity element
0. The inverses are

ρ⊟ ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ
ρ−1 if ρ ∈ R ∖ {1},
∞ if ρ = 1,
1 if ρ =∞.

The set S ∶= {0,1,∞} is a cyclic subgroup of (R ∪ {∞},◻) of order 3 which corresponds

to the cyclic subgroup {0, π
3
,−π

3
} of ([−π

3
, 2π

3
),⊕). Similarly, T ∶= {0,1/2,1,2,∞,−1} is

a cyclic subgroup of (R ∪ {∞},◻) of order 6 which corresponds to the cyclic subgroup

{0, π
6
, π
3
, π
2
,−π

3
,−π

6
} of ([−π

3
, 2π

3
),⊕). The ◻-operation on T is summarized in Table 1.

For the three special values of τ ∈ S, the operation ◻ gives three functions that we will
encounter in the definition of the function p below:

0 ◻ ρ = ρ, 1 ◻ ρ =
1

1 − ρ
, ∞◻ ρ = 1 −

1

ρ
, ρ ∈ R ∪ {∞}.

We will write S ◻ ρ for the set {0 ◻ ρ,1 ◻ ρ,∞◻ ρ}. Another interesting set of functions is
S ◻ ρ⊟ = S ◻ 1

ρ
:

0 ◻ ρ⊟ = 1 ◻
1

ρ
=

ρ

ρ − 1
, 1 ◻ ρ⊟ =∞◻

1

ρ
= 1 − ρ, ∞◻ ρ⊟ = 0 ◻

1

ρ
=
1

ρ
, ρ ∈ R ∪ {∞}.

ρ
Q
Q
Q

τ 0 1/2 1 2 ∞ −1

0 0 1/2 1 2 ∞ −1

1/2 1/2 1 2 ∞ −1 0

1 1 2 ∞ −1 0 1/2
2 2 ∞ −1 0 1/2 1

∞ ∞ −1 0 1/2 1 2

−1 −1 0 1/2 1 2 ∞

Table 1. ◻-operation table on T

We remark that the set S ◻ {ρ, 1
ρ
} = (S ◻ ρ) ∪ (S ◻ 1

ρ
), which consists of the six special

functions above, represents all possible values of the cross-ratio of four numbers. Further-
more, in this context, the set T consists of the only extended real-valued fixed points of
a cross-ratio. Therefore, it is plausible that there exists a further connection between the
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group structure ◻ and cross-ratios. However, since it is unclear to us whether this link
would present any further simplifications in our work, we do not pursue it further here.

It turns out that the factor group (R ∪ {∞})/S plays an important role in this article.
This factor group is isomorphic to the factor group [−π

3
, 2π

3
)/{0, π

3
,−π

3
}, which in turn is

isomorphic to the group [0, π
3
) with the addition modulo π

3
. Since Φ([0, π

3
)) = I = [0,1), Φ

induces a natural group structure on I. A different way of understanding this group on I is
to notice that, for an arbitrary ρ ∈ R∪ {∞}, the intersections of the sets S◻ ρ and I consist
of exactly one number, which we denote by p(ρ); that is,

p(ρ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ◻ ρ if ρ =∞ or ρ < 0,
0 ◻ ρ if ρ ∈ I,

∞◻ ρ if ρ ≥ 1.

The induced group operation on I is denoted by ◇:

ρ◇ τ ∶= p(ρ ◻ τ), ρ, τ ∈ I.

With this definition, p ∶ R∪ {∞} → I is an endomorphism between the groups (R ∪ {∞},◻)
and (I,◇). For ρ, τ ∈ I, we have ρ◻τ ≥ 0 and also ρ+τ < 1 if and only if ρ◻τ < 1. Therefore,
the above definition is equivalent to

ρ◇ τ =

⎧⎪⎪⎨⎪⎪⎩
ρ ◻ τ = ρ+τ−ρτ

1−ρτ if ρ, τ ∈ I and ρ + τ < 1,

∞◻ ρ ◻ τ = ρ+τ−1
ρ+τ−ρτ if ρ, τ ∈ I and ρ + τ ≥ 1.

Given ρ ∈ I, its inverse ρx with respect to ◇ is 1 − ρ, or, equivalently, ρx = 1 ◻ ρ⊟.

Remark 6.1. It is interesting to compare the groups (I,◇) and (I,⊕), where ⊕ denotes
the addition modulo 1. As noticed above ρx = ⊖ρ for all ρ ∈ I. Here as usual in additive
groups, we denote opposite elements by using the notation ⊖. However, these two groups
are different. It turns out that the maximum value of ∣ρ◇ τ −ρ⊕ τ ∣ is less than 0.042, while

the maximum value of the relative error ∣(ρ◇τ −ρ⊕τ)/(ρ◇τ)∣ is 7−4√3 ≈ 0.072. However,
since the groups (I,⊕) and ([0, π

3
),⊕) are isomorphic (where ⊕ denotes the addition modulo

the length of interval), the groups (I,◇) and (I,⊕) are isomorphic with the isomorphism
3

π
Φ−1 ∶ I→ I.

7. Functions on groups

Let κ ∈ R ∪ {∞} and consider the equation ξ ◻ ξ = κ. One can easily verify that this
equation has a unique solution in [−1,1), which we denote by ◻

√
κ ; it is given by

◻
√
κ ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ

1 + LκM
if κ ∈ R,

−1 if κ =∞.

In particular, ◻
√
0 = 0, ◻

√
1 = 1/2. The solution set of ξ ◻ ξ = κ is ◻

√
κ ◻ {0,2}.

If κ ∈ I, then 0 ≤ ◻
√
κ < 1

2
and ◻

√
κ < κ. Therefore ◻

√
κ is a solution of the equation

ξ ◇ ξ = κ, ξ ∈ I. To find the second solution of this equation recall that (1
2
)x = 1

2
, and

therefore

κ◇ (1
2
◇

◻
√
κ)x = κ◇ ( ◻√κ)x◇ 1

2
=

1

2
◇

◻
√
κ.
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Hence, the other solution is 1

2
◇ ◻
√
κ. Since 1

2
+ ◻
√
κ < 1, we have 1

2
◇ ◻
√
κ = 1

2
◻ ◻
√
κ. As

1

2
◻ τ ≥ 1

2
for all τ ∈ [0, 1

2
), we have

(7.1) 0 ≤ ◻
√
κ < 1

2
≤

1

2
◻
◻
√
κ < 1.

It is trivial to see that p(◻√κ) = ◻
√
p(κ) for κ ∈ I, but p(◻√κ) = 1

2
◻
◻
√
p(κ) for κ ∈ (R∪{∞})∖I.

Now consider the group ([0, π
3
),⊕). As before, ⊕ stands for the addition modulo π

3
. Let

ϕ ∈ [0, π
3
). The solutions of the equation ϑ ⊕ ϑ = ϕ, 0 ≤ ϑ < π

3
, are ϕ

2
and ϕ

2
⊕

π
6
. Since

Φ ∶ [0, π
3
) → [0,1) is an increasing isomorphism between the groups ([0, π

3
),⊕) and (I,◇),

we have

Φ(ϕ
2
) = ◻
√
Φ(ϕ) and Φ(ϕ

2
⊕

π
6
) = 1

2
◻
◻
√
Φ(ϕ).

π
3
− ϕ0 π

3

π
6

π
3

π
6

Fig. 6. fϕ with ϕ = π/9
1 − κ0 11

2

1

1

2

Fig. 7. Fκ, κ = Φ
−1(π/9) ≈ 0.351

Proposition 7.1. Let κ,α,β ∈ I and α < β. Consider the function

Fκ(ξ) ∶= κ◇ ξ, ξ ∈ I.

(a) The function Fκ is a bijection on I. Its inverse is Fκx.
(b) If Fκ(α) < Fκ(β), then Fκ maps [α,β] onto [Fκ(α), Fκ(β)] as an increasing bijection.

Proof. The statement (a) is trivial. To prove (b), let ϕ ∈ (0, π
3
) and consider the function

fϕ(ϑ) = ϕ⊕ ϑ, see Figure 6. Since

fϕ(ϑ) = { ϕ + ϑ if 0 ≤ ϑ < π
3
− ϕ,

ϕ + ϑ − π
3

if π
3
−ϕ ≤ ϑ < π

3
,

we have the equivalence

ϑ1 <
π
3
−ϕ ≤ ϑ2 ⇔ ϕ⊕ ϑ1 > ϕ⊕ ϑ2 and ϑ1 < ϑ2.

Consequently, if ϑ1 < ϑ2 and fϕ(ϑ1) < fϕ(ϑ2), then ϑ1 < ϑ2 <
π
3
− ϕ or π

3
− ϕ ≤ ϑ1 < ϑ2, and

therefore, fϕ maps [ϑ1, ϑ2] onto [fϕ(ϑ1), fϕ(ϑ2)] as an increasing bijection.
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Setting κ = Φ(ϕ) ∈ I, we have, see Figure 7,

Fκ(ξ) = Φ(fϕ(Φ−1(ξ))), ξ ∈ I.

Assume that α < β and Fκ(α) < Fκ(β). Then, Φ−1(α) < Φ−1(β) and fϕ(Φ−1(α)) <
fϕ(Φ−1(β)). Therefore, fϕ maps [Φ−1(α),Φ−1(β)] onto [fϕ(Φ−1(α)), fϕ(Φ−1(β))] as an
increasing bijection. Now, Fκ restricted to [α,β] is a composition of three increasing bijec-
tions. Thus, (b) holds. �

ϕ
2

ϕ
2
⊕

π
6

ϕ0 π
3

π
6

π
3

π
6

Fig. 8. gϕ with ϕ = π/9
◻
√
κ κ 1

2
◇ ◻
√
κ0 11

2

1

1

2

Fig. 9. The function Gκ

Proposition 7.2. Let κ,α,β ∈ I and α < β. Consider the function

Gκ(ξ) ∶= κ◇ ξx, ξ ∈ I.

(a) The function Gκ is an involution on I.
(b) If Gκ(α) > Gκ(β), then Gκ maps [α,β] onto [Gκ(β),Gκ(α)] as a decreasing bijection.
(c) The fixed points of Gκ are ◻

√
κ and 1

2
◇ ◻
√
κ = 1

2
◻ ◻
√
κ.

(d) The interior of the interval [ ◻√κ, 1
2
◇ ◻
√
κ] is mapped onto the exterior of this interval

in I.

Proof. The statement (a) is clear. To prove (b) let ϕ ∈ (0, π
3
) and consider the function

gϕ(ϑ) = ϕ⊖ ϑ, see Figure 8. Since

gϕ(ϑ) = { ϕ − ϑ if 0 ≤ ϑ ≤ ϕ,

ϕ − ϑ + π
3

if ϕ < ϑ < π
3
,

we have the equivalence

ϑ1 ≤ ϕ < ϑ2 ⇔ ϕ⊖ ϑ1 < ϕ⊖ ϑ2 and ϑ1 < ϑ2.

Consequently, if ϑ1 < ϑ2 and gϕ(ϑ1) > gϕ(ϑ2), then ϑ1 < ϑ2 ≤ ϕ or ϕ < ϑ1 < ϑ2, and therefore,
gϕ maps [ϑ1, ϑ2] onto [gϕ(ϑ2), gϕ(ϑ1)] as a decreasing bijection.

Setting κ = Φ(ϕ) we have, see Figure 9,

Gκ(ξ) = Φ(gϕ(Φ−1(ξ))), ξ ∈ I.
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Assume that α < β and Gκ(α) > Gκ(β). Then Φ−1(α) < Φ−1(β) and gϕ(Φ−1(α)) >
gϕ(Φ−1(β)). Therefore gϕ maps [Φ−1(α),Φ−1(β)] onto [gϕ(Φ−1(β)), gϕ(Φ−1(α))] as a de-
creasing bijection. Now, Gκ restricted to [α,β] is a composition of two increasing bijections
and one decreasing bijection. Thus (b) holds.

The statement (c) was proved at the beginning of this section. To prove (d) we use the
function gϕ again with ϕ = Φ−1(κ). The fixed points of gϕ are ϕ

2
and ϕ

2
⊕

π
6
, see Figure 8. It

is clear that gϕ maps (ϕ
2
, ϕ] to [0, ϕ

2
). Also, gϕ maps (ϕ, ϕ

2
+

π
6
) to (ϕ

2
+

π
6
,1). That is, gϕ

maps the interior of [ϕ
2
, ϕ
2
+

π
6
] onto its exterior. The statement (d) now follows from the

the fact that Φ−1 maps [ ◻√κ, 1
2
◇ ◻
√
κ] onto [ϕ

2
,
ϕ

2
+

π
6
] and Φ maps the exterior of [ϕ

2
,
ϕ

2
+

π
6
]

onto the exterior of [ ◻√κ, 1
2
◇ ◻
√
κ]. �

We end this section with a few formulas connecting the ◻-operation and the function L ⋅ M.
The following three identities for L ⋅ M are verified by simplification of the left hand sides:

Lρ ◻ τM =
1∣1 − ρτ ∣LρM LτM, ρ, τ ∈ R, ρτ ≠ 1,(7.2)

Lρ ◻∞M =
1∣ρ∣LρM, ρ ∈ R ∖ {0},(7.3)

Lρ⊟M =
1∣1 − ρ∣LρM, ρ ∈ R ∖ {1}.(7.4)

From (7.2), (7.3) and (7.4) we obtain that, whenever the right hand sides are defined, the
following identities hold as well:

Lρ ◻ τ ◻ ζM =
1∣1 − ρτ − τζ − ζρ + ρτζ ∣ LρM LτM LζM, ρ, τ, ζ ∈ R,

Lρ ◻ τ⊟ ◻ ζM =
1∣1 − τ + ρτ + τζ − ζρ∣ LρM LτM LζM, ρ, τ, ζ ∈ R,(7.5)

Lρ ◻ τ⊟ ◻∞M =
1∣τ − ρ∣ LρM LτM, ρ, τ ∈ R,(7.6)

Lρ ◻ 1 ◻ ζM =
1∣ρ + ζ − 1∣ LρM LζM, ρ, τ, ζ ∈ R.(7.7)

8. Groups and reflections

Let ρ ∈ R∪{∞} and ϑρ = Φ
−1(ρ). Denote by Ref(ϑρ) the matrix with respect to {p0,q0}

of the reflection across the line determined by the vector pρ in the plane spanned by the
vectors p0,q0. Then, the matrix with respect to the basis {p0,q0,r} of the reflection induced
by Mρ is

(8.1)

⎡⎢⎢⎢⎢⎢⎣
Ref(ϑρ) 0

0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
= Q⊺MρQ,

where Q is the orthogonal matrix whose columns are the vectors p0,q0,r. From now
on, the 3 × 3 matrix in (8.1) will be identified with its top left corner Ref(ϑρ). In the
same spirit, we denote by Rot(ϑ) the matrix with respect to the basis {p0,q0,r} of the
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counterclockwise rotation about the vector r by the angle ϑ. Familiar formulas connecting
coordinate rotations and reflections in the plane extend to this setting:

(8.2) Ref(ϑ) Ref(ϕ) = Rot(2(ϑ − ϕ)) and Rot(ϑ) Ref(ϕ) = Ref(ϕ + ϑ/2).
Theorem 8.1. Let ρ, τ, ζ ∈ R ∪ {∞}. We have the following matrix identity:

MζMτMρ =Mρ◻τ⊟◻ζ .

Proof. Let ρ, τ, ζ ∈ R ∪ {∞} and ϑρ = Φ
−1(ρ), ϑτ = Φ

−1(τ), ϑζ = Φ
−1(ζ). Since by definition

of ◻ the mapping Φ is an isomorphism between the groups ([−π
3
, 2π

3
),⊕) and (R ∪ {∞},◻)

we have that Φ(ϑρ − ϑτ + ϑζ) = ρ ◻ τ⊟ ◻ ζ. Together with (8.1) and (8.2) this yields the
following equalities

MρMτMζ = QRef(ϑρ) Ref(ϑτ) Ref(ϑζ)Q⊺
= QRot(2(ϑρ − ϑτ))Ref(ϑζ)Q⊺
= QRef(ϑρ − ϑτ + ϑζ)Q⊺
= QRef(ϑρ◻τ⊟◻ζ)Q⊺
=Mρ◻τ⊟◻ζ . �

Recall that the cone Q was introduced in Section 4.

Proposition 8.2. Let ρ,σ ∈ R ∪ {∞} and let t ∈ Q be such that t and r are linearly
independent. Then Mσt = λMρt if and only if λ = 1 and σ = ρ.

Proof. Since both vectors Mσt and Mρt are in Q, λ must be positive. Applying Mρ to both
sides of Mσt = λMρt we get MρMσt = λt. By (8.1) and (8.2) MρMσ = QRot(2(ϑρ − ϑσ))Q⊺
and since only the identity rotation has the positive eigenvalue 1, we conclude that ϑρ = ϑσ

and λ = 1. �

Let t = [a′ b′ c′]⊺ ∈ R3 be such that t and r are linearly independent. Set

κt ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a′ − b′

a′ − c′
if a′ ≠ c′,

∞ if a′ = c′.

Theorem 8.3. Let t and v be nonzero vectors in R3, neither of which is a multiple of r.
Then Mρt = λv has a unique solution for λ ∈ R and ρ ∈ R ∪ {∞} if and only if ∥v∥(t ⋅ r) =∥t∥(v ⋅ r). In this case,

λ =
∥t∥∥v∥ , and ρ = ◻

√
κv ◻

◻
√
κt or ρ = ◻

√
κv ◻

◻
√
κt ◻ 2.

In particular, if v = t, then ρ = κt.

Proof. It is a lengthy but straightforward calculation to verify thatMκt
t = t. The uniqueness

follows from Proposition 8.2. So we only need to prove that Mρt = λv is equivalent to∥v∥(t ⋅ r) = ∥t∥(v ⋅ r). For simplicity, and without loss of generality, we assume that t and
v are unit vectors. Since Mρ is a reflection, it preserves length, and therefore λ = 1. Then,
Mρt = v implies t ⋅ r = v ⋅ r, since Mρ is a unitary mapping and Mρr = r. To prove the
converse, assume t ⋅ r = v ⋅ r. By definition, we have

◻
√
κt ◻

◻
√
κt = κt and ◻

√
κv ◻

◻
√
κv = κv.
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By Theorem 8.1, the last two equations imply M◻
√
κt
M0M◻

√
κt
= Mκt

and M◻
√
κv
M0M◻

√
κt
=

Mκv
. Since Mκt

t = t and Mκv
v = v, we have

(8.3) M0M◻
√
κt
t =M◻

√
κt
t and M0M◻

√
κv
v =M◻

√
κv
v.

This implies that the unit vectors M◻
√
κt
t and M◻

√
κv
v are in the plane which is invariant

under M0. The assumption t ⋅ r = v ⋅ r yields (M◻
√
κt
t) ⋅ r = (M◻

√
κv
v) ⋅ r. Therefore, either

M◻
√
κv
v =M◻

√
κt

t or M◻
√
κv
v =M2M◻

√
κt

t.

In the first case, we substitute the equality in (8.3) and apply M◻
√
κt
, while in the second

case we just apply M◻
√
κv

to get

M◻
√
κv
M0M◻

√
κt
t = v or M◻

√
κv
M2M◻

√
κt
t = v.

Now Theorem 8.1 and Proposition 8.2 yield the claim. �

9. Similarity of triangles in CR(T )
For the remainder of this paper, we will use the following notation. Given an oriented

triangle T = (a, b, c), t will denote the vector in R3 whose components are the squares of the
sides of T , that is t = [a2 b2 c2]⊺. We also set κ

T
∶= κt. The following relationship, which

follows from (5.2), is important in the reasoning below and we will use it without explicitly
mentioning it:

V = Cρ(T ) ⇔ v = LρM2Mρt.

In the rest of the paper we use the algebraic set-up established in the previous four sections
to investigate the structure of the family of Ceva’s triangles CR(T ). First, we establish a
simple relationship between Ceva’s triangles of reversely congruent oriented triangles.

Proposition 9.1. Let T and V be reversely congruent oriented triangles. Then, for every
ρ in R ∪ {∞}, the triangles Cρ(T ) and C1−ρ(V ) are reversely congruent.

Proof. Since T and V are reversely congruent, there exists σ ∈ S such that v = Mσt. Since
σ = ρ◻(1◻σ⊟)⊟◻1◻ρ⊟, we have v =M1◻ρ⊟M1◻σ⊟Mρt, and consequentlyM1◻ρ⊟v =M1◻σ⊟Mρt.
Since S is a subgroup of (R,◻), 1 ◻ σ⊟ ∈ S. Since 1 ◻ ρ⊟ = 1 − ρ, the triangles Cρ(T ) andC1−ρ(V ) are reversely similar. Since L1 − ρM = LρM, the ratio of similarity is 1. �

Proposition 9.2. Let T be an oriented triangle and ρ ∈ R. Then the triangles Cρ(Cρ(T ))
and T are directly similar in the ratio LρM2. The triangle C∞(C∞(T )) is directly congruent

to T . More precisely, C2ρ(T ) = Cρ(Cρ(T )) = LρM2T and C∞(C∞(T )) = T .
Proof. The squares of the sides of Cρ(T ) are the components of the vector LρM4Mρt. Hence,

the squares of the sides of Cρ(Cρ(T )) are the components of the vector LρM4MρMρt = LρM4t.
This implies the first statement. The second statement is straightforward application of the
definition. �

Letting ρ = 1/2 in the preceding proposition, we recover a fact mentioned in the Introduc-
tion: the median of the median triangle is similar to the original triangle in the ratio 3/4.
Notice also that combining Propositions 9.1 and 9.2 proves the converse of Proposition 9.1.
Another immediate consequence of Propositions 9.1 and 9.2 is the following corollary.

Corollary 9.3. Let ρ ∈ R. The oriented triangles T and V are directly similar with the
ratio of similarity l if and only if Cρ(T ) and Cρ(V ) are directly similar with the ratio of
similarity l. In particular, for l > 0, Cρ(l T ) = l Cρ(T ) and C2nρ (T ) = LρM2nT for all n ∈ N.
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It is worth noting that, given an oriented triangle T , the study of the similarity properties
of the family CR(T ) can be reduced to that of the subfamily CI(T ). Recall that I = [0,1)
and S = {0,1,∞}.
Theorem 9.4 (Reduction to CI(T )). Let ρ, τ ∈ R ∪ {∞}, and let T be a non-equilateral
oriented triangle. The triangles Cρ(T ) and Cτ(T ) are directly similar if and only if τ ∈ ρ◻S.
For ρ ∈ R∖ {0}, the ratio of similarity of Cρ(T ) to Cρ◻∞(T ) is ∣ρ∣. For ρ ∈ R∖ {1}, the ratio
of similarity of Cρ(T ) to Cρ◻1(T ) is ∣1 − ρ∣.
Proof. The triangles Cρ(T ), Cτ(T ) are directly similar if and only if there exists φ ∈{0,2π/3,−2π/3} such that the counterclockwise rotation of Mρt about r by φ coincides
with Mτt. The last condition restated in matrix notation reads

Mτt = QRot(φ)Q⊺Mρt

Next, we use the following identities:

M0M1 = QRef(0)Ref(π/3)Q⊺ = QRot(2π/3)Q⊺,
M1M0 = QRef(π/3)Ref(0)Q⊺ = QRot(−2π/3)Q⊺.

If φ = 0, then τ = ρ by Proposition 8.2. If φ = 2π/3, then by Theorem 8.1 and Proposition 8.2
we have τ = 0◻ρ◻1⊟ = ρ◻∞. Similarly, if φ = −2π/3, then τ = 1◻ρ◻0⊟ = ρ◻1. To calculate
the ratios of similarity, consider τ = ρ◻∞ and ρ ≠ 0 first. The squares of the sides of Cτ(T )
are the components of the vector Lρ ◻∞M2Mρ◻∞t, while the squares of the sides of Cρ(T )
are the components of the vector LρM2Mρt. Since, by (7.3), Lρ ◻∞M = LρM/∣ρ∣, the ratio of
similarity of Cρ(T ) to Cρ◻1(T ) is ∣ρ∣. The remaining claim is proved using (7.2). �

Corollary 9.5. Let T be a non-equilateral oriented triangle. Then T is directly similar toCρ(T ) if and only if ρ ∈ κ
T
◻S. The ratio of similarity of Cρ(T ) to T is LρM with ρ ∈ κ

T
◻S.

Proof. By Theorem 8.3, Mκt
t = t. Therefore, T and Cκ

T
(T ) are directly similar. By

Theorem 9.4, Cρ(T ) is directly similar to Cκ
T
(T ) if and only if ρ ∈ κ

T
◻ S. �

Corollary 9.6. The only two pairs of directly congruent triangles in CR(T ) are C0(T ),C1(T )
and C−1(T ),C2(T ).
Proof. By Theorem 9.4, for Cρ(T ) and Cσ(T ) to be directly congruent we must have σ = ρ◻∞
or σ = ρ ◻ 1, and ∣ρ∣ = 1 or ∣1 − ρ∣ = 1, respectively. Clearly, the only candidates are
ρ ∈ {−1,0,1,2}. The corresponding σ-s are 2,1,0,−1, respectively. Each of the trianglesC0(T ),C1(T ),C∞(T ) is reversely congruent to T . Each of the triangles C−1(T ),C2(T ) is
directly similar to the median triangle C1/2(T ), with the ratio of similarity 2, see Figure 10.

�

Lemma 9.7. Let ρ, τ, ζ ∈ R ∪ {∞} and let T be an oriented non-equilateral triangle. Then
the triangle Cζ(Cτ(Cρ(T ))) is directly similar to Cρ◻τ⊟◻ζ(T ), with the ratio of similarity

(9.1)
LρMLτMLζM

Lρ ◻ τ⊟ ◻ ζM
.

Proof. Set V = Cζ(Cτ(Cρ(T ))) and U = Cρ◻τ⊟◻ζ(T ). By Theorem 8.1, we have MζMτMρ =

Mρ◻τ⊟◻ζ . Therefore, v = LζM2LτM2LρM2Mρ◻τ⊟◻ζt. By (5.2), u = Lρ ◻ τ⊟ ◻ ζM2Mρ◻τ⊟◻ζt. Thus,
the triangle V is directly similar to the triangle U and the ratio of similarity is given by
(9.1). Assume that ρ ◻ τ⊟ ◻ ζ ≠ ∞. Then, if ρ, τ, ζ ∈ R, the ratio of similarity simplifies to
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A

A1/2A−1 A2B

B1/2

B−1

B2

C

C1/2

C−1

C2

A′
1/2

A′−1

A′
2

Fig. 10. AA1/2A
′
1/2 is reversely congruent to the median triangle C1/2(T )

AA−1A
′
−1 and AA2A

′
2
are directly congruent and reversely congru-

ent to C−1(T ) and C2(T )
∣1 − τ + ρτ + τζ − ζρ∣. If ρ =∞, τ, ζ ∈ R, it simplifies to ∣ζ − τ ∣. If τ =∞, ρ, ζ ∈ R, it simplifies
to ∣ρ + ζ − 1∣. This simplified forms of the ratio of the similarity follow from the identities
(7.5), (7.6) and (7.7). �

Corollary 9.8. Let ρ, τ, ζ ∈ R∪{∞} and let T be an oriented non-equilateral triangle. ThenCτ(Cρ(T )) is directly similar to Cζ(T ) if and only if ζ ◻ ρ ∈ τ ◻κ
T
◻ S.

Proof. By Proposition 9.2 and Corollary 9.3, the triangle Cτ(Cρ(T )) is directly similar toCζ(T ) if and only if Cζ(Cτ(Cρ(T ))) is directly similar to T . By Theorem 9.4 and Lemma 9.7,
the last statement is equivalent to ρ ◻ τ⊟ ◻ ζ ∈ κ

T
◻ S. The statement follows by applying

the operation ◻τ on the both sides of the last relation. �

Theorem 9.9. Let ρ, τ, ζ ∈ R∪{∞} and let T be an oriented non-equilateral triangle. ThenCτ(Cρ(T )) is reversely similar to Cζ(T ) if and only if τ ◻ζ ∈ ρ◻S. In particular, Cτ(T ) andCζ(T ) are reversely similar if and only if τ ◻ ζ ∈ κ
T
◻ S.

Proof. The triangle Cτ(Cρ(T )) is reversely similar to Cζ(T ) if and only if there exists σ ∈ S
and λ ∈ R such that MσMτMρt = λMζt. By Theorem 8.1 and Proposition 8.2, the last
equality is equivalent to λ = 1 and ρ◻ τ⊟ ◻ σ = ζ. Recalling that σ ∈ S, the last statement is
equivalent to τ ◻ ζ ∈ ρ ◻ S. Setting ρ = κ

T
yields the special case. �
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10. Isosceles triangles

Let T be an oriented non-equilateral triangle. In this section we identify the isosceles
triangles in the family Cρ(T ), ρ ∈ R∪{∞}. As we will see, these triangles play an important
role in this family. Recall that T = {0,1/2,1,2,∞,−1}.
Proposition 10.1. Let T be an oriented non-equilateral triangle and ρ ∈ R ∪ {∞}. The
triangle Cρ(T ) is an isosceles triangle if and only if ρ ∈ ◻

√
κ

T
◻ T. Let ρ ∈ ◻

√
κ

T
◻ S and

ζ ∈ ◻
√
κ

T
◻ (T ∖ S). Then Cρ(T ) is wide (narrow) if and only if Cζ(T ) is narrow (wide).

Proof. It follows from Remark 5.1 the triangle Cρ(T ) is isosceles if and only if there exists
σ ∈ S such that MσMρt =Mρt, or, equivalently MρMσMρt = t. By Theorems 8.1 and 8.3, the
last equality holds if and only if ρ◻ ρ◻ σ⊟ = κ

T
. If σ = 0, the solutions of the last equation

are ◻
√
κ

T
◻ {0,2}. If σ = ∞, the solutions are ◻

√
κ

T
◻ {1,−1}. If σ = 1, the solutions are

◻
√
κ

T
◻ {∞, 1

2
}. This proves the first claim.

To prove the second claim let ρ ∈ ◻
√
κ

T
◻ S and ζ ∈ ◻

√
κ

T
◻ (T ∖ S). By Theorem 9.4,Cρ(T ) is similar to Cρ1(T ) for any ρ1 ∈ ◻

√
κ

T
◻ S. Therefore, without loss of generality, we

can assume that ζ = ρ ◻ 2. Thus, ζ = 0 ◻ 2 ◻ ρ and

Mζ =M0M2Mρ = QRot(2(Φ−1(0) −Φ−1(2)))Q⊺Mρ.

Since 2(Φ−1(0) − Φ−1(2)) = −π, if Mρt is wide, then Mζt is narrow, and conversely. The
proposition is proved. �

Since T∖S = 1

2
◻ S, exactly one element in each of the sets ◻

√
κ

T
◻S and ◻

√
κ

T
◻ (T ∖ S) be-

longs to I. Proposition 7.2 implies that those special elements are ◻
√
p(κ

T
) and 1

2
◻
◻
√
p(κ

T
).

These observations together with Proposition 10.1 prove the first statement of the next the-
orem.

Theorem 10.2. Let T be an oriented non-equilateral triangle.

(a) There exists unique numbers µ
T
, ν

T
∈ I such that Cµ

T
(T ) is wide and Cν

T
(T ) is narrow.

(b) If T is wide, µ
T
= p(κ

T
) = 0 and ν

T
= 1/2. If T is narrow, ν

T
= p(κ

T
) = 0 and µ

T
= 1/2.

(c) If T is increasing then µ
T
= ◻
√
p(κ

T
), ν

T
=

1

2
◇

◻
√
p(κ

T
), and µ

T
< κ

T
< ν

T
.

(d) If T is decreasing then ν
T
= ◻
√
p(κ

T
), µ

T
=

1

2
◇

◻
√
p(κ

T
), and ν

T
< κ

T
< µ

T
.

(e) A triangle Cρ(T ) is wide if and only if ρ ∈ µ
T
◻ S.

(f) A triangle Cρ(T ) is narrow if and only if ρ ∈ ν
T
◻ S.

Proof. If T is wide, then clearly C0(T ) is wide and C1/2(T ) is narrow. Similarly, if T is
narrow, then C0(T ) is narrow and C1/2(T ) is wide. Hence, (b) holds.

To prove (c), let T be an increasing oriented triangle. Without loss of generality, as-
sume that a < b < c are its sides. With the notation introduced in (3.1), (3.2), (3.3), we
immediately see that, for all ρ ∈ I, x2ρ < z

2
ρ (see Figure 11). Also,

y20 = a
2
< x20 = b

2 and y21 = c
2
> x21 = a

2.

Therefore, since xρ and yρ are continuous functions of ρ, there exists ρ1 ∈ I such that
xρ1 = yρ1 . Since zρ1 > yρ1 = xρ1 , Cρ1(T ) is wide. Similarly,

y20 = a
2
< z0 = c

2 and y21 = c
2
> z21 = b

2.

Therefore, there exists ρ2 ∈ I such that zρ2 = yρ2 . Since xρ2 < yρ2 = zρ2 , Cρ2(T ) is narrow.

Since x2ρ < z
2
ρ for all ρ ∈ I we have ρ1 < ρ2. As

◻
√
p(κ

T
) and 1

2
◇

◻
√
p(κ

T
) are the only values
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µ
T

ν
T

z2ρ

y2ρ

x2ρ

0 1

2
1

Fig. 11. An increasing T

µ
T

ν
T

z2ρ

y2ρ

x2ρ

0 1

2
1

Fig. 12. A decreasing T

of ρ ∈ I for which Cρ(T ) is isosceles and since we have ◻
√
p(κ

T
) < 1

2
◇

◻
√
p(κ

T
), it follows

that
ρ1 =

◻
√
p(κ

T
) and ρ2 =

1

2
◇

◻
√
p(κ

T
).

This proves (c). Analogous reasoning proves (d), see Figure 12. The items (e) and (f) follow
from Theorem 9.4. �

Remark 10.3. As it was pointed out in Section 2, the sides of an arbitrary oriented non-
equilateral triangle T can be labeled counterclockwise uniquely in such a way that a ≤ b < c
or a ≥ b > c. Then, κ

T
= (a2 − b2)/(a2 − c2) ∈ I and µ

T
= ◻
√
κ

T
if T is increasing and

µ
T
=

1

2
◇ ◻
√
κ

T
if T is decreasing. Simplifying the corresponding formulas, µ

T
can now be

expressed in terms of a, b, c as

µ
T
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b2 − a2

c2 − a2 +
√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

if a ≤ b < c,

a2 − c2

b2 − c2 +
√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

if a ≥ b > c.

Notice that

a4 + b4 + c4 − a2b2 − b2c2 − c2a2 =
1

2
((a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2).

This shows that the quantity under the square root is nonnegative and that the value of µ
T

for a narrow triangle a = b > c is 1/2; see also Theorem 10.2 (b).
As shown in Remark 6.1, the groups (I,◇) and (I,⊕) are very close to each other.

Therefore, a very good approximation for ◻
√
κ

T
is κ

T
/2 and a very good approximation for

1

2
◇ ◻
√
κ

T
is (1 + κ

T
)/2. In fact, with these approximations, the absolute error is, in both

cases, less than 0.021, while the relative error in the first case is less than 0.067 and less than
0.033 in the second case. Hence, the above long formulas for µ

T
can be well approximated

by
b2 − a2

2(c2 − a2) if a ≤ b < c and
2a2 − b2 − c2

2(a2 − c2) if a ≥ b > c.

Define
MT ∶= [min{µ

T
, ν

T
},max{µ

T
, ν

T
}] = [ ◻√p(κ

T
), 1

2
◇

◻
√
p(κ

T
)].

Recall that in Theorem 9.4 we showed that all triangles in the family CR(T )∪{C∞(T )}, up
to direct similarity, can be found in CI(T ). In the next theorem, we show that all triangles
from CI(T ), up to similarity, can be found in CMT

(T ).
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Theorem 10.4 (Reduction to CMT
(T )). Let T be an oriented non-equilateral triangle. The

mapping ı ∶ I→ I defined by

(10.1) ı(ξ) = p(κ
T
)◇ ξx, ξ ∈ I,

maps the interior of M T onto its exterior I ∖M T . The triangles Cξ(T ) and Cı(ξ)(T ) are
reversely similar for all ξ ∈M T .

Proof. The first claim follows from Proposition 7.2 (d). To prove the inverse similarity of
the triangles Cξ(T ) and Cı(ξ)(T ), we use the last claim of Theorem 9.9 with τ = ı(ξ) and
ζ = ξ. Then, the condition τ ◻ ζ = (ı(ξ)) ◻ ξ ∈ κ

T
◻ S is equivalent to p((ı(ξ)) ◻ ξ) = p(κ

T
),

which, in turn, is equivalent to (ı(ξ)) ◇ ξ = p(κ
T
). Since the last equality is trivial, the

theorem is proved. �

Remark 10.5. Let T be scalene triangle. Then p(κ
T
) ≠ 0 and thus, by (7.1), 1/2 is an

interior point of MT . It follows from the proof of Theorem 10.2, see also Figures 11 and 12,
that if T is increasing, then all the triangles in the interior of MT are increasing, and for a
decreasing T all the triangles in the interior of MT are decreasing. Therefore the median
triangle of an arbitrary scalene triangle has the same orientation as the host triangle.

11. Related shape functions

Let T = (a, b, c) be a given oriented triangle. The Brocard angle ω
T
and, hence, the cone

angle γ
T
are related to the following shape function (that is, a complex-valued function that

characterizes the similarity of two geometric objects) introduced by Hajja in [5]:

σ(T ) = a2 + e−2πi/3b2 + e2πi/3c2

a2 + b2 + c2
.

Using [5, Theorem 2.4] and (4.4) we get ∣σ(T )∣ = (tan γ
T
)/√2. As already observed in [5,

Theorem 3.1 (e)] or [4, Theorem 5.1 (2c)], the equality of the Brocard angles of two triangles
T and V implies the existence of ρ ∈ R such that T and Cρ(V ) (Hρ(V ) in [4, 5]) are similar.
In the following theorem we extend this statement with several equivalences that relate to
the special values µ

T
and ν

T
. These equivalences allow us, for example, to identify exactly

the parameter ρ for which T is similar to Cρ(V ). This leads to several shape functions such
as, T ↦ ω

T
+ iµ

T
, T ↦ γ

T
+ iµ

T
, T ↦ ω

T
+ iν

T
and T ↦ γ

T
+ iν

T
.

Theorem 11.1. Let T and V be oriented triangles. The following statements are equivalent.

(a) There exist ξ, ζ ∈ R ∪ {∞} such that Cζ(V ) and Cξ(T ) are similar.
(b) There exists ρ ∈MT such that V and Cρ(T ) are similar.
(c) There exists τ ∈MV such that T and Cτ(V ) are similar.
(d) Cµ

T
(T ) is similar to Cµ

V
(V ).

(e) Cν
T
(T ) is similar to Cν

V
(V ).

(f) γ
T
= γ

V
.

(g) ω
T
= ω

V
.

Proof. We will prove (a)⇒(b)⇒(c) ⇒(d)⇒(a), (b)⇔(f) and (d)⇔(e); (f)⇔(g) follows from
Proposition 4.1.

Assume (a). Then Corollary 9.3 yields that Cζ(Cζ(V )) and Cζ(Cξ(T )) are similar. By

Proposition 9.2, Cζ(Cζ(V )) is directly similar to V and, by Theorem 9.9, Cζ(Cξ(T )) is
reversely similar to Cξ◻ζ⊟(T ). Hence, V is similar to Cξ◻ζ⊟(T ). By Theorems 9.4 and 10.4,
(b) follows. Assume (b). By applying Cρ we get that Cρ(V ) is similar to Cρ(Cρ(T )). By
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Proposition 9.2 and Theorems 9.4 and 10.4, (c) follows. Now assume (c). Then Cµ
T
(T ) is

similar to Cµ
T
(Cτ(V )). By Theorem 9.9, Cµ

T
(T ) is similar to Cτ◻µ⊟

T
(V ). Theorem 10.2 (e)

yields (d). Since (d) is a special case of (a), the first sequence of implications is proved.
The statement (b) is equivalent to Mρt = λv. By Theorem 8.3, the last equality is

equivalent to (t ⋅ r)/∥t∥ = (v ⋅ r)/∥v∥. Since (t ⋅ r)/∥t∥ = − cos γ
T
, the equivalence of (b) and

(f) is proved.

Finally, we prove (d)⇔(e). Since ◻
√
p(κ

T
) ◻ 1

2
◻

◻
√
p(κ

T
) ◻ (1

2
)⊟ = p(κ

T
), we have µ

T
◻

ν
T
◻ (1

2
)⊟ = p(κ

T
), or equivalently µ

T
◻ ν

T
◻ (1

2
)⊟ ∈ κ

T
◻ S. Theorems 9.4 and 10.4 together

with Lemma 9.7 now yield that Cν(C1/2(Cµ(T ))) similar to T . Consequently, C1/2(CµT
(T ))

is similar to Cν
T
(T ). With the analogous similarity for V , we have that the statement (e) is

equivalent to C1/2(CµT
(T )) being similar to C1/2(CµV

(V )), and this similarity is equivalent

to the statement (d). �

We have pointed out in Remark 10.5 that, for an increasing T , all the triangles Cρ(T )
with ρ in the interior of MT are increasing. The reasoning from the proof of Theorem 10.2
also yields that, for a wide triangle W , all the triangles Cρ(W ) with ρ in the interior of MW

are increasing. Similarly, for a narrow N , all the triangles Cρ(N) with ρ in the interior of
MN are decreasing. Therefore, in the next proposition, the wide triangles are included in
the family of increasing triangles, while the narrow triangles are included in the family of
decreasing triangles.

Proposition 11.2. Assume that any of the equivalent conditions in Theorem 11.1 is satis-
fied. For ξ ∈MT , set

Z(ξ) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
µ

V
◇ µx

T
◇ ξ if T and V are both increasing or both decreasing,

µ
V
◇ µ

T
◇ ξx if T is increasing and V is decreasing or

T is decreasing and V is increasing.

Then Z ∶ MT → MV is a monotonic bijection. If T and V are both increasing or both
decreasing, then CZ(ξ)(V ) and Cξ(T ) are directly similar for all ξ ∈MT . If T is increasing
and V is decreasing or if T is decreasing and V is increasing, then CZ(ξ)(V ) and Cξ(T ) are
reversely similar for all ξ ∈MT .

Proof. If T and V are both increasing, then ν
T
=

1

2
◇ µ

T
> µ

T
and ν

V
=

1

2
◇ µ

V
> µ

V
. If T

and V are both decreasing, then µ
T
=

1

2
◇ ν

T
> ν

T
and µ

V
=

1

2
◇ ν

V
> ν

V
. In either case

Z(µ
T
) = µ

V
and Z(ν

T
) = ν

V
. By Proposition 7.1, Z maps MT onto MV as an increasing

bijection. Since Cµ
T
(T ) is directly similar to Cµ

V
(V ), by Proposition 9.2 T is directly similar

to Cµ
T
(Cµ

V
(V )). Therefore, Cξ(T ) is directly similar to Cξ(Cµ

T
(Cµ

V
(V ))), and hence, by

Theorem 8.1, Cξ(T ) is directly similar to CZ(ξ)(V ).
If T is decreasing and V is increasing, then µ

T
=

1

2
◇ ν

T
> ν

T
and ν

V
=

1

2
◇ µ

V
> µ

V
.

Then, again, Z(µ
T
) = µ

V
and Z(ν

T
) = ν

V
. These equalities hold if T is increasing and V

is decreasing, as well. Proposition 7.2 implies that Z maps MT onto MV as a decreasing
bijection. Now, we prove the reverse similarity of triangles CZ(ξ)(V ) and Cξ(T ). Let T ′ be
a triangle which is reversely congruent to T . Then T ′ is increasing and, by Proposition 9.1
and Theorem 10.2 (a), µ

T ′
= 1 − µ

T
= µx

T
. In general, C1−ξ(T ′) is reversely congruent toCξ(T ). Since T ′ is increasing, the first part of this proof yields that C1−ξ(T ′) is directly

similar to Cζ(V ) for ζ = µ
V
◇ µx

T ′
◇ (1 − ξ). Since µ

T ′
= µx

T
and 1 − ξ = ξx, C1−ξ(T ′) is
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directly similar to CZ(ξ)(V ). As C1−ξ(T ′) is reversely congruent to Cξ(T ), we get that Cξ(T )
is reversely similar to CZ(ξ)(V ). �

Remark 11.3. If any of the conditions of Theorem 11.1 hold, we can use Proposition 11.2
to obtain a formula for τ ∈MV such that T is similar to Cτ(V ). If T and V have the same
orientation, then

τ = Z(p(κ
T
)) = µ

V
◇ µx

T
◇ p(κ

T
) = µ

V
◇ µ

T
,

and T is directly similar to Cτ(V ). If T and V have opposite orientation, then

τ = Z(p(κ
T
)) = µ

V
◇ µ

T
◇ (p(κ

T
))x = µ

V
◇ µx

T
,

and T is reversely similar to Cτ(V ). Moreover, in this case we have that T is directly similar
to C0(Cτ (V )). By Corollary 9.8, C0(Cτ (V )) is directly similar to Cζ(V ) with ζ ◻ µ

V
◇ µx

T
∈

κ
T
◻S. To find such ζ, we apply p to both sides of the last membership to get the equation

ζ ◇ µ
V
◇ µx

T
= p(κ

T
), whose solution is ζ = µx

V
◇ µ

T
◇ p(κ

T
) = µ

V
◇ µ

T
.

Thus, amazingly, for arbitrary non-equilateral oriented triangles T and V with the same
Brocard angle T is directly similar to Cµ

V
◇µ

T
(V ). It is worth noting that when T and

V have opposite orientation we have µ
V
◇ µ

T
∉ MV . However, by definition of ◇, always

µ
V
◇ µ

T
∈ I.

Example 11.4. Here we illustrate the last claim in Remark 11.3 using the triangles

T = (√5
√
7 + 5,

√
5
√
7 − 4,

√
5
√
7 − 1) and V = (2√5

√
7 + 4,2

√
5
√
7 + 1,2

√
5
√
7 − 5) .

The triangle T is increasing and V is decreasing. We calculate tanω
T
= tanω

V
=
√
5/7,

µ
T
= (3 −√7)/2, µ

V
=
√
7 − 5 and µ

V
◇ µ

T
= 4/5. In Figure 13 the reader can see thatC4/5(T ) =XYZ is directly similar to V =KLM , while in Figure 14 the reader can see thatC4/5(V ) = XYZ is directly similar to T = ABC. Since T is increasing and V is decreasing,

Remark 10.5 yields that 4/5 /∈ MT and 4/5 /∈ MV . This is easy to verify since in this case

µ
T
= ν

V
= (3 −√7)/2 ≈ 0.1771, ν

T
= µ

V
=
√
7 − 5 ≈ 0.6458.

In the following corollary we prove that the function T ↦ γ
T
+ iµ

T
is a shape function.

What we mean by this is that oriented triangles T and V are directly similar if and only if
γ
T
+ iµ

T
= γ

V
+ iµ

V
. To include equilateral triangles as well, we set µ

T
= 1 if and only if T

is equilateral.

Corollary 11.5. Let T and V be oriented triangles. Then, T and V are directly similar if
and only if γ

T
= γ

V
and µ

T
= µ

V
.

Proof. Let T and V be directly similar. Then, clearly, γ
T
= γ

V
. By Corollary 9.3, Cµ

T
(T )

and Cµ
T
(V ) are directly similar wide triangles. Theorem 10.2 (e) implies µ

T
∈ µ

V
◻S. Since

both µ
T
and µ

V
are in I, they must be equal.

Conversely, assume γ
T
= γ

V
and µ

T
= µ

V
. Set, WT = Cµ

T
(T ) and WV = Cµ

V
(V ). By

Theorem 11.1, γ
WT
= γ

T
= γ

V
= γ

WV
. For a wide isosceles triangle W with sides a = b < c,

using (4.3), we have

3(cos γ
W
)2 = (2 + ( cb)

2)2
2 + ( c

b
)4 .
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X

Y

Z

A

B C

A′

Aρ

Bρ

Cρ

K

L

M

Fig. 13. T = ABC,V =KLM,ρ = 4/5,Cρ(T ) =XYZ is directly similar to V

A

B C

K

L

M

Kρ

Lρ

Mρ

K ′ X

Y

Z

Fig. 14. T = ABC,V =KLM,ρ = 4/5,Cρ(V ) =XYZ is directly similar to T

The last equation has a unique solution for c/b in the interval (1,2). That solution is

c

b
=

¿ÁÁÀ√2 + 2 tan γW√
2 − tanγ

W

=

√√
2 tan (γ

W
+ arctan(1/√2)) ∈ (1,2).

Hence, WT and WV are directly similar wide triangles. Since µ
T
= µ

V
, Corollary 9.3 yields

that T and V are directly similar. �

Example 11.6. The function T ↦ γ
T
+ iκ

T
is not a shape function since the function

T ↦ κ
T
does not have the same values on similar triangles. The function T ↦ γ

T
+ ip(κ

T
)

does take the same values on similar triangles, but it is not a shape function. Indeed, with
triangles T and V from Example 11.4 we have tan γ

V
= tan γ

U
=
√
2/5, κ

V
= κ

U
= 1/3 and

hence p(κ
V
) = p(κ

U
) = 1/3. The last equality explains why MT = MV in Example 11.4.

We notice that it can be proved that the restriction of T ↦ γ
T
+ ip(κ

T
) to the family of

increasing (or decreasing) triangles is a shape function.
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Remark 11.7. The last corollary implies that two parameters, γ ∈ (0,arctan(1/√2)) and
µ ∈ (0,1/2), determine an oriented triangle uniquely up to direct similarity. To find sides
a, b, c of such a triangle one would need to solve the following system of equations:

(cos γ)2 = (a2 + b2 + c2)2
3(a4 + b4 + c4) ,

µ =
b2 − a2

c2 − a2 +
√
a4 + b4 + c4 − a2b2 − b2c2 − c2a2

for a ≤ b < c. Our theory yields a relatively simple family of solutions. They are the sides
of the triangle Cµ(W ), where W is a wide triangle with the sides

t = t < tF, t > 0, with F =

¿ÁÁÀ√2 + 2 tan γ√
2 − tan γ

.

That is,

a = t
√
1 − (1 − µ)µF , b = t

√
µF + (1 − µ)2, c = t

√(1 − µ)F + µ2.

12. Applications and examples

In the first application of our results we characterize those triangles T whose family of
Ceva’s triangles contains a right triangle.

Theorem 12.1. Let T be an oriented non-equilateral triangle. There exists ρ ∈ R ∪ {∞}
such that Cρ(T ) is a right triangle if and only if tanω

T
≤ 1/2.

Proof. Assume that R = Cρ(T ) is a right triangle. Then a2 + b2 = c2, and thus, by (4.3),

(cos γ
R
)2 = 4c4

3((c2 − b2)2 + b4 + c4) = 2

3(1 − ( b
c
)2 + ( b

c
)4) =

2

9

4
+ 3( 1

2
− ( b

c
)2)2 ≤

8

9
.

Hence, tan γ
R
≥
√
2/4. By (4.4) this is equivalent to tanω

R
≤ 1/2. Since, by Theorem 11.1,

ω
T
= ω

R
, the necessity is proved.

Now, assume that tanω
R
≤ 1/2, or equivalently, tanγ

T
≥
√
2/4. Let W = Cµ

T
(T ) be the

wide isosceles Ceva’s triangle in CR(T ). Then, by Theorem 11.1, tanγ
W
= tanγ

T
≥
√
2/4. If

tan γ
T
=
√
2/4, then cos γ

T
= 2
√
2/3 and W is a right triangle by (4.3). In this case ρ = µ

T

in the theorem. Assume now that tan γ
T
>
√
2/4. Denote by FW the ratio of the base to

the leg of W . Since tan γ
W
= tan γ

T
using a formula from the proof of Corollary 11.5 we

have

FW =

¿ÁÁÀ√2 + 2 tan γT√
2 − tan γ

T

∈ (√2,2).
Without loss of generality, we can assume that the sides of W are a = b = 1 < FW . We will
now calculate τ ∈ I such that Cτ(W ) is a right triangle. We use the formulas (3.1), (3.2),
(3.3) and set up the equation for τ : x2τ + y

2
τ = z

2
τ . Solving this equation for τ gives

τ =
2 −F 2

W +

√(F 2

W
− 2)(5F 2

W
− 2)

2F 2

W

∈ (0,1/2).
With this τ , Cτ(W ) = Cτ(Cµ

T
(T )) is a right triangle. Since, by Corollary 9.8, Cτ(Cµ

T
(T ))

is directly similar to Cκ
T
◻µ

T
◻τ⊟(T ), the theorem is proved. �
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The second application addresses a slight ambiguity left in Section 11. All our statements
in Section 11 involve the concept of similarity. We are thus interested in finding out whether
it is indeed possible to reconstruct a congruent copy of a given oriented triangle V from an
oriented triangle T having the same Brocard angle as V . By Theorem 11.1, one application
of the operator Cρ to T with the correct choice of ρ produces a similar copy of V , but not
necessarily a congruent one. A natural choice here is to iterate sufficiently many times the
operators Cρ with possibly different parameters ρ. The binary similarity property of the
iterations of Ceva’s operators is the key to the proof below.

Theorem 12.2. Let T and V be oriented non-equilateral triangles. The triangles T and
V have the same Brocard angle if and only if there exist a nonnegative integer n0 and
ρ, ξ ∈ R ∪ {∞} such that Cρ(C2n0

ξ
(T )) is directly congruent to V .

Proof. Assume that ω
T
= ω

V
. By Theorem 11.1 and Remark 11.3, the triangle V is directly

similar to Cµ
T
◇µ

V
(T ). Let ρ = µ

T
◇ µ

V
. Then V is directly similar to Cρ(T ), that is, there

exists l > 0 such that V and lCρ(T ) are directly congruent.

Since l1/n → 1 as n → +∞, there exists a minimum n0 ∈ N such that l1/n0 ≥ 3/4. Also,
since x ↦ LxM2 is a quadratic function with the vertex at (1/2,3/4), there exists a unique

ξ ≥ 1/2 such that l1/n0 = LξM2, that is l = LξM2n0 . The last claim in Corollary 9.3 yieldsC2n0

ξ
(T ) = LξM2n0T = l T . Applying Corollary 9.3 again we get Cρ(C2n0

ξ
(T )) = l T . Since V is

directly congruent to l Cρ(T ), the sufficient part of our theorem is proved. The necessary
part follows by applying Theorem 11.1 2n0 + 1 times. �

Example 12.3. We illustrate Theorem 12.2 with a scaled median triangle. Let V =(1/4)C1/2(T ), that is the triangle that is similar to the median triangle with the ratio
1/4. By Corollary 9.5, the only triangles in CR(T ) similar to C1/2(T ) are C−1(T ) and C2(T ).
The ratio of similarity of each of them to C1/2(T ) is 2. Hence, V is not Ceva’s triangle of T .
But we can apply Theorem 12.2, with l = 1/4 and ρ = 1/2 introduced in its proof. Since(3/4)4 > 1/4 and (3/4)5 < 1/4, we have n0 = 5. We choose ξ such that 1 − ξ + ξ2 = 5

√
1/4,

that is

ξ =
1

2
(1 −√223/5 − 3) ≈ 0.4114 or ξ =

1

2
(1 +√223/5 − 3) ≈ 0.5886.

Then LξM2 = 2−2/5 and, by Corollary 9.3,

C10ξ (T ) = LξM10 T = (2−2/5)5 T = 1

4
T.

By Corollary 9.3 again,

C1/2(C10ξ (T ))(T ) = 1

4
C1/2(T ).

Hence, a composition of eleven Ceva’s operators reconstructs 1

4
C1/2(T ) from T .

Example 12.4. We conclude the paper by illustrating the fundamental numbers κ
T
, µ

T
, ν

T

associated with a given oriented triangle T , Theorems 10.4 and 12.2 and Remark 11.3. Let
T = ABC be the increasing triangle with sides a = 8, b = 9 and c = 12. We calculate
κ = κ

T
= 17/80; see Figure 15, where Cκ(T ) =XYZ is directly similar to T .

Furthermore, we have µ = µ
T
= 1/9 and ν = ν

T
= 10/17. In agreement with Theorem 10.2,Cµ(T ) = XYZ is a wide triangle, Cν(T ) = KLM is a narrow triangle and µ < κ < ν,

see Figure 16. We also observe that the bases XY and LM of the isosceles triangles are
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Z

Y

X B Aκ

A

C

A′κ

D

Fig. 15. Cκ(T ) =XYZ is directly similar to T = ABC

B

A

C

D

Z

M

Y L

X =K Aµ

A′µ

Aν

A′ν

Fig. 16. The isosceles triangles Cµ(T ) =XYZ and Cν(T ) =KLM

B

A

C

D

Z

M

Y L

X =K Aξ

A′ξ

Aı(ξ)

A′
ı(ξ)

Fig. 17. Cξ(T ) =XYZ is reversely similar to Cı(ξ)(T ) =KLM

perpendicular. It can be confirmed that this is always true by computing the dot product

of the vectors
Ð→
AAµ =

Ð→
AB +µ

Ð→
BC and

Ð→
CCν =

Ð→
CA+ν

Ð→
AB in terms of the sides a, b, c and using

the formulas for µ and ν given in Remark 10.3.
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The median triangle of T , that is Ceva’s triangle C1/2(T ) is calculated using (3.1), (3.2),
(3.3) with ρ = 1/2 ∈M

T
, to be

C1/2(T ) = ⎛⎝
√

73

2
,

√
335

2
,

√
193

2

⎞⎠ .
With ı defined in (10.1) we get ı(1/2) = 97/143 ∈ I ∖M

T
and calculate

C97/143(T ) = (73
√
146

143
,
73
√
386

143
,
73
√
335

143
) .

By Theorem 10.4 triangles C1/2(T ) and C97/143(T ) are reversely similar with the ratio of
similarity 143/146. This is illustrated in Figure 17.
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[1] Á. Bényi, A Heron-type formula for the triangle, The Mathematical Gazette 87 (2003) 324-326.
[2] H. S. M. Coxeter, S. L. Greitzer, Geometry Revisited, The Mathematical Association of America,

Washington D.C., 1967.
[3] H. B. Griffiths, Iterated sequences of triangles, The Mathematical Gazette 89 (2005) 518-522.
[4] M. Hajja, On nested sequences of triangles, Results in Mathematics 54 (2009) 289-299.
[5] M. Hajja, The sequence of generalized median triangles and a new shape function, Journal of Geometry

96 (2009) 71-79.
[6] R. Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, The Mathematical

Association of America, Washington D.C., 1995.
[7] D. Ismailescu, J. Jacobs, On sequences of nested triangles, Periodica Mathematica Hungarica 53 (2006)

169-184.
[8] R. A. Johnson, Advanced Euclidean Geometry: An elementary treatise of the geometry of the triangle

and the circle, Dover, New York, 1960.
[9] H. Nakamura, K. Oguiso, Elementary moduli space of triangles and iterative processes, The University

of Tokyo. Journal of Mathematical Sciences 10 (2004) 209-224.
[10] J. A. Scott, Another decreasing sequence of triangles, The Mathematical Gazette 89 (2005) 296.
[11] R. J. Stroeker, Brocard points, circulant matrices, and Descartes’ folium, Mathematics Magazine 61

(1988) 172-187.


